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Abstract
Incomplete multi-view clustering (IMVC) is an important un-
supervised approach to group the multi-view data containing
missing data in some views. Previous IMVC methods suf-
fer from the following issues: (1) the inaccurate imputation
or padding for missing data negatively affects the clustering
performance, (2) the quality of features after fusion might
be interfered by the low-quality views, especially the inaccu-
rate imputed views. To avoid these issues, this work presents
an imputation-free and fusion-free deep IMVC framework.
First, the proposed method builds a deep embedding fea-
ture learning and clustering model for each view individually.
Our method then nonlinearly maps the embedding features
of complete data into a high-dimensional space to discover
linear separability. Concretely, this paper provides an imple-
mentation of the high-dimensional mapping as well as shows
the mechanism to mine the multi-view cluster complemen-
tarity. This complementary information is then transformed
to the supervised information with high confidence, aiming
to achieve the multi-view clustering consistency for the com-
plete data and incomplete data. Furthermore, we design an
EM-like optimization strategy to alternately promote feature
learning and clustering. Extensive experiments on real-world
multi-view datasets demonstrate that our method achieves su-
perior clustering performance over state-of-the-art methods.

Introduction
Data often has multiple views collected from diverse sources
in practical applications, such as classification (Liu, Li, and
Zhang 2016), community detection (Cao et al. 2019), di-
mensionality reduction (Liu et al. 2017), and cross-modal
retrieval (Xu et al. 2020; Wei et al. 2021). Multi-view clus-
tering is an important unsupervised approach, aiming to im-
prove the model effectiveness by mining the complemen-
tary information hidden in multi-view data. Recently, many
multi-view clustering methods have been proposed (Tao
et al. 2017; Li et al. 2019; Peng et al. 2019; Tang et al.
2020; Chen et al. 2020; Huang et al. 2021; Xu et al. 2021b).
These methods mainly deal with the complete multi-view
data, where the information of all views is observed.

However, the information of multi-view data might be in-
complete in some views, as known as incomplete multi-view
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data (Li, Jiang, and Zhou 2014; Xu, Tao, and Xu 2015). For
example, different medical tests of a patient can be treated as
different views, where cheap medical tests are easily avail-
able and expensive ones are often missing due to price. Im-
ages and texts are two views to describe scenes, but only
some images have textual captions. The incomplete multi-
view data inevitably makes existing multi-view clustering
methods limited and inapplicable. To this end, an increas-
ing attention is paid to partial multi-view clustering or in-
complete multi-view clustering (IMVC) problems (Rai et al.
2016; Wang et al. 2018; Ye et al. 2018; Huang et al. 2020).

In the literature, existing IMVC methods can be cate-
gorized into two groups, i.e., traditional methods and deep
methods. Traditional IMVC methods usually adopt zero or
mean values to pad missing data (Wen et al. 2021) firstly, and
then design specific machine learning techniques to conduct
multi-view clustering, such as non-negative matrix factor-
ization methods (Li, Jiang, and Zhou 2014; Hu and Chen
2019), subspace learning methods (Kang et al. 2020; Liu
et al. 2021a), kernel methods (Guo and Ye 2019; Liu et al.
2021b), and graph methods (Rai et al. 2016; Li, Wan, and He
2021). Nevertheless, traditional IMVC methods are limited
in their representation capability and high complexity (Guo
and Ye 2019). Recently, deep IMVC methods have gradually
been attracting attentions due to their powerful generaliza-
tion capability and scalability. Deep IMVC methods often
utilize the imputation strategies to infer the possible values
for missing data before conducting multi-view clustering.
For instance, (Xu et al. 2019a; Wang et al. 2021) proposed
to take advantage of generative adversarial networks to gen-
erate desired data for the missing data. (Lin et al. 2021) de-
signed to recover the missing data with contrastive learning.

