
Efficient Algorithms for General Isotone Optimization

Xiwen Wang, Jiaxi Ying, José Vinı́cius de M. Cardoso, Daniel P. Palomar
The Hong Kong University of Science and Technology

{xwangew, jx.ying, jvdmc}@connect.ust.hk, palomar@ust.hk

Abstract

Monotonicity is often a fundamental assumption involved in
the modeling of a number of real-world applications. From
an optimization perspective, monotonicity is formulated as
partial order constraints among the optimization variables,
commonly known as isotone optimization. In this paper,
we develop an efficient, provable convergent algorithm
for solving isotone optimization problems. The proposed
algorithm is general in the sense that it can handle any
arbitrary isotonic constraints and a wide range of objective
functions. We evaluate our algorithm and state-of-the-art
methods with experiments involving both synthetic and real-
world data. The experimental results demonstrate that our
algorithm is more efficient by one to four orders of magnitude
than the state-of-the-art methods.

Introduction
We consider a family of optimization problems under
partial orders, also known as isotonic constraints. This so-
called isotone optimization problem can be regarded as a
generalization of the isotonic regression (Ayer et al. 1955;
Ubhaya 1974; Durot 2008), a fundamental problem in
statistics and machine learning.

As the simplest form of isotone optimization, isotonic
regression is formulated as

min
x

∑p
i=1 (xi − yi)

2
, s.t. x1 ≤ x2 ≤ · · · ≤ xp, (1)

where the optimization variables {xi} pi=1 are linearly
ordered and {yi}pi=1 are the data samples.

Isotonic constraints can be represented using a directed
acyclic graph (DAG) G (V, E), where V = {v1, . . . , vp}
denotes the set of vertices associated with each element of
x = (x1, . . . , xp), and E = {(vi, vj) , . . . } is the edge set
that defines a partial order over the vertices. For instance, the
edge set for problem (1) is expressed as a chain graph with
E = {(v1, v2) , . . . , (vp−1, vp)} . Let C ∈ Rp×p denote the
connectivity matrix of the graph G, where

[C]ij = 1, if (vi, vj) ∈ E ; [C]ij = 0, if (vi, vj) /∈ E .

Namely, a constraint xi ≤ xj exists iff [C]ij = 1.
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The isotone optimization of interests in this paper is
formulated as

min
x

f (x) , s.t. [C] ij (xi − xj) ≤ 0, ∀i, j ∈ {1, . . . , p} .

It generalizes the isotonic regression in two aspects. On
the one hand, it allows the constraints to be defined on
arbitrary DAG. On the other hand, instead of the ℓ2 norm,
the objective function f can be more general.

Monotonicity is a common assumption in many real-
world applications, in which we impose isotonic constraints
to formulate isotone optimization problems. For instance,
in machine learning, isotonic constraints are applied to
probability calibration (Niculescu-Mizil and Caruana 2005;
Guo et al. 2017; Naeini, Cooper, and Hauskrecht 2015),
as the reliability curve is assumed to be monotonically
increasing. In statistics, isotonic constraints are also called
shape constraints and are widely used in shape-restricted
non-parametric estimation (Feelders and Van der Gaag
2006; Horowitz and Lee 2017). In genetics, monotonicity
is viewed as a key feature of genotype-phenotype mappings
Gjuvsland et al. (2013); thus it is suitable to model genetic
interactions in heritability (Luss et al. 2012). In addition,
isotone optimization also appears in many other modeling
problems, such as dose-response (Hu et al. 2005) and
psychology models (Kruskal 1964).

Isotonic constraints may be categorized as chain, tree, and
arbitrary, whose respective DAGs are shown in Figure 1.
However, most existing methods available in the literature
focus on the chains (Ahuja and Orlin 2001). Algorithms that
can address arbitrary isotonic constraints are often restricted
to a small class of loss functions (Stout 2013).

