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Abstract

We study here a way to approximate information retrieval
metrics through a softmax-based approximation of the rank
indicator function. Indeed, this latter function is a key com-
ponent in the design of information retrieval metrics, as well
as in the design of the ranking and sorting functions. Obtain-
ing a good approximation for it thus opens the door to dif-
ferentiable approximations of many evaluation measures that
can in turn be used in neural end-to-end approaches. We first
prove theoretically that the approximations proposed are of
good quality, prior to validate them experimentally on both
learning to rank and text-based information retrieval tasks.

Introduction
Learning to rank (Liu 2011) is a sub-field of Machine Learn-
ing and Information Retrieval (IR) that aims at learning,
from some training data, functions able to rank a set of ob-
jects – typically a set of documents for a given query. Learn-
ing to rank is currently one of the privileged approaches to
build IR systems. This said, one important problem faced
with learning to rank is that the metrics considered to eval-
uate the quality of a system, and the losses they underlie,
are usually not differentiable. This is typically the case in
IR: popular IR metrics such as precision atK, mean average
precision or normalized discounted cumulative gain, are nei-
ther continuous nor differentiable. As such, state-of-the-art
optimization techniques, such as stochastic gradient descent,
cannot be used to learn systems that optimize their values.

To address this problem, researchers have followed two
main paths. The first one consists in replacing the loss as-
sociated with a given metric by a surrogate loss which is
easier to optimize. A surrogate loss typically upper bounds
the true loss and, if consistent, asymptotically (usually when
the number of samples tends to infinity) behaves like it.
One of the main advantages of surrogate losses lies in the
fact that it is sometimes possible to rely on an optimization
problem that is convex and thus relatively simple to solve.
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However, Calauzènes et al. (Calauzènes, Usunier, and Gal-
linari 2012; Calauzènes and Usunier 2020) have shown that
convex and consistent surrogate ranking losses do not al-
ways exist, as for example for the mean average precision
or the expected reciprocal rank. The second solution is to
identify differentiable approximations of the metrics consid-
ered. Typically, such approximations converge towards the
true metrics when an hyperparameter that controls the qual-
ity of the approximation tends to a given value. One of the
main advantages in using a differentiable approximation of
a metric is the fact that one directly approximates the true
loss, the quality of the approximation being controlled by an
hyperparameter and not the number of samples considered.
One of the main disadvantages of differentiable approxima-
tions is that the optimization problem obtained is in general
non-convex. That said, the recent success of deep learning
shows that solving non-convex optimization problems can
nonetheless lead to state-of-the-art systems.

We follow here this latter path and study differentiable
approximations of standard IR metrics. We focus on one in-
gredient at the core of ranking metrics: the rank indicator
function. We show how one can define high-quality, differ-
entiable approximations of the rank indicator and how these
lead to good approximations of the losses associated with
standard IR metrics. Our contributions are thus three-fold:
• We introduce SmoothI (“smoothie”), a novel differen-

tiable approximation of the rank indicator function that
can be used in various ranking metrics and losses.
• We furthermore show that this approximation, as well as

the differentiable IR metrics and losses derived from it,
converge towards their true counterpart with theoretical
guarantees.
• Lastly, we empirically illustrate the behavior of our pro-

posal on both learning to rank features and standard, text-
based features, and show that it is, in both cases, very
competitive compared to previous approaches.

Related Work
Listwise approaches are widely used in IR as they di-
rectly address the ranking problem (Cao et al. 2007; Xia
et al. 2008). A first category of methods developed for list-
wise learning to rank aimed at building surrogates for non-
differentiable loss functions based on a ranking of the ob-
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jects. In this line, RankCosine (Qin et al. 2008) used a loss
function based on the cosine of two rank vectors while List-
Net (Cao et al. 2007) adopted a cross-entropy loss. ListMLE
and its extensions (Lan et al. 2014; Xia et al. 2008) in-
troduced a likelihood loss and a theoretical framework for
statistical consistency (extended in (Lan et al. 2009, 2012;
Xia, Liu, and Li 2009)), while (Kar, Narasimhan, and Jain
2015) and (Bruch 2019; Ravikumar, Tewari, and Yang 2011;
Valizadegan et al. 2009) studied surrogate loss functions
for P@K and NDCG, respectively. Lastly, LambdaRank
(Burges, Ragno, and Le 2007) used a logistic loss weighted
by the cost, according to the targeted evaluation metric, of
swapping two documents. This approach has then been ex-
tended to tree-based ensemble methods in LambdaMART
(Burges et al. 2011), and finally generalized in LambdaLoss
(Wang et al. 2018), the best performing method according to
(Wang et al. 2018) in this family.

