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Abstract

Recently, deep reinforcement learning (RL) has proven its
feasibility in solving combinatorial optimization problems
(COPs). The learning-to-rank techniques have been studied
in the field of information retrieval. While several COPs can
be formulated as the prioritization of input items, as is com-
mon in the information retrieval, it has not been fully ex-
plored how the learning-to-rank techniques can be incorpo-
rated into deep RL for COPs. In this paper, we present the
learning-to-rank distillation-based COP framework, where a
high-performance ranking policy obtained by RL for a COP
can be distilled into a non-iterative, simple model, thereby
achieving a low-latency COP solver. Specifically, we employ
the approximated ranking distillation to render a score-based
ranking model learnable via gradient descent. Furthermore,
we use the efficient sequence sampling to improve the infer-
ence performance with a limited delay. With the framework,
we demonstrate that a distilled model not only achieves com-
parable performance to its respective, high-performance RL,
but also provides several times faster inferences. We evalu-
ate the framework with several COPs such as priority-based
task scheduling and multidimensional knapsack, demonstrat-
ing the benefits of the framework in terms of inference latency
and performance.

Introduction
In the field of computer science, it is considered challenging
to tackle combinatorial optimization problems (COPs) that
are computationally intractable. While numerous heuris-
tic approaches have been studied to provide polynomial-
time solutions, they often require in-depth knowledge
on problem-specific features and customization upon the
changes of problem conditions. Furthermore, several heuris-
tic approaches such as branching (Chu and Beasley 1998)
and tabu-search (Glover 1989) to solving COPs explore
combinatorial search spaces extensively, and thus render
themselves limited in large scale problems.

Recently, deep learning techniques have proven their fea-
sibility in addressing COPs, e.g., routing optimization (Kool,
van Hoof, and Welling 2019), task scheduling (Lee et al.
2020), and knapsack problem (Gu and Hao 2018). For deep
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learning-based COP approaches, it is challenging to build
a training dataset with optimal labels, because many COPs
are computationally infeasible to find exact solutions. Rein-
forcement learning (RL) is considered viable for such prob-
lems as neural architecture search (Zoph and Le 2017), de-
vice placement (Mirhoseini et al. 2017), games (Silver et al.
2017) where collecting supervised labels is expensive or in-
feasible.

As the RL action space of COPs can be intractably large
(e.g., 100! possible solutions for ranking 100-items), it is
undesirable to use a single probability distribution on the
whole action space. Thus, a sequential structure, in which a
probability distribution of an item to be selected next is it-
eratively calculated to represent a one-step action, becomes
a feasible mechanism to establish RL-based COP solvers,
as have been recently studied in (Bello et al. 2017; Vinyals
et al. 2019). The sequential structure is effective to produce
a permutation comparable to optimal solutions, but it often
suffers from long inference time due to its iterative nature.
Therefore, it is not suitable to apply these approaches to the
field of mission critical applications with strict service level
objectives and time constraints. For example, task placement
in SoC devices necessitates fast inferences in a few millisec-
onds, but the inferences by a complex model with sequential
processing often take a few seconds, so it is rarely feasible to
employ deep learning-based task placement in SoC (Ykman-
Couvreur et al. 2006; Shojaei et al. 2009).

In this paper, we present RLRD, an RL-to-rank distilla-
tion framework to address COPs, which enables the low-
latency inference in online system environments. To do so,
we develop a novel ranking distillation method and focus on
two COPs where each problem instance can be treated as
establishing the optimal policy about ranking items or mak-
ing priority orders. Specifically, we employ a differentiable
relaxation scheme for sorting and ranking operations (Blon-
del et al. 2020) to expedite direct optimization of ranking
objectives. It is combined with a problem-specific objec-
tive to formulate a distillation loss that corrects the rankings
of input items, thus enabling the robust distillation of the
ranking policy from sequential RL to a non-iterative, score-
based ranking model. Furthermore, we explore the efficient
sampling technique with Gumbel trick (Jang, Gu, and Poole
2017; Kool, van Hoof, and Welling 2020) on the scores gen-
erated by the distilled model to expedite the generation of
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Figure 1: Overview of RLRD framework

sequence samples and improve the model performance with
an inference time limitation.

Through experiments, we demonstrate that a distilled
model by the framework achieves the low-latency inference
while maintaining comparable performance to its teacher.
For example, compared to the high-performance teacher
model with sequential RL, the distilled model makes infer-
ences up to 65 times and 3.8 times faster, respectively for
the knapsack and task scheduling problems, while it shows
only about 2.6% and 1.0% degradation in performance, re-
spectively. The Gumbel trick-based sequence sampling im-
proves the performance of distilled models (e.g., 2% for the
knapsack) efficiently with relatively small inference delay.
The contributions of this paper are summarized as follows.

