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Abstract

Differential Privacy offers strong guarantees such as im-
mutable privacy under any post-processing. In this work, we
propose a differentially private mechanism called PrivateMail
for performing supervised manifold learning. We then apply
it to the use case of private image retrieval to obtain nearest
matches to a client’s target image from a server’s database.
PrivateMail releases the target image as part of a differentially
private manifold embedding. We give bounds on the global
sensitivity of the manifold learning map in order to obfus-
cate and release embeddings with differential privacy induc-
ing noise. We show that PrivateMail obtains a substantially
better performance in terms of the privacy-utility trade off in
comparison to several baselines on various datasets. We share
code for applying PrivateMail at http://tiny.cc/PrivateMail.

1 Introduction
Privacy preserving computation enables distributed hosts
with ‘siloed’ away data to query, analyse or model their sen-
sitive data and share findings in a privacy preserving man-
ner. As a motivating problem, in this paper we focus on
the task of privately retrieving nearest matches to a client’s
target image with respect to a server’s database of images.
Consider the setting where a client would like to obtain the
k-nearest matches to its target from an external distributed
database. State of the art image retrieval machine learning
models such as (Matsui, Yamaguchi, and Wang 2020; Chen
et al. 2021; Zhou, Li, and Tian 2017; Dubey 2020) exist for
feature extraction pior to obtaining the neighbors to a given
match in the learnt space of deep feature representations.
Unfortunately, this approach is not private. The goal of our
approach is to be able to use these useful features for the pur-
pose of image retrieval in a manner, that is formally differ-
entially private. The seminal idea for a mathematical notion
of privacy, called differential privacy, along with its founda-
tions is introduced quite well in (Dwork, Roth et al. 2014).
In our approach, we geometrically embed the image features
via a supervised manifold learning query that we propose.
Our query falls within the framework of supervised mani-
fold learning as formalized in (Vural and Guillemot 2017).
We then propose a differentially private mechanism to re-
lease the outputs of this query. The privatized outputs of
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this query are used to perform the matching and retrieval
of the nearest neighbors in this privatized feature space. Dif-
ferential privacy aims to prevent membership inference at-
tacks (Shokri et al. 2017; Truex et al. 2018; Li and Zhang
2020; Song, Shokri, and Mittal 2019; Shi, Davaslioglu, and
Sagduyu 2020). It has been shown that differential privacy
mechanisms can also prevent reconstruction attacks under
a constraint on the level of utility that can be achieved as
shown in (Dwork et al. 2017; Garfinkel, Abowd, and Martin-
dale 2018). Currently cryptographic methods for the prob-
lem of information retrieval were studied in works like (Xia
et al. 2015). These methods ensure to protect the client’s data
via homomorphic encryption and oblivious transfer. How-
ever, they also come with an impractical trade-off of compu-
tational scalability, especially when the size of the server’s
database is large and the feature size is high-dimensional as
is always the case in practice (Elmehdwi, Samanthula, and
Jiang 2014; Lei et al. 2019; Yao, Li, and Xiao 2013).

Motivation
Currently available differential privacy solutions for biomet-
ric applications where content based matching of records is
performed (Steil et al. 2019; Chamikara et al. 2020) is based
on a small number of hand-crafted features. We instead con-
sider state of the art feature extraction used by recent deep
learning architectures specialized for image retrieval such as
(Jun et al. 2019). We privatize these features and share them
in the form of differentially private embeddings that are in
turn used for the image retrieval task. Furthermore, cryp-
tographic methods with strong security guarantees are cur-
rently not scalable computationally, for secure k-nn queries
(Elmehdwi, Samanthula, and Jiang 2014; Lei et al. 2019;
Yao, Li, and Xiao 2013) especially when the server-side
database is large as is typically the case in real-life scenarios.

2 Contributions
The main contibution of our paper is a differentially pri-
vate method called PrivateMail for private release of outputs
from a supervised manifold learning query that embeds data
into a lower dimension. We test our scheme for differentially
private ‘content based image retrieval’, where the matches
to a target image requested by a client are retrieved from a
server’s database while maintaining differential privacy. We
also show a substantial improvement in the utility-privacy
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Figure 1: This illustration shows the lifecycle of interactions between client and server side entities for private image retrieval.
The interaction starts from the red bubble on the right. At first, the client and server train an on-premise machine learning model
that is tailored for image retrieval. The client extracts features from this model on the target query image, dummy targets that
are only known to the client, and a public dataset known to the client and server. The extracted features go through the proposed
Private-Mail for embedding them via locally differentially private supervised manifold learning. These private embeddings are
aligned at server prior to performing the nearest-neighbor retrieval of matches that are served back to the client. The privatized
representation of public dataset is used as an anchor in order to align the feature embeddings between the client and server.

trade-off of our embeddings over five existing baselines. Fi-
nally, the supervised manifold learning query that we pro-
pose to geometrically embed features extracted from deep
networks is novel in itself. That said, we would only con-
sider this as a secondary contribution to this paper.