If surrogate losses are interesting as they can lead to sim-
pler optimization problems, they are sometimes only loosely
related to the target loss, as pointed out in Bruch et al.
(2019). A typical example is the Top-K loss proposed in
(Berrada, Zisserman, and Kumar 2018) (see also (Chen et al.
2009; Xu et al. 2008) for a study of the relations between
evaluation metrics and surrogate losses). Furthermore, us-
ing a notion of consistency based on the concept of cal-
ibration developed in (Steinwart 2007), Calauzènes et al.
(Calauzènes, Usunier, and Gallinari 2012; Calauzènes and
Usunier 2020) have shown that convex and consistent surro-
gate ranking losses do not always exist, as for example for
the mean average precision or the expected reciprocal rank.
Researchers have thus directly studied differentiable approx-
imations of loss functions and evaluation metrics, from Soft-
Rank (Taylor et al. 2008), which proposed a smooth approx-
imation of NDCG, to the recent differentiable approxima-
tion of MAP, called ListAP, in the context of image retrieval
(Revaud et al. 2019). Some of the proposed approaches are
based on a soft approximation of the position function (Wu
et al. 2009) or of the rank indicator (Chapelle and Wu 2010),
from which one can derive differentiable approximations of
most standard IR metrics. However, (Wu et al. 2009) is spe-
cific to DCG whereas (Chapelle and Wu 2010) assumes that
the inverse of the rank function is known. Qin, Liu, and
Li (2010) proposed differentiable approximations of P@K,
MAP, P@K and NDCG@K, recently used in (Bruch et al.
2019), based of the composition of two approximation func-
tions, namely the position and the truncation functions. In
contrast, our approach makes use of a single approximation,
that of the rank indicator, for all losses and metrics consid-
ered, and thus reduces the risk of composing errors of dif-
ferent approximations.

More recently, different studies, mostly in the machine
learning community, have been dedicated to differentiable
approximations of the sorting and ranking functions. A fun-
damental relation between optimal transport and generalized
sorting is for example provided in (Cuturi, Teboul, and Vert
2019), with an approximation based on Sinkhorn quantiles
(note that (Yu et al. 2019) also exploits optimal transport
for listwise document ranking, without however proving that
the approximation used is correct). (Blondel et al. 2020)

have focused on devising fast approximations of the sorting
and ranking functions by casting differentiable sorting and
ranking as projections onto the convex hull of all permuta-
tions. In the context of K-NN classification, Plötz and Roth
(2018) proposed a recursive formulation of an approxima-
tion of the ranking function. However, no theoretical guar-
antees are provided, neither for this approximation nor for
the K-NN loss it is used in. A more general framework,
based on unimodal row-stochastic matrices, is introduced in
(Grover et al. 2019) with an approximation of the sorting
operator which is used in (Pobrotyn and Bialobrzeski 2021)
to derive a differentiable approximation to NDCG. It can be
shown that the approximate rank indicator matrix our ap-
proach leads to is a unimodal row-stochastic matrix, so that
our proposal can be used in their framework as well. (Prillo
and Eisenschlos 2020) further improved the above proposal
by simplifying it, an approach referred to as SoftSort. Lastly,
we want to mention the approach developed by Kong et al.
(2020) who propose an adaptive projection method, called
Rankmax, that projects, in a differentiable manner, a score
vector onto the (n, k)-simplex. This method is particularly
well adapted to multi-class classification. Its application to
IR metrics remains however to be studied.

Differentiable IR Metrics
For a given query, an IR system returns a list of ranked doc-
uments. The ranking is based on scores provided by the IR
system, scores that we assume here to be strictly positive and
distinct1 and that will be denoted by S = {S1, . . . , SN} for
a list of N documents. To assess the validity of an IR sys-
tem, one uses gold standard collections in which the true rel-
evance scores of documents are known, and IR metrics that
assess to which extent the IR system is able to place docu-
ments with higher relevance scores at the top of the ranked
list it returns. The most popular metrics are certainly the pre-
cision at K (denoted by P@K) which measures the preci-
sion in the list of top-K documents, its extension Mean Av-
erage Precision (MAP), as well the Normalized Discounted
Cumulative Gain at K (NDCG@K) which can take into ac-
count graded relevance judgements.