• We present the learning-based efficient COP framework
RLRD that can solve various COPs, in which a low-
latency COP model is enabled by the differentiable rank-
ing (DiffRank)-based distillation and it can be boosted by
Gumbel trick-based efficient sequence sampling.

• We test the framework with well-known COPs in sys-
tem areas such as priority-based task scheduling in real-
time systems and multidimensional knapsack in resource
management, demonstrating the robustness of our frame-
work approach to various problem conditions.

Our Approach
In this section, we describe the overall structure of the
RLRD framework with two building blocks, the deep RL-
based COP model structure, and the ranking distillation pro-
cedure.

Framework Structure
In general, retraining or fine-tuning is needed to adapt a deep
learning-based COP model for varying conditions on pro-

duction system requirements. The RLRD framework sup-
ports such model adaptation through knowledge distillation.
As shown in Figure 1, (1) for a COP, a learning-to-rank
(teacher) policy in the encoder-decoder model is first trained
by sequential RL, and (2) it is then transferred through the
DiffRank-based distillation to a student model with non-
iterative ranking operations, according to a given deploy-
ment configuration, e.g., requirements on low-latency infer-
ence or model size. For instance, a scheduling policy is es-
tablished by RL to make inferences on the priority order of a
set of tasks running on a real-time multiprocessor platform,
and then it is distilled into a low-latency model to make same
inferences with some stringent delay requirement.

Reinforcement Learning-to-Rank
Here, we describe the encoder-decoder structure of our RL-
to-Rank model for COPs, and explain how to train it. Our
teacher model is based on a widely adopted attentive struc-
ture (Kool, van Hoof, and Welling 2019). In our model rep-
resentation, we consider parameters θ (e.g., Wθx + bθ for
Affine transformation of vector x), and we often omit them
for simplicity. In an RL-to-Rank model, an encoder takes the
features of N -items as input, producing the embeddings for
the N -items, and a decoder conducts ranking decisions it-
eratively on the embeddings, yielding a permutation for the
N -items. This encoder-decoder model is end-to-end trained
by RL.

COP Encoder. In the encoder, each item xi ∈ Rd con-
taining d features is first converted into vector h(0)i through
the simple Affine transformation, h(0)i = Wxi + b. Then,
for N -items, (h × N)-matrix, H(0) = [h

(0)
1 , · · · , h(0)N ]

is passed into the L-attention layers, where each attention
layer consists of a Multi-Head Attention layer (MHA) and
a Feed Forward network (FF). Each sub-layer is computed
with skip connection and Batch Normalization (BN). For
l ∈ {1, · · · , L}, H(l) are updated by

H(l) = BN(l)(X + FF(l)(X)),

X = BN(l)(H(l−1) + MHA(H(l−1)))
(1)

where

MHA(X) =WG(AM1(X)⊙ · · · ⊙ AMdh
(X)), (2)

⊙ is the concatenation of tensors, dh is a fixed positive inte-
ger, and WG is a learnable parameter. AM is given by

AMj(X) =WV (X)Softmax(
1

dh
(WK(X)TWQ(X)))

(3)
where WQ,WK and WV denote the layer-wise parameters
for query, key and value (Vaswani et al. 2017). The result
output H(L) in (1) is the embedding for the input N -items,
which are used as input to a decoder in the following.

Ranking Decoder. With the embeddings H(L) for N -
items from the encoder, the decoder sequentially se-
lects items to obtain an N -sized permutation ϕ =
[ϕ1, ϕ2, . . . , ϕN ] where distinct integers ϕi ∈ {1, 2, . . . , N}
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correspond to the indices of the N -items. That is, item ϕ1 is
selected first, so it is assigned the highest ranking (priority),
and item ϕ2 is assigned the second, and so on. Specifically,
the decoder establishes a function to rank N -items stochas-
tically,

P(ϕ|H(L)) =
N∏
t=2

P(ϕt|ϕ1, . . . , ϕt−1, H
(L)) (4)

where P(ϕt|ϕ1, . . . , ϕt−1, H
(L)) represents a probability

that item ϕt is assigned the t th rank.
From an RL formulation perspective, in (4), the informa-

tion aboutN -items (H(L)) including ranking-assigned items
[ϕ1, . . . , ϕt−1] until t corresponds to state ot, and select-
ing ϕt corresponds to action at. That is, a state contains a
partial solution over all permutations and an action is a one-
step inference to determine a next ranked item. Accordingly,
the stochastic ranking function above can be rewritten as θ-
parameterized policy πθ for each timestep t.

