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Abstract
We consider the problem of reducing the false discovery rate
in multiple high-dimensional interventional datasets under
unknown targets. Traditional algorithms merged directly mul-
tiple causal graphs learned, which ignores the contradictions
of different datasets, leading to lots of inconsistent direction-
s of edges. For reducing the contradictory information, we
propose a new algorithm, which first learns an interventional
Markov equivalence class (I-MEC) before merging multiple
graphs. It utilizes the full power of the constraints available
in interventional data and combines ideas from local learn-
ing, intervention, and search-and-score techniques in a princi-
pled and effective way in different intervention experiments.
Specifically, local learning on multiple datasets is used to
build a causal skeleton. Perfect intervention destroys some
possible triangles, leading to the identification of more pos-
sible V-structures. And then a theoretically correct I-MEC is
learned. Search and scoring techniques based on the learned
I-MEC further identify the remaining unoriented edges. Both
theoretical analysis and experiments on benchmark Bayesian
networks with the number of variables from 20 to 724 val-
idate that the effectiveness of our algorithm in reducing the
false discovery rate in high-dimensional interventional data.

Introduction
Causal relationship discovery plays an irreplaceable role in
various fields, including biology, epidemiology, medicine
and economics (Pearl and Mackenzie 2018; Schölkopf et al.
2021). Therefore, learning a causal model described the re-
lations among variables is important, which is in the for-
m of a directed acyclic graph (DAG) (Yu et al. 2019; Xun
et al. 2020). Many algorithms are proposed from observa-
tional and/or experimental data. Since different causal DAG
models can generate the same observational distribution, a
DAG is in general only identifiable up to its Markov equiv-
alence class (MEC) (Chickering 2002) from observational
data (Hauser and Bühlmann 2012; Shohei et al. 2006; T-
samardinos, Brown, and Aliferis 2006). The availability of
interventional (experimental) data opens up new opportuni-
ties to reduce the size of the equivalence class down, possi-
bly to recover the true causal graph (Ghassami et al. 2017;
Peters, Bhlmann, and Meinshausen 2016; Meinshausen et al.
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2016; M, B, and Turner R 2018). That is, one can distinguish
the corresponding causes and effects by the idea of interven-
tion, which is also the unique advantage of causality (Huang
et al. 2020; Zhang et al. 2017).

Usually, one only knows that a dataset is interventional,
but does not know which variables are intervened in this
dataset (Bareinboim and Pearl 2016; Yu et al. 2020). For
example, in molecular biology, the effects of various added
chemicals to the cell are not set to one specific value and
are not also precisely known. Also gene knockout technolo-
gies are known to have off-target effects, i.e., the CRISPR-
Cas gene-editing technology performs cleavage at unknown
genome sites other than their intended target (Antonia, Wen-
dell, and Lei 2016; Wu et al. 2015). Facing different inter-
vention experiments, if the intervention targets are forcibly
known or not accounting for these additional targets while
learning a causal structure, it may lead to incorrect conclu-
sions in the learned causal DAG. In addition, compared with
the known intervention targets setting, the unknown one re-
quires a separate treatment since it is certainly less infor-
mative. Therefore, learning a causal inference algorithm ef-
fectively that can make full of interventional data under the
unknown intervention targets is the purpose of the present
paper. Here, we focus on reducing the number of inconsis-
tencies produced by constraint-based methods.

There are algorithms are proposed for causal structure
learning from multiple experimental datasets with unknown
intervention targets. He and Geng (He and Geng 2016)
adopted constraint-based algorithms (Spirtes, Glymour, and
Scheines 2000) to learn each causal DAG from each inter-
ventional dataset, and then merged the graphs directly to get
the final structure. However, due to the influence of sample
selection bias and data noise, the idea ignores the contradic-
tory information of multiple structures learned, resulting in
large indeterminacies in the estimated graph. In addition, it
learns each causal DAG from each dataset, which also leads
to a higher time complexity. Squires et al. (Squires, Wang,
and Uhler 2020) proposed the UT-IGSP algorithm to esti-
mate causal DAG models from a mix of observational and
interventional data, when the intervention targets are partial-
ly or completely unknown. Brouillard et al. (Brouillard et al.
2020) proposed a general continuous-constrained method
for causal discovery which can leverage various types of in-
terventional data as well as expressive neural architectures.
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The two algorithms are proposed based on structural equa-
tion model, which are easy to accumulate errors in the in-
ference process when learning the causal relations among
hundreds of variables.

Recently, Mooij et al. (Mooij, Magliacane, and Claassen
2020) proposed a novel Joint Causal Inference (JCI) frame-
work, which can be used to adapt an existing observational
causal inference algorithm into a method for causal struc-
ture learning from interventional data with unknown target-
s. However, facing discrete data with unknown intervention
targets, context variables are not particularly suitable to be
added to the JCI framework. Although JCI can find differ-
ent context variables corresponding to different datasets, the
unknown intervention targets under perfect intervention will
reduce the effect of context variables on system variables, re-
sulting in that the effect of causal inference cannot be effec-
tively improved. To take an extreme example, assuming that
context variables affect all intervened variables, and then the
performance of JCI does not increase effectively.

Thus, to battle the challenging issues, we propose a
new algorithm, called EMIDGS (Multiple Interventional
Datasets for Efficient Global causal Structure learning). It
combines local learning, intervention characteristics and
search-and-score techniques in a unified way, and considers
the interventional information of multiple datasets simulta-
neously. Specifically, first, EMIDGS learns a causal skeleton
by using a local learning algorithm proposed in this paper,
called EMIDPC, which learns parents and children (PC) of
a given variable from multiple interventional datasets simul-
taneously. Then EMIDGS orients the edges of the skeleton
using two steps: (1) finding an Interventional Markov Equiv-
alence Class (I-MEC) (Yang, Katcoff, and Uhler 2018) by
two lemmas; (2) based on the learned I-MEC, applying a s-
core function to greedily search each causal DAG from each
dataset in the remaining search space, and then merging the
graphs to obtain the final structure.