P@K is the average over queries of P@Kq , defined for a
given query q by:

P@Kq =
1

K

K∑
r=1

relq(jr), (1)

where jr is the rth highest document in the list of scores S
(i.e., the document with the rth largest score in S), relq(j) is
a binary relevance score that is 1 if document j is relevant to
q and 0 otherwise. MAP is the average over queries of APq
defined by:

APq =
1∑N

j=1 relq(j)

N∑
K=1

relq(jK)P@Kq, (2)

1This is not a restriction per se as one can add an arbitrary large
value to the scores without changing their ranking, and ties can be
broken randomly.
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The normalized discounted cumulative gain at rank K,
NDCG@K, is the average over queries of NDCG@Kq , de-
fined for a given query q by:

NDCG@Kq =
1

Nq
K

K∑
r=1

2relq(jr) − 1

log2(k + 1)
, (3)

where relq(j) is now a (not necessarily binary) positive,
bounded relevance score for document j with respect to
query q (higher values correspond to higher relevance) and
Nq
K a query-dependent normalizing constant. The stan-

dard NDCG metric corresponds to NDCG@N (Järvelin and
Kekäläinen 2002).

As the reader may have noticed, the common building
block and main ingredient of the above IR metrics (Eqs. 1,
2, 3) is the relevance score of the document at any rank r,
namely relq(jr). If one can define a “good” differentiable
approximation of relq(jr), then one obtains a “good” differ-
entiable approximation of IR metrics. The goal of this paper
is to introduce such a differentiable approximation, while
giving “good” a precise meaning.

SmoothI: Smooth Rank Indicators
The relevance score of the document at any rank r in a list
of N documents can be rewritten as:

relq(jr) =
N∑
j=1

relq(j)I
r
j ,

where Irj is the rank indicator function at rank r, which is
equal to 1 if j is the rth highest document in the list and 0
otherwise. Thus, the rank indicator function at rank r can be
defined by:

Irj =


1 if j = argmax{

j′∈{1,...,N}
∀l<r,Il

j′=0

Sj′ ,

0 otherwise.
Given the strict positivity assumption on the scores, the
argmax above can be equivalently expressed as:

argmax{
j′∈{1,...,N}
∀l<r,Il

j′=0

Sj′ = argmax
j′∈{1,...,N}

Sj′
r−1∏
l=1

(1− I lj′),

as the product
∏r−1
l=1 (1 − I lj′) is 0 for the (r − 1) highest

documents.
A widespread smooth approximation of the argmax is

the parameterized softmax. It has been employed in, e.g.,
(Moradi Fard, Thonet, and Gaussier 2018) in the context
of deep k-means clustering, in (Plötz and Roth 2018) in
the context of neural nearest neighbor networks, as well as
in (Jang, Gu, and Poole 2017; Maddison, Mnih, and Teh
2017) within a Gumbel-softmax distribution employed to
approximate categorical samples. The parameterized soft-
max defines, for any rank r ∈ {1, . . . , N} and document
j ∈ {1, . . . , N}, a smooth rank indicator Ir,αj of the form:

Ir,αj =
eαSj

∏r−1
l=1 (1−Il,αj )∑

j′ e
αSj′

∏r−1
l=1 (1−Il,α

j′ )
,

SmoothI

Per-query input doc.
representations 

Document 
scores

... ......

Approximate rank
indicator functions

2.47 

1.53 

5.96 

...

...

...

Ranking
loss

Neural
model

Figure 1: Illustration of SmoothI and its positioning in a neu-
ral retrieval system. Given a query q, the document represen-
tations {Xq,di}Ni=1 are first passed through a neural model
which outputs a set of scores {Sdi}Ni=1. The scores are then
processed by the SmoothI module, yielding smooth rank in-
dicators {Ir,α}Kr=1 up to rank K, which are ultimately used
to calculate the ranking loss.

where α is an hyperparameter that plays the role of an in-
verse temperature guaranteeing that Ir,αj converges to the
true rank indicator function Irj (for any document j and rank
r) when α→ +∞.

Numerical approximations in the above formulation may
however lead in practice to choosing a document at a given
rank r that was already selected at a lower rank. Indeed, it
may be that for a document j of rank l′ < r, I l

′,α
j gets a

value slightly below 1, with the risk that Sj′
∏r−1
l=1 (1− I

l,α
j′ )

takes the highest value for j′ = j and, in turn, that j is se-
lected for both ranks l′ and r. We thus slightly modify the
above formulation by introducing an additional hyperparam-
eter, leading, for any rank r ∈ {1, . . . , N} and document
j ∈ {1, . . . , N}, to:

Ir,αj =
eαSj

∏r−1
l=1 (1−Il,αj −δ)∑

j′ e
αSj′

∏r−1
l=1 (1−Il,α

j′ −δ)
. (4)

The hyperparameter δ ∈ (0, 0.5) controls the mass of the
distribution that is allocated to the (r − 1) highest docu-
ments: a larger δ leads to further reducing the contribution
of the (r − 1) highest documents in the distribution at rank
r. We refer to the above approximation of the rank indicator
function as SmoothI.