Figure 1: Graph representation of isotonic constraints.
Arrow from xi to xj implies a partial order xi ≤ xj .
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The contributions of this paper are listed as follows:
(1) We propose a unified and efficient algorithm that

can handle arbitrary isotonic constraints. Instead of directly
finding a primal-dual point that satisfies the KKT conditions,
this novel algorithm decomposes the KKT system, each of
which contains a subset of variables thus can be handled
more efficiently. This strategy results in higher efficiency
and superior flexibility over numerous loss functions.

(2) We prove that our proposed algorithm converges to the
optimal solution without oscillations.

(3) We show that our algorithm is one to four orders of
magnitude faster than state-of-the-art solvers, evaluated on
both synthetic and real-world data.

The remaining part of this paper is organized as
follows. We first briefly review the state-of-the-art methods
and discuss their limitations. Then, we design an
efficient algorithm for isotone optimization and analyze its
convergence. Finally, we evaluate the performance of our
algorithms and the state-of-the-art ones on both synthetic
and real-world data.

Related Works
Algorithms for isotone optimization with chain isotonic
constraints have been broadly studied. A well-known one
is the pool adjacent violators algorithm (PAVA) (Ayer et al.
1955; Robertson 1988; Grotzinger and Witzgall 1984),
which can be viewed as a dual active set method (Best
and Chakravarti 1990) and thus can be extended to the ℓp
loss (Best, Chakravarti, and Ubhaya 2000; Kyng, Rao, and
Sachdeva 2015), Huber loss (Lim 2018), and a number of
other separable convex losses (Ahuja and Orlin 2001; Luss
and Rosset 2014). In practice, PAVA manifests prominent
efficiency. However, it fails to obtain optimality when the
constraints are not chains.

To address more general isotonic constraints (Han
et al. 2019; Deng, Zhang et al. 2020), relaxations of
the optimization problems by reformulating the isotonic
constraints as regularization terms could perform as
alternatives (Luss et al. 2012; Burdakov and Sysoev 2017;
Sysoev and Burdakov 2019). Though this may yield more
robust estimators (Luss, Rosset et al. 2017), the models
would be invalid in case strict monotonicity is requisite.

As constrained convex programming, general isotone
optimization can be tackled by the interior point method
(IPM) or the active set method (ASM). The IPM for isotonic
regression, investigated in (Kyng, Rao, and Sachdeva 2015),
is more scalable than the ASM. However it inevitably
inherits some shortcomings from the IPM. For instance,
each iterate is computationally expensive, and Newton steps
may not be trivial to compute for some objectives. Another
framework is the ASM, which is highly efficient in many
applications. There are some implementations of ASM in
the field of isotone optimization, like the works of (Bonnans
et al. 2006; Mair, Hornik, and de Leeuw 2009), which
apply primal ASM framework to handle arbitrary isotonic
constraints. Despite their ability to handle various loss
functions, the computational cost is too prohibitive to be
of practical use (Cimini and Bemporad 2017; Arnström

and Axehill 2019) because they do not fully exploit the
unique properties of isotonic constraints. The most efficient
implementation of ASM in isotone optimization is the
generalized PAVA (Yu and Xing 2016). However, it is
designed for chain constraints, and the extension to general
isotonic constraints is nontrivial.

Apart from these frameworks, one can generalize the
ideas underpinning the PAVA into more elaborate cases.
Motivated by the fact that PAVA iteratively solves the
Karush-Kuhn-Tucker (KKT) conditions, the partitioning
algorithms (Luss et al. 2012; Luss and Rosset 2014)
iteratively find an optimal cut for the constraint graph
by solving linear programming. The limitation is that the
objectives are restricted to simple least squares.

In this paper, we propose an active-set-like block-merging
algorithm. The proposed method can be seen as an extension
of PAVA via decomposing the KKT conditions.

Proposed Algorithms
We propose an efficient algorithm with theoretical
convergence to solve the general isotone optimization
problems under arbitrary isotonic constraints. This ‘block-
merging’ algorithm extends PAVA with a primal-dual
strategy.