Theoretical analysis proves that the skeleton identification
phase is sound and the EMIDPC algorithm is robust. The
first step of the orientation phase provides theoretical guar-
antee, obtaining the correct directions of edges without se-
lection bias and data noise. For the second step of the orien-
tation phase, search-and-score techniques based on I-MEC
from each dataset greatly reduces the search space, and the
combination of multiple graphs further identifies the unori-
ented edges, improving the indeterminacies of the estimat-
ed structure. Therefore, our proposed algorithm reduces the
contradictions of multiple causal structures, and experimen-
tal results also verify the effectiveness.

The paper is organized as follows. Section 2 gives prelim-
inaries work. Section 3 proposes our new algorithm. Section
4 presents the theoretical analysis and complexity analysis.
Section 5 describes and discusses the experiments and Sec-
tion 6 concludes the paper and presents future work.

Preliminaries Work
Causal DAG Model
Let G = (V,E) represent a directed acyclic graph (DAG)
and P be the joint probability distribution over a ran-

dom vector XV = {X1, · · · , Xn}. Each node j ∈ V =
{1, · · · , n} is associated with a random variableXj and each
edge (i, j) ∈ E represents a direct causal relation from Xi

to Xj , i.e. Xi → Xj in a causal DAG denotes that Xi is a
direct cause of Xj . For simplicity, we do not distinguish be-
tween V and XV . The distribution P is Markov to the graph
G, which makes the joint probability P can be decomposed
into the product of conditional probabilities as

P (V ) = P (X1, · · · , Xn) =
∏

Xj∈V

P (Xj |pa(Xj)) (1)

where pa(Xj) denotes the set of parents of Xj . A DAG G
and a joint distribution P are faithful to each other, which
enables us to recover a DAG G from a distribution P . In
addition, we useXi⊥⊥Xj |S andXi⊥6⊥Xj |S to represent that
given S, Xi is conditionally independent of and dependent
on Xj , respectively.

Post-intervention DAG
Let D = {D1, · · · , Dm} be the m experimental datasets.
For ∀i ∈ {1, · · · ,m}, let Ri ⊆ V be the set of variables ma-
nipulated in the i-th experiment and do(Ri) denote the inter-
vention on the set of variables Ri (Pearl 2009). After the in-
tervention onRi in the i-th experiment, the post-intervention
DAG of G is Gi = (V,Ei) where Ei = {(a, b)|(a, b) ∈
E, b /∈ Ri}. The joint distribution of the post-intervention
DAG Gi with respect to Ri can be written as

Pi(V |do(Ri)) =
∏

Xj∈V \Ri

P (Xj |pa(Xj))
∏

Xj∈Ri

Pi(Xj)

(2)
where P (Xj |pa(Xj)) is the same as the conditional proba-
bility of Xj in Eq. (1) and Pi(Xj) is the post-intervention
conditional probability of Xj after Xj is manipulated.

Let R =
⋃m

i=1Ri. If ∃Xj ∈ R and ∃Ri ∈ R such that
Xj /∈ Ri , then R is conservative, called conservative rule
(Pearl 2009). The conservative rule states that given m in-
tervention experiments, if for any manipulated variable Xj ,
one can always find an experiment in which Xj is not ma-
nipulated. With the definition of this conservative rule, we
can theoretically analyze the possibility of learning a causal
structure under unknown intervention targets.

Learning Causal Structure from Multiple
Interventional Datasets with Unknown Targets
In this section, we introduce EMIDGS proposed in this pa-
per. First, EMIDGS assumes that there are no unmeasured
confounders, and faithfulness is also assumed in the paper
as Assumption 1. In addition, EMIDGS assumes that in-
tervention is perfect and intervention targets are unknown.
Perfect intervention means that the causal relations between
the manipulated variable and its direct causes are complete-
ly eliminated. Lastly, EMIDGS assumes R is conservative
as Assumption 2.

Assumption 1 The joint probability Pi is faithful to the
DAG Gi for any i ∈ {1, · · · ,m}.

8585



Algorithm 1: The EMIDGS algorithm.

1: Input: D = {D1, · · · , Dm}:m interventional datasets;
V = {X1, · · · , Xn}:n variables.

2: Output: Gf .
/*Phase 1: Building a skeleton Gs */

3: G = Gout = (|V|, |V|);
4: for Xj ∈ V do
5: [pc(Xj), sep, kpc, kindep]=EMIDPC(D,Xj , V );
6: for Y ∈ pc(Xj) do
7: G(Xj , Y ) = 1;
8: end for
9: end for

10: Gs = (V,Es) = G;
Phase 2: Orienting edges

11: for A ∈ V do
12: for X,Y ∈ pc(A) do
13: for i = 1 to m do
14: S = sepX(Y ) ∪ sepY (X)
15: if X ⊥6⊥ Y | S, X ⊥⊥ Y |{S ∪A} in Di then
16: G(X,A) = −1;G(Y,A) = −1;
17: G(A,X) = 0;G(A, Y ) = 0;
18: tem = kindepA(i) ∩ pc(A);
19: G(A, tem) = −1;G(tem,A) = 0;
20: end if
21: end for
22: end for
23: updating G by Meek rules;
24: end for
25: G0 = (V,E0) = G; Gout = G0;
26: for i = 1 to m do
27: Based G0, learning a graph Gf (i) = (V,Ei) from

the i-th dataset Di by performing a scoring method
on the remaining search space.