πθ(ot, at) = P(at | ot) = P(ϕt|ϕ1, . . . , ϕt−1, H
(L)) (5)

This policy is learned based on problem-specific reward sig-
nals. To establish such policy πθ via RL, we formulate a
learnable score function of item xi upon state ot, which is
used to estimate P(at = i | ot), e.g.,

SCOREH(L),l(t−1)(xi)

=

{
10 ∗ tanh

(
Att(x(g), H(L))i

)
if i /∈ [ϕ1, · · · , ϕt−1)

−∞ otherwise
(6)

where l(t−1) is the embedding of an item (xϕt−1
) selected at

timestep t− 1, and x(g) is a global vector obtained by

x(g) = l(t−1) ⊙ Att(l(t−1), H(L)). (7)

Note that l0 is randomly initialized. To incorporate the
alignment between l(t−1) and H(L) in x(g), we use Atten-
tion (Vaswani et al. 2017),

Att(q, Y ) =
N∑
i=1

αiyi, αi = Softmax(w1, · · · , wN ),

wi = VA tanhWA[yi ⊙ q]

(8)

for query q and vectors Y = [y1, · · · , yN ], where VA and
WA are learnable parameters. Finally, we have the policy
πθ that calculates the ranking probability that the ith item is
selected next upon state ot.

πθ(ot, at = i) = P(at = i | ot) =
eSCORE(xi)∑N

k=1 e
SCORE(xk)

. (9)

Training. For end-to-end training the encoder-decoder,
we use the REINFORCE algorithm (Williams 1992), which
is effective for episodic tasks, e.g., problems formulated as
ranking N -items. Suppose that for a problem of N -items,
we obtain an episode with

T (θ) = (s1, a1, r1, · · · , sN , aN , rN ) (10)

that are acquired by policy πθ, where s, a and r are state,
action and reward samples. We set the goal of model training
to maximize the expected total reward by πθ,

J(θ) = Eπθ

(
N∑
t=1

γtrt

)
(11)

where γ is a discount rate, and use the policy gradient ascent.

θ ← θ + λ
N∑
t=1

∇θ log πθ(ot, at) (Gt − b(t)) (12)

Note that Gt =
∑N

k=t γ
k−trk+1 is a return, λ is a learning

rate, and b(t) is a baseline used to accelerate the convergence
of model training.

Learning-to-Rank Distillation
In the RLRD framework, the ranking decoder repeats N -
times of selection to rank N -items through its sequential
structure. While the decoder structure is intended to extract
the relational features of items that have not been selected,
the high computing complexity of iterative decoding renders
difficulties in the application of the framework to mission-
critical systems. To enable fast inferences without significant
degradation in model performance, we employ knowledge
distillation from an RL-to-rank model with iterative decod-
ing to a simpler model. Specifically, we use a non-iterative,
score-based ranking model as a student in knowledge dis-
tillation, which takes the features of N -items as input and
directly produces a score vector for the N -items as output.
A score vector is used to rank the N -items.

For N -items, the RL-to-rank model produces ranking
vector as supervised label y = [ϕ1, ϕ2, . . . , ϕN ], and by dis-
tillation, the student model learns to produce such a score
vector s maximizing the similarity between y and the cor-
responding ranking of s, say rank(s). For example, given a
score vector s = [2.4, 1.3, 3.0, 0.1] for 4-items, it is sorted
to [3.0, 2.4, 1.3, 0.1], so rank(s) = [2, 3, 1, 4]. The ranking
distillation loss is defined as

L(y, s) = LR (y, rank(s)) (13)

where LR is a differentiable evaluation metric for the sim-
ilarity of two ranking vectors. We use mean squared error
(MSE) for LR, because minimizing MSE of two ranking
vectors is equivalent to maximizing the Spearman-rho cor-
relation of two rankings y and rank(s).

Differentiable Approximated Ranking. To distill with
the loss in (13) using gradient descent, the ranking function
rank needs to be differentiable with non-vanishing gradi-
ent. However, differentiating rank has a problem of vanish-
ing gradient because a slight shift of score s does not usu-
ally affect the corresponding ranking. Thus, we revise the
loss in (13) using an approximated ranking function having
nonzero gradients in the same way of (Blondel et al. 2020).