Algorithm Architecture and Outer Loop
In this paper, we assume the following assumption holds for
the objective functions.

Assumption 1. The objective function f : Rp → R is
convex, differentiable, and separable, which means that f
can be written as f (x) =

∑p
i=1 fi (xi). The solution of

∂fi (x) = 0 exists for each i ∈ {1, . . . , p}.
Given the connectivity matrix C of a directed acyclic

graph, the problem is formulated as

min
x

∑p
i=1 fi (xi) ,

s.t. [C] ij (xi − xj) ≤ 0, ∀i, j ∈ {1, . . . , p} .
(2)

Then, the Lagrangian is

L (x,λ) =
∑p

i=1 fi (xi) +
∑p

i=1

∑p
j=1 [C]ij λij (xi − xj),

where {λij} multiplied by [C]ij = 1 are the dual variables,
and the KKT conditions are

∂fi (xi) +
∑p

s=1 ([C]is λis − [C]si λsi) = 0,
[C]ij λij ≥ 0,

[C]ij (xi − xj) ≤ 0,
[C]ij λij (xi − xj) = 0,

(3)

for any indexes i, j ∈ {1, . . . , p}. Our algorithm aims to find
a sequence of (x,λ) that converges to the optimal solution
of the KKT system.

The design is motivated by the observations that the
optimal solution is composed of several blocks of equalities,
i.e., [C]ij (xi − xj) = 0, indicating that the constraint graph
G would ultimately be partitioned into several sub-graphs,
denoted as blocks.
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Definition 1. A block Bk is a set of indexes corresponded
to a set of primal variables with the same value, i.e.,

xi = xj ∀i, j ∈ Bk. (4)

Similarly, we define the set of primal and dual variables
associated with Bk , i.e., Xk = {xi| i ∈ Bk} and Λk =
{λij | i, j ∈ Bk, [C]ij = 1}.

Owing to the definition of blocks, at optimal point, the
KKT conditions reduce to
(a) Optimal block partitions:

{1, . . . , p} = B1 ∪ · · · ∪BK . (5)

(b) The decomposed KKT systems at each block:
• ∀i ∈ Bk,

∂fi (x
⋆
i ) +

∑
s∈Bk

([C]is λ
⋆
is − [C]si λ

⋆
si) = 0. (6)

• ∀i, j ∈ Bk,

[C]ij
(
x⋆
i − x⋆

j

)
= 0, (7a)

[C]ij λ
⋆
ij ≥ 0, (7b)

[C]ij λ
⋆
ij

(
x⋆
i − x⋆

j

)
= 0. (7c)

(c) Primal feasibility over block partitions:
• ∀i ∈ Bk, j ∈ Bl,

[C]ij
(
x⋆
i − x⋆

j

)
≤ 0, (8a)

[C]ij λ
⋆
ij = 0, (8b)

[C]ij λ
⋆
ij

(
x⋆
i − x⋆

j

)
= 0. (8c)

Therefore, each of local KKT systems only contains a subset
of the variables and can be solved with significantly reduced
computational cost. Among these equations, the equalities
(7a), (7c), (8b), and (8c) hold according to the block
definitions. The inequalities (7b) and (8a) relate with the
inner loop’s trigger condition, and the algorithm’s stopping
criteria, respectively.

The algorithm starts by a block partition, with each of
the decomposed KKT system solved. The most heuristic
initialization is to denote every index as an one-element
block. Two steps are executed at each outer iteration:

1. Merging blocks. Define Bo along with Xo and Λo by
merging two blocks via finding the maximum violation in
the primal feasibility (8a):

(i, j) = argmaxi,j [C]ij (xi − xj) , (9)

Bo = Bk ∪Bl, where i ∈ Bk, j ∈ Bl. (10)
2. Solving the decomposed KKT system at Bo. We first
compute xo = z1 via solving the summation of (6)∑

i∈Bo
∂fi (z) = 0,

then obtain the dual variables λo = (λij), λij ∈ Λo via this
system of linear equations (6).
(1) If min (λo) ≥ 0, (7b) holds and (xo,λo) already solves

the decomposed KKT system.
(2) If min (λo) < 0, meaning that xi = xj ∀i, j ∈ Bo does
not hold, then the block should be split and an inner loop,
introduced in the next subsection, is required to solve the
decomposed KKT system.