The following theorem, the proof of which is given in the
Supplementary Material, states that Ir,αj given in Eq. 4 plays
the role of a smooth, differentiable approximation of the true
rank indicator Irj :

Theorem 1. For any r ∈ {1, . . . , N}, and j ∈ {1, . . . , N}:

(i) Ir,αj is differentiable wrt any score in S ,

(ii) lim
α→+∞

Ir,αj = Irj .

Figure 1 further shows how SmoothI can be integrated in a
neural retrieval system. It simply consists of the last element
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that is used to compute the overall loss corresponding to the
desired IR metrics.

Quality of the Approximation
Interestingly, Ir,αj is a good approximation to Irj as the error
decreases exponentially with α, as stated in the following
theorem, the proof of which is given in the Supplementary
Material2.
Theorem 2. Let Smin be the smallest score in S and β the
minimal ratio between scores Sj and Sj′ when Sj > Sj′ :
β = min

(j,j′), Sj>Sj′

Sj
Sj′

. Furthermore, let c = (β+1
2 )

1
K−1 ,

where K is the rank at which the IR metric is considered,
and let γ = min

{
δ, 0.5− δ, (1− δ) c−1c+1

}
. If:

(C1) α >
2K−1 [log(K − 1)− log γ]

Smin min
{
1, β−12

} ,

then:

∀r ∈ {1, . . . ,K}, ∀j ∈ {1, . . . ,K}, |Irj − I
r,α
j | ≤ εα,K ,

with εα,K = (K − 1)e−α
Smin

2K−1 min{1, β−1
2 }.

Note that, due to the exponential function, both the right-
hand side of Condition (C1) and εα,K can be made as small
as one wants by increasing α or, equivalently, rescaling the
scores of the documents without changing their ranking.

Lastly, the following corollary shows that the same ap-
proximation quality and exponential speed of convergence
holds for compositions of linear combinations and Lipschitz
functions of the rank indicators, which are widely used in
different ranking and sorting functions.
Corollary 1. For K ∈ {1, . . . , N}, let I =
{Irj }1≤r≤K,1≤j≤N and Iα = {Ir,αj }1≤r≤K,1≤j≤N .
Consider the function h such that h(I;a,b) =∑K
r=1 arg(

∑N
j=1 bjI

r
j ), where g is a Lipschitz func-

tion with Lipschitz constant `, and a = {ar}Kr=1 and
b = {bj}Nj=1 are real-valued constants. Then:

|h(I;a,b)− h(Iα;a,b)| ≤

(
K∑
r=1

|ar|

)(
N∑
j=1

|bj |

)
`εα,K .

Gradient Stabilization in Neural Architectures
In pilot experiments, we found that the recursive compu-
tation in Ir,αj (Eq. 4) could sometimes lead to numerical
instability when computing its gradient with respect to the
scores S . To alleviate this issue, we adopted a simple so-
lution which consists in applying the stop-gradient operator
to
∏r−1
l=1 (1 − I

l,α
j′ − δ) in the definition of Ir,αj to “prune”

the computation graph in the backward pass. This operator,
which was used in previous works such as (van den Oord,
Vinyals, and Kavukcuoglu 2017), acts as the identity func-
tion in the forward pass and sets the partial derivatives of its

2Note that the proof of this theorem requires 0 < δ < 0.5,
hence the condition δ ∈ (0, 0.5) mentioned before.

argument to zero in the backward pass, leading to the fol-
lowing slightly modified definition of Ir,αj which we use in
practice:

Ir,αj =
eαSjsg[

∏r−1
l=1 (1−Il,αj −δ)]∑

j′ e
αSj′ sg

[∏r−1
l=1 (1−Il,α

j′ −δ)
] ,

where sg[·] is the stop-gradient operator. In other words, we
consider that the lower-rank smooth indicators I l,αj′ (l < r)
in Ir,αj are constant with respect to S .

Application to IR Metrics
Based on the proposed smooth rank indicators, one can
obtain simple approximations of IR metrics by replacing
relq(jr) with

∑N
j=1 relq(j)I

r,α
j , leading to the following

approximation for P@Kq:

P@Kα
q =

1

K

K∑
r=1

N∑
j=1

relq(j)I
r,α
j ,

from which one obtains the following approximation of
APq:

APαq =
1∑N

j=1 relq(j)

N∑
K=1

 N∑
j=1

relq(j)I
K,α
j

P@Kα
q .

Similarly, the approximation for NDCG@Kq is given by:

NDCG@Kα
q =

1

Nq
K

K∑
r=1

2
∑N
j=1 relq(j)I

r,α
j − 1

log2(k + 1)
.