28: end for
29: Combine Gf (i) to a graph Gout.
30: return Gout

Assumption 2 R is conservative in m interventional
datasets.

EMIDGS (Algorithm 1) first reconstructs the skeleton of
a causal DAG by learning parents and children of each node
from multiple interventional datasets, which is achieved by
a subsection: EMIDPC (Multiple Interventional Datasets for
Efficient PC discovery, illustrated in Algorithm 2) in Section
3.1. After obtaining the skeleton, EMIDGS orients edges by
two lemmas as Lemmas 1 and 2 and outputs results in Sec-
tion 3.2.

Building a Skeleton
For each variable Xj in V , EMIDGS looks for its parents
and children from m datasets through EMIDPC, and then
connects them by applying OR rules. After testing all vari-
ables in V , EMIDGS gets a causal skeleton Gs as lines 3-10
in Algorithm 1.

EMIDPC (Algorithm 2) is proposed in this paper to find
parents and children (PC) of a given variable T included in
V fromm interventional datasets with unknown targets. It is

implemented in two steps. Suppose that canpc(T ) keeps the
candidate parents and children of T , storing all variables de-
pendent on T conditioned on an empty set from all datasets,
and pc(T ) denotes the set of true parents and children of T .
Step 1 gets canpc(T ) from m interventional datasets. Step
2 removes false positives from canpc(T ) to get pc(T ) and
outputs results. In addition, suppose that kpcT (i) stores the
variables that depend on T conditioned on an empty set in
the i-th dataset. And similarly, suppose kindepT (i) stores
variables that are independent of T in the i-th dataset, where
possible parents or children of T are included due to the
characteristics of the intervention.

Step 1: Find candidate PC of T (lines 5-16). EMIDPC
judges the dependence of Xj ∈ V \ T and T conditioned
on an empty set in each interventional dataset. If Xj ⊥6⊥ T
holds in the i-th dataset, EMIDPC addsXj to canpc(T ) and
kpcT (i), otherwise it adds Xj to kindepT (i). The next vari-
able is considered until Xj has been tested in all datasets.
So when a variable Xj is independent of T in m datasets, it
means that the variable must not be a parent or a child of T .
And the conclusion that the true PC set must be included in
canpc(T ) is believed. Next, EMIDPC needs to remove false
positives from canpc(T ) as much as possible.

Step 2: Find PC of T (lines 17-45). EMIDPC removes
false positives from canpc(T ) by the standard forward-
backward strategy (SFBS) as shown in lines 17-33 of Al-
gorithm 2. First, it sets cpc(T ) an empty set and selects the
feature X ∈ canpc(T ), which has the highest association
with T , and then adds X into cpc(T ) and removes X from
canpc(T ). Next, EMIDPC determines whether the variable
X just added to cpc(T ) is a false positive or not. False posi-
tives are those non descendants excluding parents and those
descendants excluding children. However, the challenge is
that EMIDPC does not know which variables are manipu-
lated in each dataset. So the situations about removing false
positives are discussed as follows.

For non descendants excluding parents, becauseR is con-
servative, we can always find at least one dataset, denoted as
the i-th dataset (Di), in which T is not intervened and then
the parents of T can be found. If parents of T are also not in-
tervened in this dataset, the non descendants excluding par-
ents can be removed. On the contrary, if one parent of T in
the i-th dataset is intervened, we cannot find the correspond-
ing non descendants and further analysis is discussed. If T is
intervened in a certain dataset, such as the j-th dataset, T is
independent of a T ’non-descendant X and X is not includ-
ed in pa(T ), and then whether X is a T ’s non-descendant
in Dj cannot determined. For those descendants excluding
children, whether T is intervened or not does not influence
the removal of its descendants excluding children, but the re-
moval is affected by whether T ’s children are intervened. If
a child of T is intervened in the i-th dataset, we cannot find
the descendants excluding children in kpcT (i). If a child of
T , denoted Y , is not intervened in the j-th data set, two sit-
uations are discussed. One is that if the children of Y , that
is, the descendants excluding children of T , are intervened
in the j-th dataset, these nodes are not in kpcT (j). The other
is that if the children of Y are not intervened in the dataset,
we can remove them through the separation set {Y }.
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Figure 1: Four causal DAGs, where (a) is the underlying
DAG; and (b), (c) and (d) are three post-intervention DAGs
after the manipulation on the some variables in (a).

Corollary 1 Referring to Algorithm 2, assuming Xj ∈
cpc(T ) and ∃S ⊆ {cpc(T ) \Xj}, if ∃k ∈ {1, · · · ,m} such
that Xj ⊥⊥ T |S and {Xj ∪ S} ⊆ kpcT (k) in Dk, then we
know that Xj /∈ pc(T ).

Using Corollary 1 to remove false positives in canpc(T )
and get cpc(T ). However, one disadvantage of the above is
that cpc(T ) learned is a superset of pc(T ). That is to say,
some false positives are still in cpc(T ). For example, as
shown in Figure 1, B is still not removed from cpc(T ) in
three interventional datasets corresponding to Figure 1 (b),
(c) and (d). Specifically, we learn that kpcT (1) = {A,C},
kpcT (2) = ∅, kpcT (3) = {A,B}, and then canpc(T ) =
{A,C,B}. First, assume that A ∈ canpc(T ) has the high-
est association with T , which is added to cpc(T ), that is
cpc(T ) = {A}. Next, assume that B ∈ canpc(T ) is the
next variable with the highest association with T , which is
also added to cpc(T ) and cpc(T ) = {A,B}. Since we do
not find a set Z ⊆ cpc(T ) \ B such that B ⊥⊥ T |{Z} holds
in the dataset (i.e., D3), where {B ∪Z} ⊆ kpcT (3), cpc(T )
remains unchanged. In other words, in D3, T ⊥6⊥ B|φ and
T ⊥6⊥B|A, so B cannot be removed from cpc(T ). Lastly, the
variable C is added to cpc(T ) and cpc(T ) = {A,B,C}. S-
ince there is not a set Z ⊆ cpc(T ) and C ∪ Z ⊆ kpcT (i),
i ∈ {1, 2, 3} such that C ⊥⊥ T |{Z} holds, cpc(T ) still re-
mains unchanged and cpc(T ) = {A,B,C}.