When the primal feasibility (8a) is reached, i.e.,
max
i,j

([Cij (xi − xj)]) ≤ 0, ∀i, j ∈ {1, . . . , p} , (11)

we establish (6), (7), and (8) for all variables, therefore the
algorithm reaches the optimal. Due to the nature in which the
violators are found and merged sequentially, our algorithm
is named Sequential Block Merging (SBM) algorithm.

We show one example in Figure 2, in which we iteratively
merge blocks at outer iterations, while we split the block at
the edge (v5, v6) in the inner loop when we find x1 = x2 =
x5 = x6 could not construct the solution to the decomposed
KKT system at Bo = {1, 2, 5, 6}.

Figure 2: Illustrations of the outer/inner loop design.

Interestingly, the block-merging procedures are
reminiscent of the PAVA method, which in fact, is a
special case of our SBM algorithm applied to chain isotonic
constraints. PAVA does not check λo ≥ 0 at each outer loop
iteration because this inequality can be guaranteed when G
is a chain. In other words, the inner loop will never appear
in the chain isotone optimization problems.
Theorem 1. If G is a chain, the proposed SBM algorithm
specializes to the generalized PAVA.

Another difficulty resides in the system of linear equations
(6), which could be over-determined due to the redundancy
of dual variables, resulting in an infinite number of solutions
to λo. One intuitive idea is to reduce the local graph Go to a
tree such that (6) is just determined. Such construction can
be done with an auxiliary matrix C′ ∈ Rp×p. Whenever
two blocks Bk and Bl are merged via edge (vi, vj), we set
[C′]ij = 1. Similarly, let [C′]ij = 0 if the block is split via
(vi, vj). Then the new connectivity matrix C′ refer to a tree.
Lemma 1. The solution of λo to the following system of
linear equations within i ∈ Bo is unique

∂fi (z) +
∑

s∈Bo
([C′]is λis − [C′]si λsi) = 0. (12)

Suppose the solution to (12) is z ∈ R and λ′
o ={

λ′
ij

}
∈ R|Bo|−1, we set λij = λ′

ij if [C]′ij = 1 and
λij = 0 otherwise. Obviously, (z,λo) is one solution to (6).
Regardless of λo ≥ 0, later these procedures are abbreviated
in pseudo-code as ‘update (xo,λo)’.
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Inner Loop Design
The outer loop decomposes the problem into many local
KKT systems with subset of variables and assumes the
primal variables in one block would be equal. However, this
may not hold when min (λ) < 0 (the sub-script o is omitted
in the subsection). The role of the inner loop is to solve the
decomposed KKT system when such cases appear. Before
we introduce the concepts and detailed procedures, we first
show the diagram of the inner loop design in Figure 3.

Figure 3: Diagram of inner loop procedures.

The inner loop is in a recursive fashion. The idea is
illustrated in the 0-th layer with the sub-script (0) omitted
and could be easily generalized to other layers.
Move forward: At 0-th layer, a sequence of primal feasible
points x0,x1, . . . is generated such that

xt = q
(
Gt, Ḡt

)
= argmin

x

∑
i∈B fi (xi) ,

s.t.
{
xi − xj = 0, ∀ (i, j) ∈ Gt,

xi − xj ≤ 0, ∀ (i, j) ∈ Ḡt.

where the index pair Gt, a set of equality constraints, and
Ḡt, a set of inequality constraints, should satisfy

Ḡ = Gt ∪ Ḡt =
{
(i, j)

∣∣∣i, j ∈ B, [C′]ij = 1
}
, ∀t.