A direct application of Corollary 1 leads to:
|P@K − P@Kα| ≤ mεα,K ,

where m is the average number of relevant documents per
query (m = 1

Q

∑Q
q=1

∑N
j=1 relq(j)). This leads for MAP

to:
|MAP−MAPα| ≤ N(m+ 1)εα,N .

For NDCG@K, using a Taylor expansion of the function 2x

around x = 0, one gets:
|NDCG@K − NDCG@Kα| ≤ Nεα,K .

This shows that the approximations obtained for P@K,
MAP and NDCG@K (and a fortiori NDCG) are of expo-
nential quality.

Experiments
We conducted both feature-based learning to rank and text-
based IR experiments to validate SmoothI’s ability to de-
fine high-quality differentiable approximations of IR met-
rics, and hence meaningful listwise losses. In particular, our
evaluation seeks to address the following two questions: On
learning to rank collections, how does SmoothI compare to
state-of-the-art listwise approaches? Do neural models for
text-based IR (e.g., models based on BERT) benefit from
SmoothI’s listwise loss?

In the remainder of this section, we first describe the ex-
perimental setup of the learning to rank experiments, then
we discuss the learning to rank results. Finally, we detail our
experiments with BERT on text-based IR.
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Learning to Rank Experimental Setup
Datasets. To evaluate our approach, we con-
ducted learning to rank experiments on standard,
publicly available datasets, namely LETOR 4.0
MQ2007, MQ2008 and MSLR-Web30K (Qin and
Liu 2013), respectively containing 1,692/69,623,
784/15,211 and 31,531/3,771,125 queries/documents,
and the Yahoo learning to rank Set-1 dataset (Chapelle
and Chang 2010), containing 29,921/709,877 queries/doc-
uments. In these datasets, each query-document pair is
associated with a feature vector. We rely on the standard
5-fold train/validation/test split for the LETOR collections
and the standard train/validation/test split for YLTR. In the
remainder, MSLR-Web30K and Yahoo learning to rank
Set-1 will respectively be referred to as Web30K and YLTR.

The statistics of the different datasets for their respective
folds are further detailed in Section 3 of the Supplementary
Material.

Baseline methods. Differentiable approximations of IR
metrics (and their associated losses) can be classified un-
der two categories: surrogate losses and direct approxima-
tions. Among approaches based on surrogate losses, we
have retained the three state-of-the-art approaches ListNET
(Cao et al. 2007), ListMLE (Xia et al. 2008), and Lamb-
daLoss (Wang et al. 2018). The latter is considered the
best performing method in the Lambda* family (Lamb-
daRank, LambdaMART, LambdaLoss) (Wang et al. 2018),
and we thus omit the comparison against LambdaMART and
LambdaRank. Among approaches based on direct approx-
imations, we have retained the recently proposed ListAP
(Revaud et al. 2019) and the state-of-the-art method Ap-
prox (Qin, Liu, and Li 2010), which was also recently used
in (Bruch et al. 2019). In addition, we also considered losses
derived from recent approaches for differentiable sorting and
ranking (Blondel et al. 2020; Cuturi, Teboul, and Vert 2019;
Prillo and Eisenschlos 2020). We used here as baselines the
most recent representatives of these approaches, namely OT
(Cuturi, Teboul, and Vert 2019), which frames differentiable
sorting as an optimal transport problem, FastSort (Blondel
et al. 2020), which devises an efficient differentiable ap-
proximation based on projections onto the convex hull of
permutations, and SoftSort (Prillo and Eisenschlos 2020),
which proposes a continuous relaxation of the sorting oper-
ator based on unimodal row-stochastic matrices and is com-
parable, both in terms of method and results, to the Neural-
Sort method introduced in (Grover et al. 2019).

As LambdaLoss, Approx and SmoothI can be used to ap-
proximate different IR metrics, we defined several variants
for each approach, respectively optimizing P@{1, 5, 10},
NDCG@{1, 5, 10, N} and MAP, and selected the best vari-
ant based on the validation performance. The losses de-
fined by ListNET, ListAP3, Approx and SmoothI were im-
plemented in PyTorch (Paszke et al. 2019), using our own
implementation for ListNET, Approx and SmoothI4. For
ListMLE and LambdaLoss, we relied on the TF-Ranking li-

3https://github.com/almazan/deep-image-retrieval
4https://github.com/ygcinar/SmoothI

brary (Pasumarthi et al. 2019). OT5, FastSort6 and SoftSort7
all propose differentiable approximations of the position
function. This is the same position function as the one used
by Approx for computing an approximation of NDCG@N .
We thus directly used this latter approximation from the out-
puts of OT, FastSort and SoftSort (note that Approx uses, in
addition to the approximation of the position function, an
approximation of the truncation function for computing ap-
proximations of truncated IR-metrics P@K and NDCG@K
(Qin, Liu, and Li 2010)). For evaluating the performance of
the different approaches, we used the fast Python implemen-
tation of the TREC evaluation tool (Van Gysel and de Ri-
jke 2018), which calls the trec eval evaluation metrics8 from
Python.