Therefore, as shown in lines 34-44 of Algorithm 2,
EMIDPC removes the false positives from cpc(T ) learned
directly by changing the length of the conditioning set S
from 1 to |cpc(T )| to obtain the theoretically correct par-
ents and children of T . We define the length of S as temp,
and initialize temp to 1. When the length of S is less than
|cpc(T )|, the false positives will be removed by Corollary
1. Until all Xj ∈ cpc(T ) are judged under the same length
of S, EMIDPC considers the length of S with temp + 1.
This process ends at a condition where temp is greater than
the length of cpc(T ). Finally, as lines 45-46, EMIDPC sets
pc(T ) = cpc(T ), and outputs pc(T ), kpcT , kindepT , sepT .

Orienting Edges
The phase of edge orientation is divided into two steps as
lines 11-29 in Algorithm 1. In step 1, EMIDGS orients edges
to learn an I-MEC by the invariance of V-structures and the
property of perfect intervention as Lemma 1 and Lemma 2.
In step 2, based on the I-MEC learned in step 1, EMIDGS
performs a score-and-search strategy in finite research space

Algorithm 2: The EMIDPC algorithm.

1: Input: D = {D1, · · · , Dm}: m interventional datasets;
T : the target variable; V = {X1, · · · , Xn}: n variables.

2: Output: pc(T ) ,sepT , kpcT , kindepT .
3: canpc(T ) = φ; pc(T ) = φ;
4: kpcT = cell(1,m); kindepT = cell(1,m) ;
5: for Xj ∈ {V \ T} do
6: for i = 1 to m do
7: if Xj ⊥6⊥ T in Di then
8: canpc(T ) = canpc(T ) ∪Xj ;
9: kpcT (i) = kpcT (i) ∪Xj ;

10: Dep(Xj , i) = Dep(T,Xj);
11: else
12: kindepT (i) = kindepT (i) ∪Xj ;
13: end if
14: end for
15: dep(Xj) = max(Dep); sepT (Xj) = φ;
16: end for
17: cpc(T ) = φ;
18: repeat
19: Y = argmax dep(X,T |φ), X ∈ canpc(T );
20: cpc(T ) = cpc(T ) ∪ Y ; canpc(T ) = canpc(T ) \ Y ;
21: for X ∈ cpc(T ) do
22: for i = 1 to m do
23: if X ⊥⊥ T | S, S ⊆ cpc(T ) \ X , S ⊆

kpcT (i),X ∈ kpcT (i) in Di then
24: cpc(T ) = cpc(T ) \X;
25: sepT (X) = S;
26: if ∃h ∈ {1, · · · ,m} such that X ∈ kpcT (h)

then
27: kpcT (h) = kpcT (h) \X;
28: end if
29: break;
30: end if
31: end for
32: end for
33: until canpc(T ) is empty
34: temp = 0;
35: repeat
36: for X ∈ cpc(T ) do
37: for i = 1 to m do
38: if ∃S ⊆ cpc(T )\X and |S| = temp,Xj⊥⊥T | S

inDi andXj ∈ kpcT (i) and S ⊆ kpcT (i) then
39: cpc(T ) = cpc(T )\X; sepT (X) = S; break;
40: end if
41: end for
42: end for
43: temp = temp+ 1;
44: until temp > |cpc(T )|
45: pc(T ) = cpc(T );
46: return pc(T ), sepT , kpcT , kindepT

to learn m DAGs from m interventional datasets and then
the m causal DAGs are combined to get the final structure.

Lemma 1 The invariance of V-structures. Suppose R is
conservative and there are three variables X,Y,A ∈ V
and m intervention datasets without data noise and selec-
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Figure 2: Four causal DAGs, where (a) is a underlying DAG;
and (b), (c) and (d) are three post-intervention DAGs after
the manipulation on the some variables in (a).

tion bias. If ∃S ⊆ V \ {X,Y,A} such that X ⊥⊥ Y |S,
X⊥6⊥Y |{S∪A}, and the variables in {X,Y }∪S are depen-
dent on the variableA in the i-th dataset, thenX,Y,A forms
a V-structure with the collider A, that is X → A← Y .

Proof : Since R is conservative, if ∃A ∈ V such that for
∃Ri ∈ R, A ∈ Ri holds, then A is not manipulated in the
i-th dataset (i.e., Di). Thus the V-structure containing the
collider A may be found in Di if it exists. That is to say, if
∃S ⊆ V \ {X,Y,A} such that X ⊥⊥ Y |S, X ⊥6⊥ Y |{S ∪A}
in the i-th dataset, where the variables in {X,Y } ∪ S are
dependent on A, then X → A ← Y is identified. In addi-
tion, if the all datasets have no data noise and selection bias,
the V-structures learned from many manipulated datasets
are same. On the contrary, if R is not conservative, there
may be a collider A, which is intervened in all datasets. In
other words, ∃A ∈ V such that for ∀Ri ∈ R, A ∈ Ri

(i ∈ {1, · · · ,m}) holds. And then the V-structure including
the colliderA cannot be found. For example, for the variable
B in Figure 2 (a), sinceA⊥⊥F |{H} andA⊥6⊥F |{H,B} hold
in D2 responding to Figure 2 (c), where {A,F} ∪ {H} are
dependent on B, we can orient A−B−F to A→ B ← F .
However, for the variable L in Figure 2 (a), we find that
L is intervened in all intervention datasets and then the V-
structure including L as a collider cannot be determined.