3 Related Work
Non-private image search and retrieval: Current state of
the art pipelines for content based image retrieval under the
non-private setting are fairly matured and based on nearest
neighbor queries performed over specialized deep feature
representations of these images. The query image and the
database of images are compared in this learnt representa-
tion space. A detailed set of tutorials and surveys on this
problem in the non-private setting is provided in (Matsui,
Yamaguchi, and Wang 2020; Chen et al. 2021; Zhou, Li,
and Tian 2017; Dubey 2020).
Private manifold learning: There have been recent devel-
opments in learning private geometric embeddings with dif-
ferentially private unsupervised manifold learning. Notable
examples include distributed and differentially private ver-
sion of t-SNE (Van der Maaten and Hinton 2008) called
DP-dSNE (Saha et al. 2020, 2021) and (Arora and Upad-
hyay 2019) for differentially private Laplacian Eigenmaps
(Belkin and Niyogi 2003, 2007). Furthermore, the work in
(Choromanska et al. 2016) provides a method for differen-
tially private random projection trees to perform unsuper-
vised private manifold learning. The work in (Upadhyay
2014) also studies Riemannian manifold learning with dif-
ferential privacy for manifolds with a bounded condition
number and geodesic covering regularity. However, none of
these works consider differentially private manifold learning
in the supervised setting that we explore in this paper. We
show a substantial improvement in privacy-utility trade-offs
of the supervised manifold embedding approach over exist-
ing baselines that include private and non-private methods
in the supervised and unsupervised paradigms.

Motivated by the supervised manifold learning frame-
work in (Vural and Guillemot 2017) that is based on a differ-

ence of two unsupervised manifold learning objectives, we
present an iterative update to efficiently optimize it. We re-
fer to this iterative optimization as the supervised manifold
learning query (SMLQ). We then provide a privacy mecha-
nism called PrivateMail to perform this supervised manifold
learning query with a guarantee of differential privacy. To do
that, we derive the sensitivity of our query that is required
to calibrate the amount of noise needed to attain differen-
tial privacy. As part of experimental results, we apply our
approach to a novel task of differentially private image re-
trieval, that has not been well-studied in current literature as
opposed to the non-private image retrieval task which is a
widely studied problem.

Notation Description
n Sample size
d Data dimension
k Embedded dimension
Xn×d Data matrix
Yn×1 Labels
f Manifold learning map
σ Gaussian kernel bandwidth
σq std. dev. of entries in Q
α regularization in LX − αLY

Q Qi,j ∼ N(0, σ2
q )

Table 1: Notations

4 Moving from Unsupervised to Supervised
Manifold Learning

We first briefly introduce some preliminaries for unsuper-
vised manifold learning in order to build upon it to introduce
supervised manifold learning.

Preliminaries for Unsupervised Manifold Learning
This problem is a discrete analogue of the continuous prob-
lem of learning a map f : M 7→ Rk from a smooth, com-
pact high dimensional Riemannian manifold such that for
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any two points x1, x2 on M, the geodesic distance on the
manifold dM(x1, x2) is approximated by the Euclidean dis-
tance ∥f(x1) − f(x2)∥ in Rk. Different manifold learning
techniques vary in their tightness of this approximation on
varying datasets. Manifold learning techniques like Lapla-
cian Eigenmaps (Belkin and Niyogi 2005), Diffusion Maps
(Coifman and Lafon 2006) and Hessian Eigenmaps (Donoho
and Grimes 2003) aim to find a tighter approximation by
trying to minimize a relevant bounding quantity B such that
∥f(x1)− f(x2)∥ ≤ B · dM(x1, x2) + o(dM(x1, x2)). Dif-
ferent techniques propose different possiblilities for such a
B. For example, Laplacian Eigenmaps uses B = ||∇f(x1)||
for which it is shown that this relation holds as
||f(x1)− f(x2)|| ≤ ||∇f(x1)|| · ||x1 − x2||+ o(||x1 − x2||)

Hence, controlling ||∇f ||L2(M) preserves geodesic rela-
tions on the manifold in the Euclidean space after the em-
bedding.