Although existing IMVC methods achieve important
progress by padding missing data with imputation strategies,
they have at least two issues. On the one hand, the effec-
tiveness of imputation strategies depends on the quality of
imputed data. It is difficult to correctly estimate the missing
data based on the observed data, especially when the num-
ber of missing data is large. Moreover, it is also knotty to
measure the quality of the imputation as the ground truth
of the missing data is unknown. On the other hand, existing
IMVC methods usually explore the complementary infor-
mation among multi-view data by the fusion process. For in-
stance, (Guo and Ye 2019) excavated the complementary in-
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Figure 1: The framework of DIMVC. For the v-th view, the encoder fv and decoder f−1v learn the embedding features Zv , from
which the mappingMv predicts the cluster assignments Qv . The high-dimensional nonlinear mapping is proposed to obtain
the linearly separable features H. The mappingM aims to generate supervised information P with high confidence. For all
views, P-step mines their complementary information by optimizing Lcom. Z-step achieves the feature learning and clustering
consistency across multiple views by optimizing {Lv

rec + Lv
con}Vv=1.

formation by fusing multiple similarity matrices. (Wen et al.
2020; Wang et al. 2021) pointed out to utilize fusion lay-
ers to mine the complementary information. As some views
might be inherently of low quality or inaccurately imputed,
they will negatively affect the fusion process.

In this paper, we propose an imputation-free and fusion-
free deep IMVC framework (named DIMVC) to address the
aforementioned issues. That is, the missing data does not
need to be imputed or padded and the cluster assignments
do not depend on the fusion process of multiple views. To
fulfill this, there are two crucial challenges to be solved, i.e.,
(i) a new strategy needs to be developed to explore comple-
mentary information in the fusion-free model, and (ii) it is
difficult to obtain consistent cluster assignments for both the
complete data and incomplete data without imputation.

We illustrate the framework of our proposed DIMVC in
Figure 1. More specifically, we build an individual model on
all observed data for each view. Each model consists of an
autoencoder and a clustering mapping. Based on our obser-
vation that the complementary information across multiple
views can be described by nonlinear mappings, we tackle the
challenge (i) by a high-dimensional mapping. Concretely,
the embedding features of the complete multi-view data are
nonlinearly projected into a concatenated weighted feature
space, where the high-separability view is assigned with a
high weight. Intuitively, the high-separability view means
that there are well-separated cluster structures in the fea-
tures. Moreover, we show that the linearly separable cluster
information can be transferred to the high-dimensional fea-
tures, called multi-view cluster complementarity. This com-
plementary cluster information is then transformed to su-
pervised information with high confidence, aiming to have
consistent cluster assignments for all views, i.e., solving the
challenge (ii). In addition, we present an EM-like optimiza-

tion strategy, including P-step and Z-step, to alternately pro-
mote feature learning and clustering.

Different from existing traditional and deep IMVC meth-
ods, our contributions can be summarized as follows:

• We propose DIMVC, a novel deep IMVC method with
an imputation-free and fusion-free framework, which can
avoid the noise caused by inaccurate imputation and al-
leviate the disturbance from the views with low quality.

• We propose to mine the complementary information in
the high-dimensional feature space via a nonlinear map-
ping of multiple views. Moreover, we show the mecha-
nisms to achieve the multi-view cluster complementarity
and the multi-view clustering consistency.

• We design an alternate (EM-like) optimization strat-
egy to effectively optimize the proposed deep IMVC
framework. Extensive experiments demonstrate that our
method achieves superior clustering performance, com-
pared to state-of-the-art IMVC methods.

Method
Notations. Given an incomplete multi-view dataset of N
samples {Xv ∈ RNv×Dv}Vv=1 , V is the number of views.
For the v-th view, Dv is the dimensionality of samples and
Nv represents the number of samples, whereNv ≤ N due to
missing data. K is the number of categories to be clustered.
We denote the samples with complete data as a set X .

Deep Model of Feature Learning and Clustering
Firstly, we introduce the feature learning and clustering
model of each view, i.e., Model #1, #2, . . . , #V in Figure 1.

Deep autoencoder can capture salient features of the data
and has been applied in many unsupervised fields (Feng,
Wang, and Li 2014; Song et al. 2018; Xu et al. 2019b; Zhang
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et al. 2020; Cao et al. 2020; Lin et al. 2021). Therefore, we
employ autoencoders to convert heterogeneous multi-view
data into clustering-friendly embedding features. For the v-
th view, the embedding features denoted as Zv are learned
by the encoder and decoder. The encoder is fv(Xv; θv) :
Xv ∈ RNv×Dv 7−→ Zv ∈ RNv×dv and the decoder is
f−1v (Zv;φv) : Zv ∈ RNv×dv 7−→ X̂v ∈ RNv×Dv , where
dv is the dimensionality of embedding features, θv and φv
are the learnable parameters of autoencoder network. The
reconstruction loss between Xv and X̂v of all views is

Lrec =
V∑

v=1

Lv
rec =

V∑
v=1

∥∥Xv − f−1v (Zv)
∥∥2
F

=
V∑

v=1

Nv∑
i=1

∥∥xv
i − f−1v (fv(x

v
i ))
∥∥2
2
.