Lemma 2 The unique property of perfect intervention. For
X,Y,A ∈ V and m interventional datasets without data
noise and selection bias, assuming a triple < X,Y,A > is
determined as a V-structure in the i-th dataset Di and A is
a collider. If ∃A1 ∈ pc(A) such that A⊥⊥A1 in Di, then A1

is a child of A.

Proof : Assume that a triple< X,Y,A > is determined as
a V-structure in the i-th dataset Di and A is a collider, then
the conclusion is concluded thatA is not manipulated inDi.
If ∃A1 ∈ pc(A) such that A ⊥⊥ A1 in Di, which shows that
A1 is manipulated in Di, then the conclusion that A1 is a
child ofA is believed. As shown in Figure 2, we can discover
the V-structure A → B ← F holds in D2 responding to
Figure 2 (c). So we judge that whether the variables in pc(B)
are independent to B or not in D2. We learn that pc(B) =
{A,F,C} andC ∈ pc(B). So ∃C ∈ pc(B) such thatC⊥⊥B
holds in D2, that is, the collider B is not manipulated in D2

but C is manipulated in D2. Then the conclusion is reached
that C is a child of B.

Step1: Orient edges by Lemmas 1 and 2 (lines 11-24).
EMIDGS orients the edges containing in the learned skele-

ton by two properties described in Lemmas 1 and 2, respec-
tively. Some edges can be oriented by the invariance of V-
structures as described in Lemma 1. EMIDGS first selects a
variable A ∈ V as the current variable. Then for every two
variables belonging to pc(A) (e.g., X,Y ), EMIDGS judges
the independence of X and Y conditioned on a set S and
judges the dependence of X and Y conditioned on {S ∪A}
in each dataset. We choose S = {sepX(Y ) ∪ sepY (X)}
as a set which makes X and Y independent. If the o-
riginal structure connected with the V-structure is not de-
stroyed, then sepX(Y ) and sepY (X) are identical theoret-
ically. If only V-structures exist, then the conditioning set
should have been an empty set, but X and Y are inde-
pendent given S = {sepX(Y ) ∪ sepY (X)}. In order to
reduce the time complexity of EMIDGS, we still choose
{sepX(Y ) ∪ sepY (X)} as a conditioning set. Therefore, if
X⊥⊥Y |S andX⊥6⊥Y |{S∪A} occur inDi (i ∈ {1, · · · ,m}),
then the relationship between X,Y and A is determined as
X → A← Y .

Also, EMIDGS orients some edges by Lemma 2, which
is the unique property of perfect intervention. Specifically,
when EMIDGS determines that a triple 〈X,A, Y 〉 is a V-
structure by Lemma 1, it records the current dataset Di. In
Di, EMIDGS learns that tem = {kindepA(i) ∩ pc(A)},
and concludes the conclusion that the variables in tem are
the children of the collider A. In order to make full of the
interventional property of a causal model, EMIDGS finds
V-structures in all datasets and records the datasets with the
V-structure, and then orients edges by Lemma 2.

Finally, Meek rules are applied as shown in line 23. Since
variables in ch(X) and X cannot form V-structures, if some
parents ofX point toX , and we can be sure that the remain-
ing variables connected toX are the children ofX . So Meek
rules work in the process.

Corollary 2 Referring to Algorithm 1, ifX⊥⊥Y |S andX⊥6⊥
Y |{S ∪ A}, ∃S ⊆ V \ {X,Y,A} and {X,Y,A} ∪ S ⊆
kpcA(i) in Di (i ∈ {1, · · · ,m}), then X,Y,A forms a V-
structure with the collider A, orienting 〈X,A, Y 〉 as X →
A← Y .

Corollary 3 Referring to Algorithm 1, assuming 〈X,A, Y 〉
is identified as a V-structure in the i-th dataset (Di) andA is
a collider, then the variables in the set tem = kindepA(i)∩
pc(A) are children of A.

Using Corollary 2 and Corollary 3 to determine the causal
relationships among variables in V , EMIDGS learns an I-
MEC, which includes more causal information.

Step2: Score-and-search, and merge (lines 25-29).
Based on the I-MEC learned (i.e., G0) by lines 11-24 in
Algorithm 1, EMIDGS uses a scoring method to learn and
search the graph with the highest score in the remaining
graph space as the best causal DAG. Next, after getting m
causal DAGs, EMIDGS combines these DAGs to the final
graph Gf . Specifically, first, EMIDGS sets the final graph
Gout = G0, providing a higher priority to oriented edges
of I-MEC. Then based on the I-MEC (i.e., G0), the remain-
ing unoriented edges are further tested. In other words, For
an unoriented edge ej in I-MEC (i.e. G0), if the direction
of ej is determined in a certain graph Gf (i), then the edge
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ej is oriented in Gout. If the direction of ej is contradicto-
ry in k (1 ≤ k ≤ m) graphs, then the direction of ej is
not determined in Gout. According to the above condition-
s, EMIDGS judges all unoriented edges in G0 and learns
the merged graph Gout. Finally, EMIDGS outputs the final
causal DAG Gout.

Theoretical Analysis and Complexity Analysis
In this section, we theoretically analyze and prove the cor-
rectness of our algorithm in Section 4.1. Also we analyze the
computational complexity of our algorithm in Section 4.2.

Theoretical Analysis
We focus on discovering the causal relations of all variables.
In this paper, we will have the three following propositions:

Proposition 1 When R is conservative, the EMIDPC algo-
rithm can learn parents and children of T ∈ V correctly and
efficiently.