Consider score s = [s1, · · · , sN ] and N -permutation ϕ
which is a bijection from {1, · · · , N} to itself. A descending
sorted list of s is represented as

sϕ = [sϕ(1), · · · , sϕ(N)] (14)
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where sϕ(1) ≥ · · · ≥ sϕ(N). Accordingly, the ranking func-
tion rank : RN → RN is formalized as

rank(s) = [ϕ−1(1), · · · , ϕ−1(N)] (15)

where ϕ−1 is an inverse of ϕ, which is also a permutation.
For example, consider s = [2.4, 1.3, 3.0, 0.1]. Its descend-
ing sort is [3.0, 2.4, 1.3, 0.1], so we have ϕ(1) = 3, ϕ(2) =
1, ϕ(3) = 2 and ϕ(4) = 4. Accordingly, we have rank(s) =
[2, 3, 1, 4].

To implement the DiffRank, a function r̃kϵ is used, which
approximates rank in a differential way with nonzero gradi-
ents such as

r̃kϵ(s) = ArgMin
{
1

2
∥x +

s
ϵ

2

∥ | x ∈ P(τ)
}
. (16)

Here P(τ) is called a perumutahedron, which is a convex
hull generated by the permutation τ = [N,N − 1, · · · , 1]
with ϵ > 0. As explained in (Blondel et al. 2020), the func-
tion r̃kϵ converges to rank as ϵ → 0, while it always pre-
serves the order of rank(s). That is, given sϕ in (14) and
r̃kϵ(s) = [ψ1, · · · , ψN ], we have ψϕ(1) ≤ · · · ≤ ψϕ(N).

In addition, we also consider a problem-specific loss. For
example, in the knapsack problem, an entire set of items can
be partitioned into two groups, one for selected items and the
other for not selected items. We can penalize the difference
of partitions obtained from label y and target output score s
by the function LP . Finally the total loss is given by

L(y, s) = αLR

(
y, r̃kϵ(s)

)
+ (1− α)LP (y, s) (17)

where α ∈ [0, 1]. The overall distillation procedure is illus-
trated in Algorithm 1.

Here, we present the explicit nonvanishing gradient form
of our ranking loss function LR, where its proof can be
found in Appendix A.

Proposition 1. Fix r = [r1, · · · , rn] ∈ Rn. Let r̃kϵ :
Rn −→ Rn as in (16) and L : Rn −→ R where L(y) =
1
2∥y− r∥22. Let g = L ◦ r̃kϵ,

r̃kϵ(s) = [r̃1, · · · , r̃n], (18)

and ei = r̃i − ri. Then, we have

∂g

∂x
(s) = − I

ϵ
[e1, · · · , en] (19)

@

I−


1
k1

1k1
0 . . . 0

0 1
k2

1k2 . . . 0
...

...
...

...
0 0 . . . 1

km
1km




ϕ

(20)

where @ is a matrix multiplication, k1+· · ·+km = n, 1kj is
a square matrix whose entries are all 1 with size kj×kj , and
ϕ is an n-permutation. Here, for any matrix M , Mϕ denotes
row and column permutation of M according to ϕ.

Algorithm 1: Learning-to-rank distillation
1: Load (teacher) RL policy π
2: Initialize parameter θs of student model
3: Input : Sample batch B and learning rate λs.
4: for 1 ∼ Ns do
5: ∇θs ←− 0.
6: for Itemset I ∈ B do
7: Get rank = {ϕ(1), · · · , ϕ(n)} from π

8: Get score s = {s1, · · · , sn} from student model.
9: Calculate ˜rkϵ(s) = {ψ̃(1), · · · , ψ̃(n)} using (16)

10: Calculate loss J(θs) = L(L, R̃) using (17)
11: ∇θs ←− ∇θs +∇J(θs)
12: end for
13: θs ←− θs + λs∇θs
14: end for

Efficient Sequence Sampling. As explained, we use a
score vector in (14) to obtain its corresponding ranking vec-
tor deterministically. On the other hand, if we treat such a
score vector as an un-normalized log-probability of a cat-
egorical distribution on N -items, we can randomly sample
from the distribution using the score vector without replace-
ment and obtain a ranking vector for the N -items. Here, the
condition of without replacement specifies that the distribu-
tion is renormalized so that it sums up to 1.0 for each time
to sample an item. This N -times drawing and normalization
increases the inference time. Therefore, to compute rankings
rapidly, we exploit Gumbel trick (Gumbel 1954; Maddison,
Tarlow, and Minka 2014).