(1)

In order to obtain clustering predictions, for each view,
we utilize a parameterized mapping to obtain soft cluster
assignments Qv , i.e., Mv(Z

v;Uv) : Zv ∈ RNv×dv 7−→
Qv ∈ RNv×K , where Uv = [uv

1;u
v
2; . . . ;u

v
K ] ∈ RK×dv

represent the learnable parameters. Concretely,

qvij =
(1 + ‖zvi − uv

j‖22)−1∑K
j=1(1 + ‖zvi − uv

j‖22)−1
∈ Qv, (2)

which is a commonly used manner to perform end-to-end
clustering (Xie, Girshick, and Farhadi 2016; Guo et al. 2017;
Xu et al. 2021a). In the v-th view, uv

j is the j-th cluster cen-
troid and qvij is considered as the probability that the embed-
ding feature zvi is assigned to the j-th cluster.

There is no connection among the different views so far,
and the complete and incomplete data of each view can
be learned without imputation for the missing data. Subse-
quently, we present our strategy to explore complementary
information among all views for multi-view clustering.

Multi-View Cluster Complementarity
Since multiple views share common semantic information,
every view can be regarded as the mappings of the other
views, e.g., Z2 = F2(Z

1) is a mapping of Z1. As shown
in Figure 2(a), if one view is a linear mapping of the other
views, there is no complementary information among them.
If there exists a complementary relationship among multiple
views, e.g., the inseparable clusters in one view are separable

(a) F2 is linear mapping (b) F2 is nonlinear mapping

Figure 2: The illustration of the mapping between two views.

in other views, this complementarity can be described by
nonlinear mappings as shown in Figure 2(b).

Based on the above observations, we treat the clustering
problem as a classification problem by considering the clus-
ter assignments as the pseudo labels of samples.

Assumption 1. Cover’s theorem (Cover 1965): a complex
classification problem is more likely to be linearly separable
when it is nonlinearly projected to high-dimensional spaces.

Considering Assumption 1, we propose to map multi-view
embeddings into a high-dimensional space by a nonlinear
mapping H. Many functions can lead to such H. In this pa-
per, we provide a simple manner, i.e., mapping the embed-
dings into a concatenated weighted feature space (CWFS):

H = H({Zv}Vv=1) = (w1Z
1, w2Z

2, . . . , wV Z
V ), (3)

where H ∈ R|X |×
∑V

v=1 dv denotes the obtained high-
dimensional features. wv is the weight calculated by

wv = 1 + log

(
1 +

σ(Uv)∑
v σ(U

v)

)
, (4)

where σ(Uv) is the variance on cluster centroids Uv of
the v-th view. Intuitively, the high-separability view means
that the features have well-separated clusters, whose cen-
troids have large variance. Therefore, in CWFS, the weights
{wv}Vv=1 are proposed to increase the influence of the high-
separability view as well as to reduce the influence of other
views with unclear cluster structures. In this way, the map-
ping H can push the cluster assignment of a sample in
CWFS in agreement with that in the high-separability view.

Additionally, Theorem 1 indicates that the linearly sepa-
rable probability of H is improved compared with the em-
bedding features {Zv}Vv=1 of any single view.

Theorem 1. H is a high-dimensional nonlinear mapping of
{Zv}Vv=1. The high-dimensional features H are more likely
to be linearly separable than any Zv for v ∈ {1, 2, . . . , V }.

Proof. Considering the embedding feature zvi of any i-th
sample in any v-th view, we assume that there are un-
known mappings that make zti = Ft(z

v
i ) ∈ Rdt for t ∈

{1, 2, . . . V }. If some of the mappings {Ft : Z
v 7−→ Zt}Vt 6=v

are nonlinear, the concatenation of all embedding features,
i.e., (z1i , z

2
i , . . . , z

V
i ) = (F1(z

v
i ),F2(z

v
i ), . . . ,FV (z

v
i )) ∈

R
∑V

v=1 dv where
∑V

v=1 dv > dv , is a high-dimensional non-
linear mapping of zvi . Additionally,wv is a nonlinear weight-
ing function, and thus the proposed H : {Zv}Vv=1 7−→ H is
also a high-dimensional nonlinear mapping for the embed-
ding features of each view. Therefore, given Assumption 1,
Theorem 1 holds.