Proof : Lines 5-16 in Algorithm 2 (EMIDPC) show that
if Xj ⊥6⊥ T holds in any a datasets, EMIDPC considers Xj

as a candidate PC variable for being added to canpc(T ).
When assuming R is not conservative, true parents or chil-
dren of T may be lost in the process. So when R is conser-
vative in EMIDPC, lines 5-16 show that no false positives
are removed from canpc(T ). That is to say, the true pc(T )
is included in canpc(T ).

Lines 17-33 in Algorithm 2 show that Xj just added in
cpc(T ) is judged whether a false positive or not. If existing
a set S ⊆ cpc(T ) \ Xj , S ⊆ kpcT (i), and Xj ∈ kpc(i)
in Di such that Xj and T are independent conditioned on
S, then Xj is considered as a false positive. This process
can filter out most of false positive nodes. In other words,
cpc(T ) learned in lines 17-33 is a superset of the true pc(T ).
And because the length of the conditioning set is as small as
possible, it can effectively reduce the time complexity.

Lines 34-44 in Algorithm 2 show the size of the condition-
ing set S is from 1 to |cpc(T )|, which covers all of possible
conditioning subsets, and ensures all false positives are re-
moved theoretically.

Proposition 2 When R is conservative, the EMIDGS algo-
rithm can discover a theoretically correct I-MEC effectively,
which includes more causal relationships.

Proof : Lines 3-9 in Algorithm 1 (EMIDGS) show that a
causal skeleton is reconstructed by applying OR rules to
connect the edges between each node (variables) belonging
to V and its PC nodes. So the learned skeleton is theoreti-
cally correct.

Lines 11-24 in Algorithm 1 orient edges of the learned
skeleton by Lemma 1 and Lemma 2. Lines 13-17 of EMIDGS
orient X − A − Y to X → A ← Y by Lemma 1. If R is
not conservative, that is, if the collider A is manipulated
in all datasets, the edges pointing to A are lost and the V-
structures includingA as a collider are lost. Lines 18-19 ori-
ent some edges by Lemma 2, which destroys some possible
triangles and identifies more V-structures. If R is not con-
servative, the correctness of Lemma 2 needs to be consid-
ered. Therefore, when R is conservative, EMIDGS obtains a

theoretically correct I-MEC by Lemmas 1 and 2 effectively,
which includes more causal relationships.

Proposition 3 When R is conservative, the combination of
multiple graphs, that is the second step of the orientation
phase of EMIDGS, can effectively reduce the search space
and improve the efficiency of the EMIDGS algorithm.

Proof : Based on the learned I-MEC in lines 11-24, lines
25-28 in Algorithm 1 (EMIDGS) learn m graphs Gf (i)
(∀i ∈ {1, · · · ,m}) with the highest score from m dataset-
s on the remaining search space, which effectively reduces
the search space. Multiple graphs in the search space are
formed by the underlying I-MEC and the remaining unori-
ented edges with different orientations. Line 29 combines
the m graphs to get the final graph Gout. For an undirected
edge in I-MEC, if the direction of the edge is contradictory
in multiple learned graphs, the direction of the edge is still
not determined, which further improves the accuracy of the
EMIDGS algorithm.

Computational Complexity
In the lines 5-16 of the EMIDPC algorithm (Algorithm 2),
the complexity of checking variables in V in m datasets
is O(m|V |). At lines 17-33 of Algorithm 2, EMIDPC ex-
amines the subsets of cpc(T ) which is learned by adding
the newly features from an empty set. And at lines 34-44,
EMIDPC examines the subsets with the size of 1:|cpc(T )|,
where cpc(T ) is obtained from lines 17-33. Assuming that
the size of cpc(T ) is p, the complexity of lines 17-44 is
O(m ∗ |p| ∗ (C(p, 1) + ... + C(p, p))). In the best case,
the size of the conditioning set is 1 and the complexity
of EMIDPC is O(|cpc(T )|2 ∗ m). And in the worst case,
we need to search all subsets in cpc(T ), and the com-
plexity of the algorithm is O(|cpc(T )|2 ∗ 2|cpc(T )| ∗ m).
Thus, the total complexity of EMIDPC in the worst case
is O(m|V | + |cpc(T )|2 ∗ 2|cpc(T )| ∗ m), and reduced to
O(2|cpc(T )||cpc(T )|2m).

In Algorithm 1, EMIDGS assumes that the time taken to
discover parents and children of a given variable Xj ∈ V
is tpc. At lines 3 to 9, the complexity of reconstructing a
skeleton is O(|V |tpc). At lines 11 to 24, the complexity
of orienting the edges recursively by employing Lemma 1
and Lemma 2 is O(2|pc||V |m), where pc is the largest set
of parents and children over all variables in V . In conclu-
sion, the total complexity of EMIDGS in the worst case is
O(|V | ∗ tpc+ 2|pc||V |m), reduced to O(2m|V |2|pc||pc|2).

Experiments
In this section, we evaluate the performance of the proposed
EMIDGS algorithm with the existing algorithms under d-
ifferent conditions. To our best knowledge, the only ap-
proach for finding a global causal structure from multiple
high-dimensional interventional datasets is a graph-merging
method proposed by He&Geng (He and Geng 2016), so we
compare it with our algorithm. In addition, in order to enrich
the experiments, we add two additional baseline algorithms.
One is called baseline-MMHC, which learns a causal DAG
from each interventional dataset by MMHC and then merges
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Net Nodes Arcs Parameters Average |MB| Type
child 20 25 230 3.00 Medium

insurance 27 52 984 5.19 Medium
alarm 37 46 509 3.51 Medium

win95pts 76 112 574 5.92 Large
munin 186 273 15622 3.81 Very Large

link 724 1125 14211 4.80 Very Large

Table 1: Description of benchmark BNs.

them. And another is called MIMB-GS. It is constructed to
obtain a global causal DAG by extending MIMB (Yu, Liu,
and Li 2019), which identifies a Markov blanket (MB) of a
given variable from multiple datasets with unknown inter-
vention targets and describes under what conditions one can
identify the causes of a given variable. The core idea is as
follows. The skeleton is reconstructed by the learned MB of
each variable, and the causes of each variable can be identi-
fied by MIMB.