Given score s, consider the random variable S = s + Z
where

Z = − log (− log(Unif(0, 1))) , (21)

and suppose that S is sorted by ϕ, as in (14). Note that
ϕ(1), ϕ(2), · · · , ϕ(N) are random variables.

Theorem 1. Appendix A in (Kool, van Hoof, and Welling
2020). For each k ∈ {1, 2, · · · , N} ,

P(ϕ(1) = i1, · · · , ϕ(k) = ik) =
k∏

j=1

exp(sil)∑
l∈R∗

j
exp(sl)

(22)

where R∗
j = {1, 2, · · · , N} − {i1, · · · , ij−1}.

This sampling method reduces the complexity to obtain
each ranking vector instance from quadratic (sequentially
sampling each of N -items on a categorical distribution) to
log-linear (sorting a perturbed list) of the number of items
N , improving the efficiency of our model significantly.

Experiments
In this section, we evaluate our framework with multidimen-
sional knapsack problem (MDKP) and global fixed-priority
task scheduling (GFPS) (Davis et al. 2016). The problem de-
tails including RL formulation, data generation, and model
training can be found in Appendix B and C.

8669



N k w α
GLOP Greedy RL RL-S RD RD-G

- Time Gap Time Gap Time Gap Time Gap Time Gap Time

50 3
200 0 100% 0.0060s 97.9% 0.0003s 99.7% 0.0706s 98.8% 2.0051s 97.5% 0.0029s 100.1% 0.0152s

0.9 100% 0.0063s 87.6% 0.0003s 100.2% 0.0675s 104.5% 1.8844s 97.7% 0.0030s 102.2% 0.0154s

500 0 100% 0.0066s 97.8% 0.0003s 99.4% 0.0686s 99.6% 1.9768s 97.4% 0.0029s 99.7% 0.0159s
0.9 100% 0.0064s 81.4% 0.0004s 101.5% 0.0687s 105.4% 1.8840s 97.9% 0.0030s 101.5% 0.0150s

100 10
200 0 100% 0.0950s 101.3% 0.0005s 102.2% 0.4444s 101.9% 12.4996s 100.5% 0.0060s 102.7% 0.0198s

0.9 100% 0.0435s 93.4% 0.0004s 103.2% 0.4443s 106.9% 12.3932s 99.2% 0.0086s 102.6% 0.0222s

500 0 100% 0.1046s 100.9% 0.0005s 100.6% 0.4363s 101.1% 12.3392s 98.9% 0.0088s 101.6% 0.0214s
0.9 100% 0.0436s 90.2% 0.0004s 103.5% 0.4381s 107.1% 12.3211s 100.4% 0.0059s 104.6% 0.0198s

150 15
200 0 100% 0.2494s 102.0% 0.0007s 102.9% 0.6370s 102.8% 17.8975s 100.7% 0.0090s 102.5% 0.0328s

0.9 100% 0.0885s 96.7% 0.0006s 103.4% 0.5380s 106.4% 16.2406s 99.7% 0.0090s 102.3% 0.0290s

500 0 100% 0.2497s 101.8% 0.0007s 99.1% 0.6488s 100.1% 19.4974s 96.6% 0.0093s 98.6% 0.0244s
0.9 100% 0.0425s 92.5% 0.0006s 103.7% 0.5289s 107.0% 14.0924s 100.7% 0.0088s 103.9% 0.0292s

Table 1: The Evaluation of MDKP. For each method, Gap denotes the performance (average achieved value) ratio of the method
to GLOP, and Time denotes the average inference time for a problem instance. N and k denote the number of items and the
size of knapsack resource dimensions, respectively. w denotes the sampling range of item weight on [1, w], and α denotes the
correlation of weight and value of items. The performance is averaged for a testing dataset of 500 item sets.

Multidimensional Knapsack Problem (MDKP)
Given values and k-dimensional weights of N -items, in
MDKP, each item is either selected or not for a knapsack
with k-dimensional capacities to get the maximum total
value of selected items.

For evaluation, we use the performance (the achieved
value in a knapsack) by GLOP implemented in the OR-
tools (Perron and Furnon 2019-7-19) as a baseline. We com-
pare several models in our framework. RL is the RL-to-rank
teacher model, and RD is the distilled student model. RL-S
is the RL model variant with sampling, and RD-G is the RD
model variant with Gumbel trick-based sequence sampling.
In RL-S, the one-step action in (9) is conducted stochasti-
cally, while in RL, it is conducted greedily. For both RL-S
and RD-G, we set the number of ranking sampling to 30 for
each item set, and report the the highest score among sam-
ples. In addition, we test the Greedy method that exploits the
mean ratio of item weight and value.