We initialize G0 =
{
(i, j)

∣∣∣i, j ∈ B, [C′]ij = 1
}

and Ḡ0 =

∅, such that x0 = q
(
G0, Ḡ0

)
. Their union Ḡ refers to

the target inequality constraints set at this layer. Obviously,
if we keep increasing Ḡt by removing elements from Gt,∑

i∈B fi (xi) will strictly decrease. Eventually, xt would
converge to q

(
∅, Ḡ

)
, the optimal of the local KKT system.

Split the block: We apply Ḡt = Ḡt−1 ∪ {(u, v)} where
λuv = min (λ) corresponds to the most negative dual
variables. It means that we can achieve lower objective
values via converting equality constraint xu = xv into
inequality constraint xu ≤ xv , resulting in the split of the
block. Note that the primal feasibility should be restored
immediately if found violated because every xt in the inner
loop should be primal feasible.

Recurse downward: Whenever we ‘split the block’, there
would be two possible outcomes. If ∀ (i, j) ∈ Ḡt, λij ≥

Algorithm 1: Sequential block merging (SBM).

Input: {fi}, C, and initialized x(0), λ(0), C′.
while (11) not met do

Outer loop: Compute Bo and update (xo,λo)
if min (λo) < 0 then
Ḡ =

{
(i, j)

∣∣∣i, j ∈ Bo, [C
′]ij = 1

}
Inner loop: SOLVE

(
Ḡ,xo,λo

)
end if

end while

Function<SOLVE>(Ḡ, x0, λ0):
t = 0, Ḡ0 =

{
(i, j)

∣∣xi ̸= xj , i, j ∈ Ḡ
}

while λuv = min(i,j)∈Ḡ (λij) < 0 do
Ḡt = Ḡt−1 ∪ {u, v},(u ∈ Bk, v ∈ Bl)
update (xk,λk) , update (xl,λl)
while ∃ (i ∈ Bk, j ∈ Bl) ∈ Ḡ : xi − xj > 0 do

Bs ← Bk ∪Bl, update (xs,λs)
end while
if ∃ (i, j) ∈ Ḡt, λij < 0 then

Recursion: SOLVE
(
Ḡt,xt,λt

)
end if
t← t+ 1

end while

0, obviously xt = q
(
Gt, Ḡt

)
, a move forward step is

completed, and we call it case 1 in Figure 3. If ∃ (i, j) ∈
Ḡt, λij < 0, then current xt ̸= q

(
Gt, Ḡt

)
marked as case 2

in Figure 3. Then, in order to solve q
(
Gt, Ḡt

)
, we define

an new inequality-constrained sub-problem in terms of a
simpler version of the original problem, with a smaller set of
target inequality constraints Ḡ and different starting points.
We illustrate this idea in Figure 4.

Figure 4: Example of ‘recurse downward’. The sub-problem
is defined on a smaller set of target inequality constraints
Ḡ = {(1, 2) , (2, 4) , (2, 5)}. x6 ≤ x5 and x3 ≤ x4 are not
considered anymore in subsequent sub-problems.

Return: When ∀ (i, j) ∈ Ḡ, λij ≥ 0, together with a
primal feasible x, all the KKT conditions hold. If we are
in 0-th layer, the inner loop terminates, otherwise it returns
to the upper layer, resulting in a ‘move forward’ step.
Inevitably, every layer will return because the number of
‘move forward’ steps is bounded and the objective value in
each layer is strictly decreasing.

More technical details and convergence analysis are
deferred to the Supplementary Material. Note that our
method has some similarities with the primal active set
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method (PASM). However, the conventional PASM is only
provably convergent under limited cases, like quadratic
programming (Bonnans et al. 2006), while our method is
provably convergent under any f that satisfies Assumption
1. With the details of the inner loop, the pseudo-code for the
SBM algorithm is summarized in Algorithm 1.