From Continuous to Discrete
This quantity of ||∇f ||L2(M) in the continuous domain can
be optimized via chosing the eigenfunctions of the Laplace-
Beltrami operator in order to get the optimal embedding.
This is explained in a series of papers by (Giné, Koltchinskii
et al. 2006; Belkin and Niyogi 2007; Jones, Maggioni, and
Schul 2008). From a computational standpoint we note that,
for a specific graph defined on all pairs of data points with
an adjacency matrix WX and corresponding graph Lapla-
cian LX, the following quantity

Σi,j(||f(Xi)− f(Xj)||2 · [WX]ij) = Tr(f(X)
T
LXf(X))

(1)
is the discrete version of ||∇f ||2L2(M) under the assump-
tion that the dataset X is a sample lying on the manifold
M. Here, f(Xi) and f(Xj) refer to the k dimensional real-
valued output of the manifold learning map f at two sin-
gle points represented by i and j rows in the data matrix
Xn×d. Similarly, f(X) refers to mapping the points indexed
by each row in X to Rk. That is, the output of f(X) is a real-
valued matrix of dimension n× k. Therefore, the equivalent
solution to map {X1, ...Xn} ⊂ Rd while preserving local
neighborhood into {f(X1), ...f(Xn)} ⊂ Rk is to minimize
this objective function in (1) for a specific graph Laplacian
LX that we describe below. This popular graph Laplacian,
under which the above results were studied is that of graphs
whose adjacency matrices are represented by the Gaussian
kernel given by

L(X, σ)ik =


∑

k ̸=i e
(− ∥Xi−Xk∥2

σ ) if i = k

−e(−
∥Xi−Xk∥2

σ ) if i ̸= k

 (2)

where the scalar σ in here is also referred to as kernel band-
width. The seminal work in (Giné, Koltchinskii et al. 2006;
Belkin and Niyogi 2005, 2007) showed that this discrete
Graph Laplacian converges to the Laplace-Beltrami opera-
tor. Minimizing this objective of Equation 1 under the con-
straint Tr(f(X)TDf(X)) = I where I is identity matrix, to
avoid a trivial solution of Tr(f(X)TLXf(X)) = 0 is equiv-
alent to setting the solution for the embedding f(X) to be
the d smallest eigenvectors of LX.

2 0 2
2
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0

1

2

Iteration 1

2 0 2

Iteration 2

2 0 2

Iteration 3

Figure 2: Embeddings of our supervised manifold learning
query on CUB-200-2011 for 3 iterations with input features
extracted from state-of-the-art CGD (Jun et al. 2019) deep
image retrieval architecture with ResNet 50 backbone and
G type global descriptors. The colors indicate different class
labels. We show that these embeddings preserve information
about the class separation and the locality structure required
for classification.

Supervised Manifold Learning Queries (SMLQ)
It has been shown in (Vural and Guillemot 2017) that this
formulation for unsupervised manifold learning of minimiz-
ing equation (2) can be extended to the case of supervised
manifold learning by posing the objective function as a dif-
ference of the terms in (1) as shown below.

v(f(X)) = Tr(f(X)TLXf(X))− αTr(f(X)TLYf(X))
(3)

Note that the formula for computing LY over Y, is the same
as the one used in (2) to compute LX from X. They pro-
vide results explaining the effect of optimizing such a loss
for the purposes of learning an embedding f(X) for super-
vised learning. Their results are agnostic to the choice of
neighborhood graphs defined on X,Y to obtain the corre-
sponding Laplacians used in this objective. An example for
such an embedding when applied to features extracted from
state-of-the-art CGD (Jun et al. 2019) deep image retrieval
architecture with ResNet 50 backbone is shown in Figure 2.

Separation-Regularity Trade-Off The intuition is that
since equation (3) is a discrete version of a difference of
terms of the kind in (1), therefore this formulation looks for
a function that has a slow variation on the manifold MX in
order to smoothly preserve neighborhood relations between
the input features. It does this while ensuring the function
has a fast variation on a manifold MY with regards to Y,
therefore encouraging larger separation with regards to the
label manifold. Therefore, this second term acts as a regu-
larizer to make sure similar features are not embedded way
closer than needed. This is mathematically substantiated by
Theorem 9 in (Vural and Guillemot 2017) (restated in the
Appendix D) as it shows that this regularization is required
in order to minimize the generalization error of a classifier
applied on the output of supervised manifold learning ob-
tained via minimization of equation (3) for any choice of
positive semidefinite LX,LY.
Theorem 1. For a fixed α, the iterate

Xt =
Diag(LX)−1

2
[αLY − LX]Xt−1 +Xt−1 (4)
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Figure 3: The convergence of our SMLQ across three
datasets is shown with respect to image recall based on fea-
ture embeddings over the iterations. All three datasets rea-
sonably converge in as quick as 7 iterations. The image re-
call metric is discussed in the Experiments section.