Model Performance. Table 1 shows the performance in
MDKP, where GAP denotes the performance ratio to the
baseline GLOP and Time denotes the inference time.
• RD shows comparable performance to its respective

high-performance teacher RL, with insignificant degra-
dation of average 2.6% for all the cases. More impor-
tantly, RD achieves efficient, low-latency inferences, e.g.,
23 and 65 times faster inferences than RL for N=50 and
N=150 cases, respectively.

• RD-G outperforms RL by 0.3% on average and also
achieves 4.4 and 20 times faster inferences than RL for
N=50 and N=150 cases, respectively. Moreover, RD-G
shows 2% higher performance than RD, while its infer-
ence time is increased by 3.7 times.

• RL-S shows 1.8% higher performance than RL model.
However, unlike RD-G, the inference time of RL-S is in-
creased linearly to the number of ranking samples (i.e.,
about 30 times increase for 30 samples).

• AsN increases, all methods shows longer inference time,
but the increment gap of GLOP is much larger than RL
and RD. For example, as N increases from 50 to 150

when α=0, the inference time of GLOP is increased by
39 times, while RL and RD shows 9.3 and 3.1 times in-
crements, respectively.

• The performance of Greedy degrades drastically in the
case of α=0.9. This is because the weight-value ratio for
items becomes less useful when the correlation is high.
Unlike Greedy, our models show stable performance for
both high and low correlation cases.

Priority Assignment Problem for GFPS
For a set ofN -periodic tasks, in GFPS, each task is assigned
a priority (an integer from 1 to N ) to be scheduled. GFPS
with a priority order (or a ranking list) can schedule the m
highest-priority tasks in each time slot upon a platform com-
prised of m-processors, with the goal of not incurring any
deadline violation of the periodic tasks.

For evaluation, we need to choose a schedulability test for
GFPS, that determines whether a task set is deemed schedu-
lable by GFPS with a priority order. We target a schedu-
lability test called RTA-LC (Guan et al. 2009; Davis and
Burns 2011) which has been known to perform superior to
the others in terms of covering schedulable task sets. We
compare our models with Audsley’s Optimal Priority As-
signment (OPA) (Audsley 1991, 2001) with the state-of-the-
art OPA-compatible DA-LC test (Davis and Burns 2011),
which is known to have the highest performance compared
to other heuristic algorithms. Same as those in MDKP, we
denote our models as RL, RL-S, RD, and RD-G. For both
RL-S and RD-G, we limit the number of ranking samples to
10 for each task set.

Model Performance. Table 2 shows the performance in
the schedulability ratio of GFPS with respect to different
task set utilization settings on an m-processor platform and
N -tasks.
• Our models all show better performance than OPA, indi-

cating the superiority of the RLRD framework. The per-
formance gap is relatively large on the intermediate uti-
lization ranges, because those ranges can provide more
opportunities to optimize with a better strategy. For ex-
ample, whenm=8,N=64 and Util=6.3, RL and RD show
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m N Util OPA RL RL-S RD RD-G
Ratio Time Ratio Time Ratio Time Ratio Time Ratio Time

4 32

3.0 78.1% 0.3531s 87.5% 0.0616s 89.4% 0.0697s 86.5% 0.0145s 90.1% 0.0263s
3.1 63.5% 0.3592s 74.8% 0.0599s 77.6% 0.0840s 73.8% 0.0139s 78.9% 0.0390s
3.2 44.9% 0.3487s 56.9% 0.0623s 60.1% 0.0991s 56.0% 0.0140s 61.2% 0.0509s
3.3 26.6% 0.3528s 35.7% 0.0621s 38.5% 0.9123s 35.8% 0.0131s 39.2% 0.0620s

6 48

4.4 84.2% 0.4701s 92.5% 0.1021s 94.3% 0.1153s 91.76% 0.0298s 94.3% 0.0406s
4.6 61.9% 0.4600s 78.4% 0.1057s 78.4% 0.1508s 74.6% 0.0308s 79.3% 0.0728s
4.8 33.2% 0.4287s 46.5% 0.1082s 50.4% 0.1967s 45.4% 0.0290s 50.8% 0.1123s
5.0 11.5% 0.3888s 15.7% 0.1010s 18.1% 0.2474s 18.0% 0.0256s 20.2% 0.1615s