We select six Bayesian networks (BNs) with the number
of nodes ranges from 20 to 724 as shown in Table ?? to con-
duct multiple types of experiments. In the first experiment,
we randomly select q variables to manipulate where we set
q ∈ {1, 2}, namely mT = 2, and make sure the m sets of
intervention targets are conservative. Moreover, in the set-
ting mT = 2, we conduct four simulations to generate four
types of interventional datasets in each benchmark bayesian
network. The first one is that we run 5 simulations to gener-
ate 5 corresponding post-intervention DAGs and probability
distributions, getting five interventional datasets as a group,
namely mD = 5. The remaining three settings are 10 inter-
ventional datasets as a group, 15 datasets as a group and 20
datasets as a group, and use mD = 10, 15 and 20 to rep-
resent, respectively. Similarly, in the remaining experiments
about the setting of the number of intervention targets, we
set that mT = 4, 6, 8 and 10, respectively. At the same time,
in each experiment, we perform four types of simulation-
s, namely mD = 5, 10, 15 and 20. For each simulation, we
run each of them for 10 times, and each simulation generates
mD datasets, that is, each simulation gets 10∗mD datasets.
Each dataset contains 5000 samples. In all experiments, G2

tests are used for the conditional independence tests. All ex-
periments are conducted on a computer with an AMD Core
A8-6410 2.00 GHz with 4GB RAM.

We evaluate and compare the performance of our
proposed EMIDGS algorithm with other algorithms us-
ing the following metrics: SHD-normalized, reverseEdge-
normalized, missEdge-normalized, extraEdge-normalized,
F1, Precision, Recall and time, where the first seven in-
dicators represent accuracy, and the latter indicator rep-
resents time efficiency. Among the seven indicators, the
smaller the first four indicators, the higher the accura-
cy of the corresponding algorithm. On the contrary, the
larger the latter three indicators, the higher the accura-
cy of the corresponding algorithm. For the first seven in-
dicators representing algorithm accuracy, SHD-normalized
and F1 are two indicators of aggregation. To present the
experimental results clearly, for SHD-normalized, we in-

troduce reverseEdge-normalized, missEdge-normalized and
extraEdge-normalized so that we can see what types of er-
rors broken out each method makes. For F1, we introduce
Precision and Recall to display the results clearly. The ex-
perimental results are shown in Figures 3 and 4. In Fig-
ures 3 and 4, six DAGs, i.e., “child”, “alarm”, “insurance”,
“win95pts”, “munin”, “link” as the labels of horizontal axis,
i.e., ‘C’, ‘A’, ‘In’, ‘W’, ‘M’, ‘L’.

In addition, we conduct experiments with different con-
fidence levels of α = 0.01 to α = 0.1 in each causal
network with fixed values of the other two parameters, i.e.
mT = 10 and mD = 5. And we test mT ∈ {2, 4, 6, 8, 10}
under the conditions: α = 0.01, mD = 5, and mD ∈
{5, 10, 15, 20} under the conditions: α = 0.01, mT =
10. And the following metrics are used: SHD-normalized,
reverseEdge-normalized, missEdge-normalized, extraEdge-
normalized and nTest. The experimental results are shown
in Figures 5, 6, 7, 8, 9 and 10.

Lastly, we evaluate and compare the EMIDPC algorithm
with the MIPC algorithm using the following metrics: F1,
Precision, Recall and nTest. And the experimental results
are shown in Figure 11.

(1) EMIDGS vs. baseline-MMHC and MIMD-GS
Figure 3 shows that the comparison of EMIDGS, MIMB-

GS, and baseline-MMHC under the conditions: α = 0.01,
mT = 10 andmD = 5. We observe that EMIDGS is signif-
icantly better than the other two algorithms in accuracy ex-
cept “child”. Especially in large-sized networks, EMIDGS
has a significant improvement. That is to say, the lower
SHD-normalized and the higher F1 show that the effective-
ness of EMIDGS in reducing the false discovery rate in high-
dimensional data. In contrast, the baseline-MMHC algorith-
m directly integrates multiple graphs, accumulating more
contradictory information especially in large-sized networks
as “win95pts”, “munin” and “link”. For the MIMD-GS al-
gorithm, the MIPC algorithm adopted by MIMB-GS is rel-
atively inferior in accuracy, compared with EMIDPC pro-
posed by this paper. In other words, the causal skeleton con-
structed by MIMB-GS is relatively inferior than EMIDGS.

In addition, Figure 3 shows that the time efficiency of the
EMIDGS algorithm is relatively acceptable in the first five
networks, but the time efficiency of EMIDGS is worse than
that of the baseline-MMHC algorithm on “link”. In gener-
al, our algorithm does effectively reduce the contradictory
information of multiple graphs when the time efficiency is
acceptable, especially in large-sized networks.

(2) EMIDGS vs. the HeGeng algorithm
Figure 4 shows that the comparison of EMIDGS and the

HeGeng algorithm under the conditions: α = 0.01, mT =
10 and mD = 5. Since the outputs of the “win95pts”,
“munin”, “link” cannot be generated in 72 hours by the
HeGeng algorithm, we only compare it with our algorithm in
three medium-sized networks as shown in Figure 4. Figure 4
shows that EMIDGS has a greater improvement in efficiency
and accuracy, compared with the HeGeng algorithm.