monotonically minimizes the objective

v(Xt) = Tr(XT
t LXXt)− αTr(XT

t LYXt)

Proof Sketch. The full proof along with the required back-
ground is in, appendix. The proof strategy involves using the
majorization-minimization (Hunter and Lange 2004; Lange
2016; Zhou et al. 2019) procedure in order to obtain this iter-
ative update. We first derive a majorization function, which
always upper bounds the objective everywhere except at the
current iterate, where it touches it. We then note that this
majorization function is a sum of convex and concave func-
tions. This makes the minimization of the majorization func-
tion to be equivalent to using the concave-convex procedure
(Yuille and Rangarajan 2002). As the update is based on
majorization-minimization (MM) and CCCP which itself is
a special case of MM, it thereby guarantees monotonic con-
vergence (Hunter and Lange 2004). We refer to this iterate
as the Supervised Manifold Learning Query (SMLQ) and the
rest of the paper focuses on releasing the outputs of SMLQ
with differential privacy.

As shown in Figure 3, our iterative update converges in
just 5 to 7 iterations to embed deep feature representations
needed for an image retrieval task tested on 3 datasets as
further detailed in the experimental section.

Complexity Analysis The graph Laplacian based on the
Gaussian kernel in our method is sparse and computing the
sparse matrix-vector product for this specific graph Lapla-
cian has been studied to take O(n) time (Alfke et al. 2018).
Since in the term LYXt−1, the number of columns in Xt−1

is k, we have an overall time complexity of O(nk) as the
addition of n× k matrices also takes O(nk). That said, this
does not include the complexity required to construct the
Laplacian. This has been studied in (Sanjeev and Kannan
2001).

5 Privatization of the Supervised Manifold
Learning Query

Preliminaries
We first share some required preliminaries on differential
privacy (DP). Differential privacy guarantees that the pres-
ence of a particular record in a dataset does not significantly
affect the output of a query on the dataset.
Definition 1 ((ϵ, δ)-Differential Privacy (2014)). A random-
ized algorithm A : X → Y is (ϵ, δ)-differentially private if,
for all neighboring datasets X,X′ ∈ X and for all S ∈ Y ,

Pr[A(X) ∈ S] ≤ eϵ Pr[A(X′) ∈ S] + δ

Post-Processing Invariance Differential privacy is im-
mune to post-processing, meaning that an adversary with-
out any additional knowledge about the dataset X cannot
compute a function on the output A(X) to violate the stated
privacy guarantees.

Gaussian Noise Mechanism A query on a dataset can be
privatized by adding controlled noise from a predetermined
distribution. One popular private mechanism is the Gaussian
mechanism (Dwork et al. 2006), which adds Gaussian noise
depending on the query’s sensitivity.
Definition 2 (l2-sensitivity). Let f : X → Rk. The l2-
sensitivity of f is

∆
(f)
2 = max

X,X′∈X
∥f(X)− f(X′)∥2

where X,X′ are neighboring databases.
Definition 3 (Gaussian Mechanism (2014)). Let f :
X → Rk. The Gaussian mechanism is defined as
MG(X) = f(X) + Y, where Y ∼ N k(0, σ2) with

σ ≥
√

2 ln(1.25 δ)∆
(f)
2

ϵ . The Gaussian mechanism is (ϵ, δ)-
differentially private.

We use the above mechanism to privatize the SMLQ, for
which we derive the sensitivity. Note that the query’s utility
could be improved even further via the more recent analyti-
cal Gaussian mechanism in (Balle and Wang 2018).

Derivation of SMLQ Sensitivity
We derive a bound on the sensitivity for the first iteration
of the SMLQ, f(X) = 1

2Diag(LX)† [αLY − LX]Q + Q,
where we initialize X0 to a matrix Q such that each entry
is distributed as Qij ∼ N (0, σ2

q ), for which σq is a hyper-
parameter chosen by the user. It is typical to use random
initialization for iterative optimization. We also assume that
X ∈ Rn×k is normalized to have unit norm rows. Under all
possible cases of adding one additional unit norm record to
X to produce a neighboring dataset X̃ ∈ R(n+1)×k (denoted
by the constraint d(X, X̃) = 1), the sensitivity of our query
is defined as ∆(f)

2 = maxX,X̃:d(X,X̃)=1 ∥f(X) − f(X̃)∥F .
Note that we append an extra row of zeroes to X and Y such
that the matrix dimensions agree with X̃ and Ỹ when evalu-
ating f(X)− f(X̃). To simplify further calculations, we let
M denote the matrix defined by

M(X, X̃) = Diag(LX)† [αLY − LX]−Diag(LX̃)† [αLỸ − LX̃]
(5)
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PrivateMail

1. Client’s input: Raw data (or activations) X normalized to have unit norm rows and integer labels Y, Gaussian
kernel bandwidth σ, regularizing parameter α, variance σ2

q for random embedding initialization.