Convergence Analysis
To establish the theoretical convergence of our algorithm,
we first show the convergence of the inner loop, which can
be seen as a convergent implementation of the active set
strategy, in Lemma 2.
Lemma 2. The inner loop converges to a solution of (6),
(7), and (8) for all variables in Xo and Λo.

With Lemma 2, the convergence of the outer loop can be
also established, shown in Theorem 2. In the Supplementary
Material we show that the outer loop can be seen as a variant
of the dual active set method. Therefore, the SBM algorithm
is a primal-dual strategy.
Theorem 2. The proposed SBM algorithm converges to an
optimal solution of problem (2).

Though the SBM algorithm is designed in loop, the inner
loop is needed only when λo ≥ 0 is not satisfied. The
number of inner loops depends on the local graph structure
and the strategies used in the outer loop. In practice, the
number of inner loop is small when the data already has
some monotonicity, which is usually the case in the practical
isotone optimization problems.

Extension to Non-separable Objectives
In numerous real-world applications, most of the methods in
the literature could not be applied if the objective function
f is not separable. Here we introduce some optimization
frameworks that can decompose the problem into a sequence
of sub-problems with separable objective functions.

One is the successive convex approximation (Scutari et al.
2013), which solves the problem by iteratively solving the
following isotone optimization problem

xk+1 = argmin
x

∥∥x− (
xk − ηdk

)∥∥2
2
, s.t. x ∈ X , (13)

in which η is the step size and dk refers to the descent
direction. The problem (13) can be solved via our SBM
algorithm and many other state-of-the-art solvers. Note
that when dk = ∂f

(
xk

)
, this method specializes to the

projected gradient descent (PGD), or the projected sub-
gradient descent (PGSD).

Another framework – Majorization Minimization (MM)
(Hunter and Lange 2004; Sun, Babu, and Palomar 2016)
minimizes f (x) by iteratively optimizing its upper bound
surrogate function f̃

(
x;xk

)
xk+1 = argmin

x
f̃
(
x;xk

)
, s.t. x ∈ X , (14)

in which the separable function f̃ should satisfy

f̃
(
x;xk

)
≥ f (x) , ∂f̃

(
x;xk

)∣∣∣
x=xk

= ∂f (x)|x=xk .

Then, our SBM algorithm can tackle (14). This MM
approach can be very efficient if f̃ is elegantly designed, but
many state-of-the-art methods can not solve (14) as f̃ do not
meet their requirements.

Numerical Simulations
In this section, we conduct numerical experiments on both
synthetic data and real-world data to verify the performance
of the proposed SBM algorithm. The code is available in
https://github.com/Xiwen1997/IsotoneOptimization.

Synthetic Data
We evaluate the performance of our algorithm on synthetic
data. The benchmarks isotone (Mair, Hornik, and de Leeuw
2009), quadprog (Goldfarb and Idnani 1983), IRP (Luss and
Rosset 2014), and IPM (Kyng, Rao, and Sachdeva 2015) are
summarized in Table 1.

Name for short Method Objective
Pkg isotone Primal Active Set Separable

Pkg quadprog Dual Active Set Quadratic
IRP Recursive Partitioning ℓ2 norm
IPM Interior Point Method ℓp norm

Table 1: Benchmarks methods for isotone optimization.

We consider two representative isotonic constraints,
binary tree and 2d-grid constraints, shown in Figure 5 with
the problem size p = 103.

Figure 5: Graphs of binary tree and 2d-grid.

The average computational time for ℓ2 norm loss is
evaluated on 100 randomly generated data sets, with the
initial violating rate around 20 − 50%. The performance is
shown in Figure 6, in which the SBM method outperforms
other benchmark methods under both kinds of isotonic
constraints by one to four orders of magnitude. Its
performance is extraordinary, especially when the number
of initial violations is not too huge.