Lastly, in order to have a fair comparison of the losses
defined by the different methods in the context of mod-
ern neural end-to-end approaches, we used the same fully-
connected feedforward neural network for all methods. It
is composed of an input layer followed by batch normal-
ization, a 1024-dimensional hidden layer with ReLU acti-
vation again followed by batch normalization, and a fully-
connected output layer that provides a score for each doc-
ument in the list. The different hyperparameters and addi-
tional details on the learning to rank experimental setup are
summarized in Section 4 of the Supplementary Material.

Learning to Rank Results
In this section, we study the retrieval performance of the
different learning to rank losses derived from SmoothI and
baseline approaches. Table 1 presents the learning to rank
results, averaged over 5 folds for MQ2007, MQ2008 and
Web30K, each fold using a different random initialization,
and averaged over five random initializations for YLTR. We
reported the significance using a paired Student t-test with
Bonferroni correction at 5% significance level. For space
reasons, we only show in Table 1 the mean results accord-
ing to P@{1, 5}, NDCG@{1, 5, N}, and let the reader refer
to Section 5 of the Supplementary Material for the P@10,
MAP and NDCG@10 metrics as well as the standard errors
around the mean. For LambdaLoss, Approx and SmoothI,
Table 1 contains the best results obtained across the vari-
ants – optimizing different metrics – of each approach.

As one can notice, SmoothI is the best performing
method on MQ2007, MQ2008 and Web30K. On MQ2007
and MQ2008, SmoothI outperforms all other methods for
P@{1, 5} and NDCG@{1, 5, N}. Approx is, on these col-
lections, the second best method. On Web30K, SmoothI
significantly outperforms all methods on P@1, NDCG@1,
NDCG@5, and all methods but Approx on P@5 and NDCG.
The results are more contrasted on YLTR. On the one hand,
SmoothI and ListMLE are on par according to the NDCG-
based metrics as they respectively obtained the best perfor-
mance in terms of NDCG@{1, 5} and NDCG@N , with sig-

5https://github.com/google-research/google-research/tree/
master/soft sort

6https://github.com/google-research/fast-soft-sort
7https://github.com/sprillo/softsort
8https://github.com/usnistgov/trec eval
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P@1 P@5 NDCG@1 NDCG@5 NDCG P@1 P@5 NDCG@1 NDCG@5 NDCG
MQ2007 MQ2008

ListNet 0.463 0.412† 0.420 0.422† 0.603† 0.392† 0.318† 0.339† 0.422† 0.514†

ListMLE 0.442† 0.397† 0.395† 0.405† 0.594† 0.415† 0.337† 0.365† 0.445† 0.526†

LambdaLoss 0.452† 0.403† 0.407† 0.415† 0.601† 0.441 0.337† 0.385 0.457† 0.540
ListAP 0.457† 0.405† 0.405† 0.414† 0.600† 0.420 0.330† 0.371 0.442† 0.532†
Approx 0.479 0.419 0.430 0.430 0.611 0.457 0.349 0.401 0.471 0.549
OT 0.451† 0.405† 0.406† 0.414† 0.602† 0.431 0.342† 0.382 0.461† 0.542
FastSort 0.461 0.405† 0.413† 0.417† 0.599† 0.430 0.332† 0.371 0.450† 0.537†

SoftSort 0.469 0.413† 0.425 0.426† 0.608 0.411† 0.335† 0.360† 0.449† 0.534†
SmoothI (ours) 0.488 0.424 0.441 0.439 0.612 0.459 0.353 0.402 0.477 0.550

Web30K YLTR
ListNet 0.694† 0.649† 0.496† 0.483† 0.741† 0.858† 0.814† 0.726† 0.741† 0.857†

ListMLE 0.620† 0.544† 0.404† 0.383† 0.646† 0.874 0.829 0.724† 0.746 0.859
LambdaLoss 0.697† 0.617† 0.497† 0.466† 0.691† 0.868† 0.822† 0.731† 0.743† 0.854†

ListAP 0.715† 0.658† 0.503† 0.483† 0.733† 0.820† 0.768† 0.685† 0.686† 0.820†

Approx 0.767† 0.716 0.544† 0.523† 0.754 0.870 0.828 0.731† 0.745† 0.858
OT 0.682† 0.637† 0.459† 0.456† 0.729† 0.846† 0.793† 0.710† 0.719† 0.842†