2. Client computes embedding: Xt =
1
2 Diag(LX)†[αLY − LX]Xt−1 +Xt−1 with initialization X0 = Q such

that Qij ∼ N (0, σ2
q ), LX and LY are graph Laplacians formed over adjacency matrices upon applying Gaussian

kernels to X,Y with bandwidth σ .
3. Client side privatization: The client takes the following actions:

(a) Initialization: Compute constant M that depends on chosen α, σ and data size n as defined in appendix.

(b) Computation of global-sensitivity: Compute upper bound on global sensitivity as ∆ = M
√
n+1
2 ∥Q∥F

(c) Add differentially private noise Release Xt with the global sensitivity upper bound in step 3(b) via the (ϵ, δ)-
differentially private multi-dimensional Gaussian mechanism: Xt +Nn×k

(
µ = 0, σ2 = 2 ln(1.25/δ)·∆2

ϵ2

)
Figure 4: Protocol for the proposed PrivateMail mechanism

and let Mi denote the ith row of M.

Theorem 2. SMLQ sensitivity bound We have that, ∆(f)
2 ≤

M
√
n+1
2 ∥Q∥F . where M is a constant defined in appendix

such that M ≥ ∥Mi∥ for all X and X̃.

Proof. Note that f(X) − f(X̃) may be expressed as the
product 1

2MQ. Thus, by sub-multiplicativity of the Frobe-
nius norm, the global sensitivity is bounded by

∆
(f)
2 = max

X,X̃:d(X,X̃)=1

∥∥∥∥12MQ

∥∥∥∥
F

≤ 1

2
∥Q∥F · max

X,X̃:d(X,X̃)=1
∥M∥F (6)

Since ∥M∥F =
√∑n+1

i=1 ∥Mi∥2, then if M is a constant as

defined in the theorem, we have ∥M∥F ≤
√∑n+1

i=1 M2 =

M
√
n+ 1. Substituting this expression into the above in-

equality, we obtain the bound in the theorem. The deriva-
tion of a constant M relies on expanding the definition of
the Laplacian matrices in (4) and applying law of cosines
for the difference of vectors. For the full derivation, see ap-
pendix.

The above bound on ∆
(f)
2 is computed for the sensitiv-

ity parameter when adding differentially private noise to the
data embedding. Figure 4 summarizes the procedure for pri-
vatization, which we call PrivateMail.

Private Iteration-Distribute-Recursion Framework
We show that the proposed SMLQ, fortunately can be ap-
plied under a specific framework that we propose so that it
can be used in conjunction with the post-processing property
of differential privacy to its advantage in obtaining a much
better trade-off of utility and privacy. In addition, it allows
for distributing the work required for completing the itera-
tive embedding across multiple distributed entities while still
preserving the privacy. This helps further reduce the compu-
tational requirements of the client device, prior to distribut-
ing the work. The framework still holds in improving the

utility-privacy trade-off even if used without distributing the
computation. We notice that the only term that requires ac-
cessing the sensitive raw dataset is LX, but the good thing
is that this term does not change over iterations, and hence
is not sub-scripted by iteration t as we show in equation 4.
Therefore, we first apply our proposed differentially private
release of PrivateMail, to just the first iteration. The pri-
vately obtained embedding is instead used this time to re-
build the graph Laplacian LX. From the next iteration on-
wards this modified Laplacian is used instead and the post-
processing property of differential privacy now holds as no
iteration from now onwards needs access to the raw dataset.
For this reason these iterations can as well be continued over
the server or another device as opposed to the original client
device that runs the first PrivateMail iteration.