(3) Different values of three parameters
The results of the different values of the three parame-

ters of EMIDGS on six networks as shown in Figures 5, 6,
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Figure 3: Comparison of EMIDGS, MIMB-GS, and
baseline-MMHC under the conditions: α = 0.01, mT = 10
and mD = 5.
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Figure 4: Comparison of EMIDGS and the HeGeng algorith-
m under the conditions: α = 0.01, mT = 10 and mD = 5.

7, 8, 9 and 10. Figures 5, 6, 7 and 10 show that EMIDGS
achieves relatively better performance in accuracy and effi-
ciency when α = 0.01 than that obtained with other values
of α on “child”, “insurance”, “alarm” and “link”. And in the
remaining networks, different values of have a little effect on
the change in accuracy as Figures 8 and 9 (i.e., “win95pts”
and “munin”). In addition, we also observe that the gap of
the accuracy among multiple situations is relatively large in
medium-sized networks. However the gap is small in large-
sized networks. Considering accuracy and time, α = 0.01 is
more appropriate.

For mT , referring Figures 6, 8, 9 and 10, we observe that
there is no significant difference in the accuracy of the exper-
imental results obtained with different values of mT . How-
ever, Figures 5 and 7 show that EMIDGS achieves relatively
better performance in accuracy when mT = 2 than that ob-
tained with other values of mT on “child” and “alarm”. In
addition, referring Figures 5-10, we observe that the time
efficiency of EMIDGS is diminishing, with mT increasing
and mT ∈ {2, 4, 6, 8, 10}, except “link”. That is to say, the
efficiency of the results obtained whenmT = 10 is relatively
better than that others in many networks. Considering accu-
racy and time, mT = 10 is more appropriate.

Also, we analyze the performance of different number-
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Figure 5: The experimental results of EMIDGS under differ-
ent values of three parameters on “child”.
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Figure 6: The experimental results of EMIDGS under differ-
ent values of three parameters on “insurance”.

s of datasets in each group. Figures 6, 7, 8 and 10 show
that EMIDGS has the best performance in terms of accuracy
and efficiency when mD = 5. In Figures 5 and 9, although
the accuracy of experimental results when mD = 20 is s-
lightly higher than that of mD = 5, the difference is not
obvious. And the efficiency of the result corresponding to
mD = 5 is high. Moreover, referring Figures 5-10, the time
consumed by EMIDGS increases as the value of mD in-
creases (mD ∈ {5, 10, 15, 20}). In the “link” network, the
time assumed by EMIDGS when mD = 20 approximate-
ly reaches 107. Considering accuracy and time, mD = 5 is
more appropriate. However, mD = 20 is appropriate if one
is more concerned with accuracy.

(4) EMIDPC vs. MIPC
We evaluate the performance of the proposed EMIDPC

algorithm with the MIPC algorithm proposed by Yu et al.
(Yu, Liu, and Li 2019), using the following metrics: Pre-
cision, Recall, F1 and nTest, where the first three indica-
tors represent accuracy, and the latter indicator represents
time efficiency. Figure 11 shows that the experimental re-
sults of EMIDPC and MIPC under the conditions: α = 0.01,
mT = 10 and mD = 5. The comparisons show that EMID-
PC has higher performance in accuracy than MIPC, espe-
cially in large-sized networks. However, the time efficiency
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Figure 7: The experimental results of EMIDGS under differ-
ent values of three parameters on “alarm”.
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Figure 8: The experimental results of EMIDGS under differ-
ent values of three parameters on “win95pts”.
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Figure 9: The experimental results of EMIDGS under differ-
ent values of three parameters on “munin”.

of EMIDPC is relatively lower than MIPC.

Conclusion and Future Work
In this paper, we proposed EMIDGS, a novel algorithm for
learning causal structures from multiple high-dimensional
manipulated datasets with unknown targets. EMIDGS re-
constructs a skeleton of a causal DAG by the local learning
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Figure 10: The experimental results of EMIDGS under dif-
ferent values of three parameters on “link”.
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Figure 11: Comparison of MIPC and our proposed EMIDPC
under the conditions: α = 0.01, mT = 10 and mD = 5.

algorithm, i.e., EMIDPC proposed in this paper. And it ori-
ents as many edges as possible by two Lemmas proposed in
this paper, getting an I-MEC, which includes more causal in-
formation. We proved that the learned I-MEC is theoretically
correct and the combination of multiple graphs reduces the
search space, leading a improvement in efficiency. In addi-
tion, experimental results validated the effectiveness of our
algorithm in reducing the false discovery rate of multiple
high-dimentional interventional datasets. In the future, we
focus on learning the local causal structure from soft inter-
ventions with unknown targets.
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Hauser, A.; and Bühlmann, P. 2012. Characterization and
greedy learning of interventional Markov equivalence class-
es of directed acyclic graphs. Journal of Machine Learning
Research, 2409–2464.
He, Y.-B.; and Geng, Z. 2016. Causal network learning from
multiple interventions of unknown manipulated targets. arX-
iv preprint arXiv:1610.08611.
Huang, B.; Zhang, K.; Zhang, J.; Ramsey, J.; Sanchez-
Romero, R.; Glymour, C.; and Schölkopf, B. 2020. Causal
Discovery from Heterogeneous/Nonstationary Data. Jour-
nal of Machine Learning Research 21, 21: 1–53.
M, R.-C.; B, S.; and Turner R, P. J. 2018. Invariant models
for causal transfer learning. Journal of Machine Learning
Research, 19(1): 1309– 1342.
Meinshausen, N.; Hauser, A.; Mooij, J. M.; Peters, J.; Ver-
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