Another advantage of the SBM algorithm is the flexibility
in tackling various separable objective functions, which is
crucial for algorithm design in practice. Suppose we want to
solve a multivariate isotonic regression problem with non-
convex weighted ℓ1 norm regularization, formulated as

min
X

∥Y −AX∥2F + λ
∑

i,j log
(
1 +

|Xi,j |
ϵ

)
s.t. vec (X) ∈ X ,

(15)
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Figure 6: Average computational time of different methods
on two different isotonic constraints.

where X represents a 2d-grid isotonic cone, ϵ and λ are
given hyper-parameters. The regularization term enforces
sparsity on the values of each Xi,j , while the isotonic
constraints restrict the sparsity pattern under some orders.
To solve this problem, the projected sub-gradient descent
(PSGD) can be applied, with the projection problems solved
by IPM, IRP, quadprog, or our SBM method.

Unlike PSGD, the MM algorithm minimizes f (X)
by iteratively minimizing its upper bounds. The defined
surrogate function can be chosen as

f̃
(
X;Xk

)
= const+

∑
i,j

[
f̃
(1)
i,j

(
Xi,j ;X

k
)
+ f̃

(2)
i,j

(
Xi,j ;X

k
)]

,

in which

f̃
(1)
i,j

(
Xi,j ;X

k
)
= 2

[
AT

(
AXk −Y

)]
i,j

(
Xi,j −Xk

i,j

)
+ 1

2η

(
Xi,j −Xk

i,j

)2
,

upper bounds the term ∥Y −AX∥2F , and

f̃
(2)
i,j

(
Xi,j ;X

k
)
=


λ

ϵ+|Xk
i,j|

sign (Xi,j)Xi,j if |Xij | ≥ δ,

λ

ϵ+|Xk
i,j|

(
1
2δX

2
ij +

1
2δ

)
if |Xij | < δ,

upper bounds the term λ
∑

i,j log
(
1 + |Xi,j |

/
ϵ
)

with a
small coefficient δ to make it smooth. The constant
guarantees f̃

(
Xk;Xk

)
= f

(
Xk

)
and more details are

elaborated in the Appendix. As f̃
(
X;Xk

)
is convex and

separable, minimizing f̃
(
X;Xk

)
subject to vec (X) ∈ X

can be efficiently solved by our SBM algorithm.
In the experiments, all the methods are initialized with

the same strictly feasible point. We set λ = 20, ϵ = 0.1,
p = 302, and step size η = 5 × 10−4. As the problem is
non-convex, we do not guarantee global optimal. Instead, we
compare the objective values given the same computational
time. The performance is shown in Figure 7.

At the early stage, the SBM (PSGD) method outperforms
the SBM (MM) approach as its objective function at each

Figure 7: Comparison on solving problem (15). The absolute
objective value error is defined as the difference of the
objective value at each iteration and the smallest objective
value we obtained across all the methods.

iteration is simpler. However, none of the PSGD methods
converge well due to the defect of simple projection. The
IRP (PSGD) and the SBM (PSGD) methods oscillate around
local optimal. One reason is that the sub-gradient method
is not a descent method. Another is that the solutions
obtained by IPM, quadprog, and IRP are not exact; hence
the numerical errors at each iteration would accumulate.
Compared to other methods, our proposed SBM algorithm
is desirable for the following reasons:
• It is one to fours orders of magnitude faster than other

benchmark methods.
• It provides more flexibility to various objective functions.

Therefore, we can apply it together with the MM
algorithm to achieve the smallest objective value.

• It converges to the exact solution for each sub-problem,
while other methods can only have solutions with small
errors. This is one reason why SBM could obtain smaller
objective values than others under the PSGD framework.

Real Data
Isotone optimization is widely used in non-parametric
estimation under shape constraints (Horowitz and Lee 2017;
Guntuboyina, Sen et al. 2018), which learns a function
f : x ∈ Rd → y ∈ R that best maps the input features
(x1, . . . ,xn) to the output regression values (y1, . . . , yn) by
learning the parameters Θ = (f (x1) , . . . , f (xn)) under
shape constraints. For example, we restrict Θ in a closed
isotonic cone X , thus the estimation can be formed as
isotone optimization.