PrivateMail for Image Retrieval
We apply the proposed PrivateMail mechanism to the task of
private content-based image retrieval, where a client seeks
to retrieve the k-nearest neighbors of their target image r
from a server’s database S based on the feature embedding
of their target which is sent to the server. The objective is to
preserve the privacy of the client’s target image. We assume
the setting in which the client and server have access to a
relevant public database P of images. We propose a differ-
entially private image retrieval algorithm where we first gen-
erate feature vectors for r, P , and S using any feature extrac-
tion model of choice. We then generate low-dimensional em-
beddings for these features using the SMLQ in (4). Since the
query relies on the graph Laplacian of a dataset, a single tar-
get image feature is insufficient to generate its embedding.
Therefore, the client concatenates r with the public dataset
P . The client runs one iteration of PrivateMail where noise is
added via the Gaussian mechanism before recomputing the
Laplacian over the private embedding. This makes the next
iterations that we run to be differentially private due to the
post-processing invariance property as the iteration is now
functionally independent of the raw features. We then run
post-processing embeddings for a varying number of itera-
tions depending on the dataset. Furthermore, since the client
and server have access to different data, the embedding of
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Figure 5: The effect of k, α, and σ on retrieval performance with the non-private SMLQ and the private version of PrivateMail.

r ∪ P on the client is not guaranteed to align with that of
S on the server. We thus also concatenate S with P so the
public data serves as a common “anchor” for the embed-
dings, which is used to align the the embeddings of r and
S via the Kabsch-Umeyama rigid-transformation algorithm
(Umeyama 1991). Once the server retrieves the k-nearest
neighbors of the client’s privatized embedding of r with re-
spect to the server’s non-private embedding of S , the server
gains additional information about r based on its neighbors.
To obfuscate r, we append a dataset Pr of dummy queries to
r ∪ P on the client-side. Pr is generated by uniformly sam-
pling images from the public dataset such that Pr contains
one image of every class besides the class of r. The client’s
target image class is equally likely to be any of the possible
classes in the dataset, so the server cannot directly infer the
target class. The client is then able to filter out the retrieved
images for the dummy targets. This process is visualized in
Figure 1 and described in greater detail in Algorithm 1.

Algorithm 1: Differentially Private Image Retrieval
Input: Query r, requested number of retrieved images k,
number of post-processing iterations T .
Output: Server returns k nearest matches w.r.t S .
Feature extraction: Client extracts image-retrieval features
Xr, XP , XPr for r, P , Pr from trained ML model. Server
extracts features XP ,XS for P ,S .
Obfuscation: Client concatenates Xr ∪XPr and labels.
Anchoring with public data: Client concatenates Xclient =
{Xr∪XPr}∪XP and corresponding labels. Server concate-
nates Xserver = XS ∪XP and corresponding labels.
Privatization: Client runs PrivateMail mechanism on
Xclient and Yclient for 1 iter to obtain embedding X′

client.
for t = 1 to T do

Client only runs step 2 of PrivateMail on X′
client (using

LX′
client

) to update the embeddings.
Server only runs step 2 of PrivateMail on Xserver to
obtain embedding X′

server.
end
Align: Non-private server embeddings and privatized client
embeddings are aligned at server using Kabsch-Umeyama
algorithm (Umeyama 1991)
Retrieve: Server retrieves k nearest matches for each em-
bedding of r∪Pr in aligned dataset and serves to the client.
Result parsing: Client locates retrieved images for r.

Figure 6: Embeddings for CARS196 data (with α = 0.5 and
parameters in appendix A) at varying privacy levels ε. We
show that alignment improves as less noise is added. The
privacy induced noise can be seen at various levels of ε.

6 Experiments
Datasets In this section we present experimental results
on three important image retrieval benchmark datasets of i)
Caltech-UCSD Birds-200-2011 (CUB-200-2011) (Welinder
et al. 2010), ii) Cars196 (Krause et al. 2013), and iii) CIFAR-
100 (Krizhevsky, Hinton et al. 2009).

Methodology We use the state-of-the-art image retrieval
method of ‘combination of multiple global descriptors’
(CGD) (Jun et al. 2019) with ResNet-50 (He et al. 2015)
backbone to generate features for the Cars196 and CUB-
200-2011 datasets. CIFAR-100 features are extracted di-
rectly from ResNet-50 pre-trained on ImageNet (Deng et al.
2009). We run Algorithm 1 on each dataset with the param-
eters outlined in appendix A.
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Figure 7: We compare the privacy-utility trade-off of PrivateMail with Recall@k experiments with k = 8 for three datasets on
6 baselines that include private and non-private methods. The lower values of ϵ refer to higher levels of privacy.

Quantitative metrics We measure retrieval performance
using the Recall@k metric as used in this popular non-
private image retrieval paper (Jun et al. 2019). As our pro-
posed work is a differentially private algorithm, we study the
utility-privacy trade-off by looking at the recalls obtained at
varying levels of ϵ. Note that lower ϵ refers to higher privacy.