FastSort 0.722† 0.660† 0.525† 0.494† 0.738† 0.857† 0.812† 0.724† 0.729† 0.851†

SoftSort 0.724† 0.669† 0.521† 0.500† 0.747† 0.861† 0.814† 0.729† 0.739† 0.854†

SmoothI (ours) 0.776 0.717 0.552 0.530 0.754 0.869† 0.826† 0.735 0.748 0.858

Table 1: Learning to rank retrieval results. Mean test performance is calculated over 5 folds for MQ2007, MQ2008 and Web30K,
and 5 random initializations for YLTR as no predefined folds are available. Standard errors as well as additional results are
provided in the Supplementary Material. Best results are in bold and “ † ” indicates a model significantly worse than the best
one according to a paired t-test with Bonferroni correction at 5%.

nificant differences only at cutoff 1. On the other hand, in
terms of precision-based metrics, ListMLE outperformed all
other approaches except Approx.

Turning to the listwise losses obtained from the differen-
tiable sorting approaches (OT, FastSort, and SoftSort), we
observe that these methods demonstrate competitive per-
formance on the learning to rank task. SmoothI nonethe-
less outperformed all of these approaches, in particular on
Web30K on which the differences are significant for all met-
rics. In summary, over all the collections, we conclude that
SmoothI proves to be very competitive on learning to rank
with respect to traditional listwise losses and differentiable
sorting approaches.

As a complement to this experiment, we investigate in
Section 6 of the Supplementary Material how the choice
of the optimized metric influences SmoothI’s performance.
This study highlights that optimizing NDCG@N leads to
the best performance according to any IR metric and thus
constitutes an overall safe choice. We also discuss the effi-
ciency of the different approaches in Section 7 of the Sup-
plementary Material. Overall, all approaches but ListMLE,
LambdaLoss and OT – which are significantly slower than
the other approaches on different datasets – are comparable
and scale reasonably well.

Experiments on Text-based IR
To further validate the efficacy of SmoothI, we conducted
experiments on text-based information retrieval, i.e., with
raw texts as input. In particular, the task consists here in op-
timizing a given neural model to appropriately rank the doc-
uments for each query, where the documents and queries are

raw texts. This differs from the previous sections which fo-
cus on feature-based learning to rank, i.e., where each query-
document pair is represented by a feature vector.

Experimental setup. The standard TREC Robust04 col-
lection, which consists of 250 queries and 0.5M documents,
is used here as the text-based IR collection. For queries,
we used the keyword version which corresponds to the title
fields of the TREC topics (Dai and Callan 2019; McDon-
ald, Brokos, and Androutsopoulos 2018). We experimented
with vanilla BERT as the neural ranking model, using the
pretrained uncased BERT-base version. This model is at the
core of recent state-of-the-art IR models (Devlin et al. 2019;
Dai and Callan 2019; MacAvaney et al. 2019; Li et al. 2020).
We make use here of the version proposed by (MacAvaney
et al. 2019), which is slightly better than the other ones.

Most text-based IR neural models based on BERT are
trained with a pointwise or pairwise loss, and not a listwise
loss (Li et al. 2020; MacAvaney et al. 2019). This is not re-
ally surprising as the calculation of the loss requires that the
representations of all the documents to be ranked for a query
hold together in memory, which can lead to a prohibitive
memory cost for BERT if the list of documents associated to
a query is large. To overcome this potential problem when
using a listwise loss such as SmoothI, we computed the loss
only on the documents of the training batch, where each
batch contains two pairs of (relevant, non-relevant) docu-
ments associated to one query. For each query, one thus has a
list of four documents, which are all fed to the vanilla BERT
model as a list of query-document pairs. The input of the
BERT models for each query-document pair is obtained by
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P@1 P@5 P@10 P@20 MAP

vanilla-BERT (MacAvaney et al. 2019) 0.631±0.026 0.544±0.028 0.474±0.028† 0.396±0.019 0.236±0.006†

vanilla-BERT (Approx-NDCG@N loss) 0.651±0.023 0.529±0.020† 0.465±0.025† 0.392±0.021† 0.237±0.008†
vanilla-BERT (SmoothI-NDCG@N loss) 0.635±0.014 0.562±0.025 0.494±0.024 0.407±0.019 0.245±0.007

NDCG@1 NDCG@5 NDCG@10 NDCG@20 NDCG

vanilla-BERT (MacAvaney et al. 2019) 0.592±0.022 0.528±0.024 0.493±0.023† 0.464±0.020† 0.434±0.010
vanilla-BERT (Approx-NDCG@N loss) 0.602±0.017 0.521±0.017† 0.490±0.020† 0.462±0.018† 0.436±0.010
vanilla-BERT (SmoothI-NDCG@N loss) 0.601±0.010 0.548±0.017 0.515±0.019 0.480±0.017 0.441±0.007