To illustrate the practicality of our method in real-world
applications, we use the Adult data set, available from the
UCI Machine Learning repository. The target is to predict
whether the salary of a person is greater or less than 50k,
denoted as y = 1 or y = 0, respectively, given six
continuous and eight nominal attributes. If only two features,
the number of years in education (education-num) and
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Figure 8: Data visualization before (left) and after (right)
imposing the isotonic constraints, which assume that a
person should earn more (y → 1) when she/he receives more
years of education or works more hours per week.

working hours per week (hours-per-week), are considered,
monotonicity is imposed as it is expected that both years of
education and working hours should be positively correlated
with income.

Applying a regular uniform grid design, the problem can
be formulated as

Θ̂ = arg min
Θ∈X

∥W ⊙ (Θ−Y)∥2F , (16)

in which the data matrix Y = (yi1,i2) ∈ Rp1×p2 (p1 = 16,
p2 = 99) is the average of the observations within each grid;
the isotonic matrix Θ = (θi1,i2) to estimate is restricted on
an isotonic cone defined as

X =
{
Θ ∈ Rp1×p2

∣∣ θj1,j2 ≤ θk1,k2
, ∀j1 ≤ k1, j2 ≤ k2

}
;

the non-negative weights W = (wi1,i2) are introduced to
counter the imbalance or the incompleteness of the data.

Figure 8 visualizes Y and Θ̂. The height of each column
indicates the probability of being a positive class (y = 1).
The isotonic constraints smooth the two-dimensional curve,
enforce the monotonicity along each axis and provide an
insightful understanding of the pattern: the impact of years
of education is negligible, especially when working hours

are small. The model (16) not only inherits the advantages of
non-linearity from non-parametric estimation but also fully
complies with the assumption of monotonicity.

When more features are considered, the problem is to
estimate a tensor Θ = (θi1,i2,...,id) ∈ Rp1×···×pd under
isotonic constraints. Assume that the partial monotonicity
is imposed on the first l coordinates (l = 2), the underlying
isotonic cone is expressed as

X = {Θ| θj1,...,jl,...,jd ≤ θk1,...,kl,...,kd
,

∀j1 ≤ k1, . . . , jl ≤ kl, jl+1 = kl+1, . . . , jd = kd} .

Then the shape restricted estimation on Θ is

Θ̂ = arg min
Θ∈X

p1∑
i1=1

· · ·
pd∑

id=1

[wi1,...,id (yi1,...,id − θi1,...,id)]
2
.

This is an isotone optimization problem and can be solved
by SBM. In our experiment, the following attributes are
taken into consideration in sequence: workclass (p3 = 3),
occupation (p4 = 4), race (p5 = 3) and sex (p6 = 2).
With different numbers of features considered, isotone
optimization problems with different problem sizes are
solved via SBM and quadprog respectively. The IRP method
is not included as it is observed that IRP is not able
to converge to the global optimal because of the high
conditional number of the Hessian matrix. The experimental
results are shown in Table 2.

d 2 3 4 5 6
p 1584 4752 19008 57024 114048
m 3057 9459 36636 109908 219816
QP 24.1s 859.36s – – –

SBM 1.41s 15.69s 99.36s 277.63s 920.76s

Table 2: Number of variables p, number of constraints m,
and time costs with different number of features d. (QP
stands for the solver ‘quadprog’)

From Table 2, we can observe that the proposed SBM
algorithm performs well, whereas the QP solver quadprog
fails when d ≥ 4 as it exceeds the memory limit.

Conclusions
In this paper, we propose a unified algorithm for isotone
optimization with convex separable losses under arbitrary
isotonic constraints. The algorithm aims at solving the
KKT conditions by iteratively manipulating the decomposed
KKT system on selected local variables. The reduction on
the scale of sub-problems results in high efficiency to the
methods. Our method is evaluated on both synthetic and
real data sets and outperforms state-of-the-art benchmark
methods.
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