Baselines
We compare utility of our proposed PrivateMail mechanism
against several important baselines as below.
Non-private state of the art for image retrieval We com-
pare against the non-private method of CGD that unfortu-
nately does not preserve privacy, and see how close we get
to its performance while also preserving privacy. Note that
there exists a trade-off of privacy vs utility and the main goal
is to preserve privacy, while attempting to maximize utility.
Differentially private unsupervised manifold embedding
A comparison with differentially private unsupervised man-
ifold embedding method of DP-dSNE (Saha et al. 2017,
2020, 2021) is done as this is one of the most recent mani-
fold embedding methods with differential privacy.
Non-private supervised manifold embedding We compare
against non-private supervised manifold embedding to show
how close our differentially private version fares in terms of
achievable utility when the privacy is not at all preserved.
Non-private unsupervised manifold embedding We com-
pare against non-private unsupervised manifold embedding
method of t-SNE (Van der Maaten and Hinton 2008) to show
the benefit of a supervised manifold embedding over an un-
supervised embedding in terms of the utility.
Differentially private classical projections We compare
against differentially private versions of more classical
methods such as private PCA (Chaudhuri, Sarwate, and
Sinha 2013) and private random projections (Kenthapadi
et al. 2012).

Evaluation
As shown in Figure 7, PrivateMail SMLQ obtains a substan-
tially better privacy-utility trade-off over all the considered

private baselines on all the datasets. It also reaches closer
to the methods that do not preserve privacy on CARS196.
It even meets the non-private performance on CIFAR-100 at
much higher levels of privacy (lower ϵ’s). DP-dSNE reaches
the performance of PrivateMail only at low levels of privacy
on 2 out of the 3 datasets, while PrivateMail does substan-
tially better at high-levels of privacy preservation. A similar
phenomenon happens again with respect to private PCA on
CIFAR-100.

Sensitivity to Hyper-Parameters In Figure 5, we study
the sensitivity of our method’s performance with respect to
various parameters such as choice of embedding dimension
k, the weighting parameter α which acts as a regularizer
for the embedding by weighting the graph Laplacians in the
term LX − αLY in our embedding update, and the σ pa-
rameter used in defining the Gaussian kernels used to build
LX,LY. As shown, tuning of k, α is stable while tuning of
σ requires a bit of a grid search. However, since we are in
the supervised setting, standard methods for tuning could be
used for practical purposes.

Qualitative Visualizations Example of PrivateMail em-
beddings are given in Figure 6 for different values of privacy
parameter ϵ pre- and post- server-client alignment.

7 Conclusion

We proposed a differentially private supervised manifold
learning method and applied it to the private image retrieval
problem. That said, there are a broad range of applications
for manifold learning beyond that of image retrieval. There-
fore, it would be interesting to investigate the potential bene-
fits of doing these other tasks in a privacy preserving manner.
We would like to extend the derived global sensitivity results
to smooth sensitivities (Nissim, Raskhodnikova, and Smith
2007) in order to potentially further improve the privacy-
utility trade-off.
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Giné, E.; Koltchinskii, V.; et al. 2006. Empirical graph
Laplacian approximation of Laplace–Beltrami operators:
Large sample results. In High dimensional probability, 238–
259. Institute of Mathematical Statistics.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep
Residual Learning for Image Recognition. arXiv preprint
arXiv:1512.03385.
Hunter, D. R.; and Lange, K. 2004. A tutorial on MM algo-
rithms. The American Statistician, 58(1): 30–37.
Jones, P. W.; Maggioni, M.; and Schul, R. 2008. Mani-
fold parametrizations by eigenfunctions of the Laplacian and
heat kernels. Proceedings of the National Academy of Sci-
ences, 105(6): 1803–1808.
Jun, H.; Ko, B.; Kim, Y.; Kim, I.; and Kim, J. 2019. Com-
bination of multiple global descriptors for image retrieval.
arXiv preprint arXiv:1903.10663.
Kenthapadi, K.; Korolova, A.; Mironov, I.; and Mishra,
N. 2012. Privacy via the johnson-lindenstrauss transform.
arXiv preprint arXiv:1204.2606.
Krause, J.; Stark, M.; Deng, J.; and Fei-Fei, L. 2013. 3D
Object Representations for Fine-Grained Categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13). Sydney, Australia.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images. https://www.cs.toronto.
edu/∼kriz/learning-features-2009-TR.pdf. Accessed: 2022-
05-09.
Lange, K. 2016. MM optimization algorithms. SIAM.
Lei, X.; Liu, A. X.; Li, R.; and Tu, G.-H. 2019. Seceqp: A
secure and efficient scheme for sknn query problem over en-
crypted geodata on cloud. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), 662–673. IEEE.
Li, Z.; and Zhang, Y. 2020. Label-Leaks: Membership Infer-
ence Attack with Label. arXiv preprint arXiv:2007.15528.
Matsui, Y.; Yamaguchi, T.; and Wang, Z. 2020. CVPR2020
Tutorial on Image Retrieval in the Wild. https://matsui528.
github.io/cvpr2020 tutorial retrieval/. Accessed: 2022-05-
09.
Nissim, K.; Raskhodnikova, S.; and Smith, A. 2007. Smooth
sensitivity and sampling in private data analysis. In Proceed-
ings of the thirty-ninth annual ACM symposium on Theory
of computing, 75–84.
Saha, D. K.; Calhoun, V. D.; Du, Y.; Fu, Z.; Panta, S. R.;
Kwon, S.; Sarwate, A.; and Plis, S. M. 2021. Privacy-
preserving quality control of neuroimaging datasets in fed-
erated environment. bioRxiv, 826974.