8 64

5.7 92.9% 0.6686s 97.8% 0.1437s 98.6% 0.1596s 97.5% 0.0502s 98.5% 0.0537s
6.0 72.9% 0.6460s 86.5% 0.1490s 89.9% 0.2043s 85.0% 0.0364s 88.7% 0.0907s
6.3 37.6% 0.5798s 53.5% 0.1559s 57.5% 0.2800s 52.5% 0.0509s 57.7% 0.1695s
6.6 10.4% 0.4806s 15.1% 0.1488s 17.7% 0.4093s 17.0% 0.0390s 19.6% 0.2715s

Table 2: The Evaluation of GFPS. For each method, Ratio denotes the performance in the schedulability ratio
( num of schedulable task sets

num. of task sets ), and Time denotes the average inference time for a problem instance. m and N denote the number
of processors and the number of tasks, respectively, i.e., scheduling N -tasks on an m-processor platform. Util denotes the task
set utilization, i.e., the sum of task utilization (

∑ task exe. time
task period ). The performance is averaged for a testing dataset of 5,000 task

sets.

15.9% and 11.9% higher schedulability ratio than OPA,
respectively, while when m=8, N=64 and Util=5.7, their
gain is 4.9% and 4.6%, respectively.

• The performance difference of RD and its teacher RL is
about 1% on average, while the inference time of RD
is decreased (improved) by 3.8 times. This clarifies the
benefit of the ranking distillation.

• As the utilization (Util) increases, the inference time of
RL-S and RD-G becomes longer, due to multiple execu-
tions of the schedulability test up to the predefined limit
(i.e., 10 times). On the other hand, the inference time of
OPA decreases for large utilization; the loop of OPA is
terminated when a task cannot satisfy its deadline with
the assumption that other priority-unassigned tasks have
higher priorities than that task.

• RD-G shows comparable performance to, and often
achieves slight higher performance than RL-S. This is the
opposite pattern of MDKP where RL-S achieves the best
performance. While direct comparison is not much valid
due to different sampling methods, we notice the possi-
bility that a distilled student can perform better than its
teacher for some cases, and the similar patterns are ob-
served in (Tang and Wang 2018; Kim and Rush 2016).

Analysis on Distillation
Effects of Iterative Decoding. To verify the feasibility
of distillation from sequential RL to a score-based ranking
model, we measure the difference of the outputs by iterative
decoding and greedy sampling. In the case when the decoder
generates the ranking distribution at timestep t and takes ac-
tion at = i as in (9), by masking the ith component of the
distribution and renormalizing it, we can obtain a renormal-
ized distribution PRE. In addition, consider another proba-
bility distribution PDE generated by the decoder at t+ 1.

Figure 2 illustrates the difference of the distributions in
terms of KL-divergence on three specific COPs, previously

+1 +3 +5
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0

0.5

1

KL
-D
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Figure 2: The KL divergence at different timesteps t and
t + δ is used to estimate the difference of decoder driven
ranking distribution (PDE) and renormalized ranking distri-
bution (PRE), where time intervals δ ∈ {1, 3, 5}. Scales are
normalized.

explained MDKP and GFPS as well as Traveling Salesman
Problem (TSP). As shown, MDKP and GFPS maintain a low
divergence value, implying that the ranking result of decod-
ing with many iterations can be approximated by decoding
with no or few iterations. Unlike MDKP and GFPS, TSP
shows a large divergence value. This implies that many de-
coding iterations are required to obtain an optimal path. In-
deed, in TSP, we obtain good performance by RL (e.g, 2%
better than a heuristic method), but we hardly achieve com-
parable performance to RL when we test RD. The experi-
ment and performance for TSP can be found in Appendix
D.

Effects of Distillation Loss. To evaluate the effectiveness
of DiffRank-based distillation, we implement other ranking
metrics such as a pairwise metric in (Burges et al. 2005) and
a listwise metric in (Cao et al. 2007) and test them in the
framework as a distillation loss.
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N k w α RD Pairwise Listwise

50 5 200 0 100% 99.4% 69.8%
0.9 100% 99.1% 98.5%

100 10 200 0 100% 98.8% 80.1%
0.9 100% 100.1% 99.2%

150 15 200 0 100% 95.4% 86.8%
0.9 100% 99.6% 99.6%

Table 3: Ranking Loss Comparison in MDKP.

m N Util RD Pairwise Listwise
4 32 3.1 100% 90.1% 72.8%
6 48 4.6 100% 91.3% 59.6%
8 64 6.0 100% 91.6% 49.2%

Table 4: Ranking Loss Comparison in GFPS.