Based on Theorem 1, the proposed mapping H ensures
that the obtained H contains more separable cluster pat-
terns than that of single-view embedding features, which is
achieved by utilizing the information of the clusters in the
high-separability views to avoid the incorrect information
from the views with unclear cluster structures (verified in
Table 3). This is called multi-view cluster complementarity
in this paper. Consequently, we can obtain the new cluster
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centroids C ∈ RK×
∑V

v=1 dv in CWFS by the following ob-
jective Lcom to explore complementary cluster information:

Lcom = min
{Cv}Vv=1

∑
i∈X

K∑
j=1

V∑
v=1

∥∥wvz
v
i − cvj

∥∥2
2

= min
C

∑
i∈X

K∑
j=1

‖hi − cj‖22 ,

(5)

where hi ∈ H and cj = (c1j , c
2
j , . . . , c

V
j ) ∈ R

∑V
v=1 dv .

The multi-view cluster complementarity is learned from the
complete data X . We further discuss the details to obtain
consistent cluster assignments for all data, i.e., achieving
clustering consistency for incomplete multi-view data.

Multi-View Clustering Consistency
In CWFS, the linearly separable cluster information of all
views is transferred to the high-dimensional features H. The
centroids C calculated on H reflect more accurate cluster
structures due to the multi-view cluster complementarity.
Motivated by (Xu et al. 2021c), we can generate supervised
information for all views by a mappingM(H;C,A) : H ∈
R|X |×

∑V
v=1 dv 7−→ P ∈ R|X |×K , which is formulated by

P =M(H;C,A) = E(S(H,C))A, (6)
where the function S is leveraged to measure the confidence
sij of the i-th sample being assigned to the j-th centroid:

sij = S(hi, cj) =
1

1 + ‖hi − cj‖22
∈ S. (7)

In this way, the confidence sij is high when hi is closer to cj .
The function E(S) scales the confidence of each sample to
[0, 1], and meanwhile, enhances the confidence (such as sij)
when it is the largest in {si1, si2, . . . , siK}. Specifically,

sij = E(si) =
(sij/

∑
j sij)

2∑
j(sij/

∑
j sij)

2
, (8)

by which the mined complementary cluster information is
transformed to the supervised information with high confi-
dence. A satisfies AAT = IK , which is a boolean matrix to
adjust the arrangement of S. Furthermore, the cross-entropy
loss between P and Qv of all views is optimized:

Lcon =

V∑
v=1

H(P,Qv) = −
V∑

v=1

∑
i∈X

pi logq
v
i . (9)

As the same P is shared by all views, the optimization of
Lcon can achieve the consistency of multi-view clustering,
i.e., learning the consistent {Qv}Vv=1. Moreover, the con-
sistency from the complete data can be generalized to the
incomplete data through deep models (verified in Figure 3).

After training the deep models, the obtained models of
all views are fusion-free, because each view has its own
model to perform the feature extraction and clustering, sig-
nificantly, which does not depend on the feature fusion upon
other views. Then, we could obtain robust results by averag-
ing the cluster assignments of the observed data. Concretely,
the clustering prediction of the i-th sample is inferred by

yi = argmax
j

∑
v

qvij . (10)

Optimization
In conclusion, the loss function of our proposed framework
consists of three parts:

L = Lrec + Lcom + Lcon

= min
C,A,{Zv,Uv}Vv=1

V∑
v=1

∥∥Xv − f−1v (Zv)
∥∥2
F

+
∑
i∈X

K∑
j=1

‖hi − cj‖22 +
V∑

v=1

H(P,Qv),

s.t. P =M(H;C,A),AAT = IK ,Q
v =Mv(Z

v;Uv),
(11)

where Zv = fv(X
v),H = H({Zv}Vv=1). Lrec is the recon-

struction loss of autoencoders. Lcom and Lcon achieve the
multi-view complementarity and consistency, respectively.