8510



Saha, D. K.; Calhoun, V. D.; Panta, S. R.; and Plis, S. M.
2017. See without looking: joint visualization of sensitive
multi-site datasets. In IJCAI, 2672–2678.
Saha, D. K.; Calhoun, V. D.; Yuhui, D.; Zening, F.; Panta,
S. R.; and Plis, S. M. 2020. dSNE: a visualization approach
for use with decentralized data. BioRxiv, 826974.
Sanjeev, A.; and Kannan, R. 2001. Learning mixtures of
arbitrary gaussians. In Proceedings of the thirty-third annual
ACM symposium on Theory of computing, 247–257.
Shi, Y.; Davaslioglu, K.; and Sagduyu, Y. E. 2020. Over-the-
air membership inference attacks as privacy threats for deep
learning-based wireless signal classifiers. In Proceedings of
the 2nd ACM Workshop on Wireless Security and Machine
Learning, 61–66.
Shokri, R.; Stronati, M.; Song, C.; and Shmatikov, V. 2017.
Membership inference attacks against machine learning
models. In 2017 IEEE Symposium on Security and Privacy
(SP), 3–18. IEEE.
Song, L.; Shokri, R.; and Mittal, P. 2019. Membership infer-
ence attacks against adversarially robust deep learning mod-
els. In 2019 IEEE Security and Privacy Workshops (SPW),
50–56. IEEE.
Steil, J.; Hagestedt, I.; Huang, M. X.; and Bulling, A. 2019.
Privacy-aware eye tracking using differential privacy. In
Proceedings of the 11th ACM Symposium on Eye Tracking
Research & Applications, 1–9.
Truex, S.; Liu, L.; Gursoy, M. E.; Yu, L.; and Wei, W. 2018.
Towards demystifying membership inference attacks. arXiv
preprint arXiv:1807.09173.
Umeyama, S. 1991. Least-squares estimation of transforma-
tion parameters between two point patterns. IEEE Computer
Architecture Letters, 13(04): 376–380.
Upadhyay, J. 2014. Randomness efficient fast-johnson-
lindenstrauss transform with applications in differen-
tial privacy and compressed sensing. arXiv preprint
arXiv:1410.2470.
Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research, 9(11).
Vural, E.; and Guillemot, C. 2017. A Study of the Classifi-
cation of Low-Dimensional Data with Supervised Manifold
Learning. J. Mach. Learn. Res., 18(1): 5741–5795.
Welinder, P.; Branson, S.; Mita, T.; Wah, C.; Schroff, F.; Be-
longie, S.; and Perona, P. 2010. Caltech-UCSD Birds 200.
Technical Report CNS-TR-2010-001, California Institute of
Technology.
Xia, Z.; Zhu, Y.; Sun, X.; Qin, Z.; and Ren, K. 2015. To-
wards privacy-preserving content-based image retrieval in
cloud computing. IEEE Transactions on Cloud Computing,
6(1): 276–286.
Yao, B.; Li, F.; and Xiao, X. 2013. Secure nearest neighbor
revisited. In 2013 IEEE 29th international conference on
data engineering (ICDE), 733–744. IEEE.
Yuille, A. L.; and Rangarajan, A. 2002. The concave-convex
procedure (CCCP). In Advances in neural information pro-
cessing systems, 1033–1040.

Zhou, H.; Hu, L.; Zhou, J.; and Lange, K. 2019. MM algo-
rithms for variance components models. Journal of Compu-
tational and Graphical Statistics, 28(2): 350–361.
Zhou, W.; Li, H.; and Tian, Q. 2017. Recent advance in
content-based image retrieval: A literature survey. arXiv
preprint arXiv:1706.06064.

8511