Table 2: Text-based retrieval results on Robust04: mean test performance ± standard error calculated over 5 folds. The best
results are in bold and “ † ” indicates a model significantly worse than the best one according to a paired t-test at 5%.

concatenating the [CLS] token, query tokens, the [SEP] to-
ken and document tokens. From BERT’s output [CLS] vec-
tor, a dense layer generates the relevance score for the corre-
sponding query-document pair. Following MacAvaney et al.
(2019), documents are truncated at 800 tokens in order to
handle documents longer than the capacity of BERT. In this
case, a document is split into two inputs and the [CLS] vec-
tors from each split are averaged to get BERT’s output [CLS]
vector.

We use as baselines the standard vanilla BERT model
(MacAvaney et al. 2019) as well as its version with Approx-
NDCG@N , which is the second best performing method
in our previous comparison. We compare both approaches
to the vanilla BERT with SmoothI-NDCG@N , the best
method overall in our previous comparison. All models are
trained for 100 epochs using Adam optimizer with a learn-
ing rate of 2 · 10−5 for BERT, as suggested in MacAvaney
et al. (2019), and 10−3 for the top dense layer, which is a
common default value. As mentioned before, the batch size
is set to four and gradient accumulation is used every eight
steps (MacAvaney et al. 2019). We furthermore followed a
five-fold cross validation protocol: the models are trained on
the training set (corresponding to three folds), tuned on the
validation set (one fold) with early stopping, and evaluated
on the test set (the remaining fold). We use the standard re-
ranking setting and re-rank the top-150 documents returned
by BM25 (Robertson and Walker 1994). The hyperparame-
ters α and δ for SmoothI are set to 1.0 and 0.1 respectively.
The hyperparameter α for Approx-NDCG@N is set to 1.0
(note that only one hyperparameter is needed for approxi-
mating NDCG@N with Approx as the second hyperparam-
eter relates to the truncation function used for the truncated
IR-metrics P@K and NDCG@K (Qin, Liu, and Li 2010)).
The random seed integer was set to 66 and we ran our ex-
periments on an Intel Xeon server with a Nvidia GTX 1080
Ti GPU.

Results. Table 2 reports the text-based retrieval perfor-
mance, averaged over 5 folds, of the standard vanilla BERT
model and the two vanilla BERT models with the listwise
losses Approx-NDCG@N and SmoothI-NDCG@N . The
best results are in bold and “ † ” indicates a model signifi-
cantly worse than the best one according to a paired t-test
at 5%. Note that we observed no significant differences be-
tween Approx-NDCG@N and the pairwise hinge loss. In
contrast, one can observe that vanilla BERT performs better

when it is trained with SmoothI-NDCG@N and achieves
the highest scores on all metrics but P@1 and NDCG@1
for which it is on par with the other approaches. The im-
provement over the original vanilla BERT model with the
pairwise hinge loss is in particular significant on P@10,
MAP, NDCG@10 and NDCG@20. The improvement over
Approx-NDCG@N is significant on P@5, P@10, P@20,
MAP, NDCG@5, NDCG@10 and NDCG@20. Further-
more, the vanilla BERT model with SmoothI-NDCG@N
achieves 0.480 on NDCG@20 on the TREC Robust04 col-
lection, which is the best result this model has achieved on
this collection to our knowledge (Devlin et al. 2019; MacA-
vaney et al. 2019; Ma et al. 2020).

Conclusion
We presented in this study a unified approach to build dif-
ferentiable approximations of IR metrics (P@K, MAP and
NDCG@K) on the basis of an approximation of the rank
indicator function. We further showed that the errors associ-
ated with these approximations decrease exponentially with
an inverse temperature-like hyperparameter that controls the
quality of the approximations. We also illustrated the effi-
cacy and efficiency of our approach on four standard col-
lections based on learning to rank features, as well as on
the popular TREC Robust04 text-based collection. All in
all, our proposal, referred to as SmoothI, constitutes a tool
for differentiable ranking that proved very competitive com-
pared with previous approaches on several collections, either
based on learning to rank or textual features.

We also want to stress that the approach we proposed is
more general and can directly be applied to other losses,
such as the K-NN loss studied in Grover et al. (2019),
and functions that are directly based on the rank indicator.
Among such functions, we are particularly interested in the
ranking function, which aims at ordering the documents in
decreasing order of their scores, the sorting function, which
aims at ordering the scores, and the position function, which
aims at providing, for each document, its rank in the ordered
list of scores. We plan to study, on the basis of the devel-
opment given in this paper, differentiable approximations of
these functions in a near future.
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