Table 3 and 4 show the performance in MDKP and GFPS,
respectively, achieved by different distillation loss func-
tions, where RD denotes our distilled model trained with
DiffRank-based distillation loss, and the performance of the
other two is represented as the ratio to RD. Note that they all
use the same RL model as a teacher in this experiment.

As shown, RD achieves consistently better performance
than the others for most cases. Unlike RD, the other methods
commonly show data-dependent performance patterns. The
pairwise method (with pairwise distillation loss) achieves
performance similar to or slightly lower than RD in MDKP
but shows much lower performance than RD in GFPS. The
listwise method shows the worst performance for many
cases in both MDKP and GFPS except for the cases of
α = 0.9 in MDKP. These results are consistent with the im-
plication in Figure 2 such that GFPS has larger divergence
than MDKP and thus GFPS is more difficult to distill, giving
a large performance gain to RD.

Related Work
Advanced deep neural networks combined with RL algo-
rithms showed the capability to address various COPs in a
data-driven manner with less problem-specific customiza-
tion. In (Bello et al. 2017), the pointer network was intro-
duced to solve TSP and other geometric COPs, and in (Kool,
van Hoof, and Welling 2019), a transformer model was
incorporated for more generalization. Besides the pointer
network, a temporal difference based model showed posi-
tive results in the Job-Shop problem (Zhang and Dietterich
1995), and deep RL-based approaches such as Q-learning
solvers (Afshar et al. 2020) were explored for the knap-
sack problem (Afshar et al. 2020). Several attempts have
been also made to address practical cases formulated in the
knapsack problem, e.g., maximizing user engagements un-
der business constraints (Agarwal et al. 2015; Gupta et al.
2016).

Particularly, in the field of computer systems and resource
management, there have been several works using deep RL
to tackle system optimization under multiple, heterogeneous
resource constraints in the form of COPs, e.g., cluster re-
source management (Mao et al. 2016, 2019), compiler op-

timization (Chen et al. 2018). While we leverage deep RL
techniques to address COPs in the same vein as those prior
works, we focus on efficient, low-latency COP models.

The ranking problems such as prioritizing input items
based on some scores have been studied in the field of in-
formation retrieval and recommendation systems. A neural
network based rank optimizer using a pairwise loss func-
tion was first introduced in (Burges et al. 2005), and other
ranking objective functions were developed to optimize rel-
evant metrics with sophisticated network structures. For ex-
ample, Bayesian Personalized Ranking (Rendle et al. 2009)
is known to maximize the AUC score of given item rankings
with labeled data. However, although these approaches can
bypass the non-differentiability of ranking operations, the
optimization is limited to some predefined objectives such
as NDCG or AUC; thus, it is difficult to apply them to COPs
because the objectives do not completely align with the COP
objectives. To optimize arbitrary objectives involving non-
differentiable operations such as ranking or sorting, several
works focused on smoothing nondifferentiable ranking op-
erations (Grover et al. 2019; Blondel et al. 2020). They are
commonly intended to make arbitrary objectives differen-
tiable by employing relaxed sorting operations.

Knowledge distillation based on the teacher-student
paradigm has been an important topic in machine learning to
build a compressed model (Hinton, Vinyals, and Dean 2015)
and showed many successful practices in image classifica-
tion (Touvron et al. 2021) and natural language process-
ing (Kim and Rush 2016; Jiao et al. 2020). However, knowl-
edge distillation to ranking models has not been fully stud-
ied. A ranking distillation for recommendation system was
introduced in (Tang and Wang 2018), and recently, a gen-
eral distillation framework RankDistil (Reddi et al. 2021)
was presented with several loss functions and optimization
schemes specific to top-K ranking problems. These works
exploited pairwise objectives and sampling based heuristics
to distill a ranking model, but rarely focused on arbitrary
objectives and sequential models, which are required to ad-
dress various COPs. The distillation of sequential models
was investigated in several works (Kim and Rush 2016; Jiao
et al. 2020). However, to the best of our knowledge, our
work is the first to explore the distillation from sequential
RL models to score-based ranking models.

Conclusion

In this paper, we presented a distillation-based COP frame-
work by which an efficient model with high-performance
is achieved. Through experiments, we demonstrate that it is
feasible to distill the ranking policy of deep RL to a score-
based ranking model without compromising performance,
thereby enabling the low-latency inference on COPs.

The direction of our future work is to adapt our RL-based
encoder-decoder model and distillation procedure for vari-
ous COPs with different consistency degrees between em-
beddings and decoding results and to explore meta learning
for fast adaptation across different problem conditions.
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