To optimize the above non-differentiable objective func-
tion, we present an alternate optimization strategy which is
similar to Expectation Maximization algorithm, as follows:
Initialization: Firstly, the deep autoencoders are initialized
by Eq. (1) to obtain meaningful embedding features. As
thus, the cluster centroids {U1,U2, . . . ,UV } can be initial-
ized by K-means (MacQueen 1967). A is initialized as IK .
P-step: Update {P,C,A} with fixed {Zv,Uv}Vv=1.

In the first place, C is obtained by optimizing Eq. (5),
which can be efficiently calculated with K-means.

Letting l
(t)
i = argmaxj s

(t)
ij denote the cluster label of

hi in the t-th iteration, in unsupervised context, the clusters
represented by l(t+1)

i and l(t)i might be not consistent. Let-
ting m̃ij =

∑
n∈X 1[l

(t+1)
n = i]1[l

(t)
n = j], we define a cost

matrix M ∈ RK×K , where mij = maxi,j m̃ij − m̃ij , and
solve a maximum matching problem as follows:

min
A

K∑
i=1

K∑
j=1

mijaij

s.t.AAT = IK ,

(12)

where aij ∈ A and A ∈ {0, 1}K×K is a boolean matrix.
Eq. (12) is optimized with Hungarian algorithm (Jonker and
Volgenant 1986) to obtain the maximum match (denoted by
A) between the clustering results of two iterations.

Subsequently, P can be computed directly by the mapping
M(H;C,A) with the inputs of H,C, and A.
Z-step: Update {Zv,Uv}Vv=1 with fixed {P,C,A}.

Given fixed C and A, P is treated as constant pseudo
labels for all views. Then, Eq. (11) can be divided
into {L1,L2, . . . ,LV }, where Lv = Lv

rec + Lv
con =∥∥Xv − f−1v (Zv)

∥∥2
F
+H(P,Qv). In this way, the model of

each view can be learned independently. Letting λ denote
the learning rate and n be the batch size, we train the deep
model via the mini-batch gradient descent algorithm:

Uv = Uv − λ

n

n∑
i=1

∂Lv

∂Uv
,

Zv = Zv − λ

n

n∑
i=1

∂Lv

∂Zv
,

(13)
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Algorithm 1: Optimization of the proposed DIMVC
Input: dataset {Xv ∈ RNv×Dv}Vv=1, number of clusters K
Output: clustering predictions

1: Initialization: initialize {Zv}Vv=1 by Eq. (1),
initialize {Uv}Vv=1 by K-means, A = IK

2: while not reaching the maximal iterations do
3: P-step: fix {Zv,Uv}Vv=1
4: update C by Eq. (5)
5: update A by Eq. (12)
6: update P by Eq. (6)
7: Z-step: fix {P,C,A}
8: update {Zv,Uv}Vv=1 by Eq. (13)
9: end while

10: Calculate the clustering predictions by Eqs. (2 and 10)

where Zv is optimized by updating the neural network pa-
rameters (i.e., θv and φv) of the autoencoder.

Furthermore, the alternate (EM-like) strategy can make
the feature learning and the clustering promote each other
(verified in Table 3). Concretely, the P-step produces more
precise supervised information by mining cluster comple-
mentarity from the embedding features of all views. The Z-
step makes the model of each view learn better clustered
embedding features with the supervised information.
Complexity analysis. Letting V ,K, andN denote the num-
ber of views, clusters, and samples, respectively,D represent
the maximum number of neurons in deep autoencoders’ hid-
den layers, and M =

∑V
v=1 dv denote the dimensionality of

high-dimensional features, N � V,K,M generally holds.
In Algorithm 1, the complexity to optimize Eq. (5), Eq. (12),
and Eq. (6) in the P-step is O(NMK), O(K3 +NK), and
O(NK), respectively, while the complexity to optimize Eq.
(13) in the Z-step is O(NVD2). In conclusion, the total
complexity of our algorithm is O(K3 +NMK +NVD2)
in each iteration, which is linear to the data size N .

Experiments
We evaluate the effectiveness of our proposed DIMVC by
comparing it with seven state-of-the-art IMVC methods on
real-world multi-view datasets, in terms of three clustering
metrics, including clustering accuracy (ACC), normalized
mutual information (NMI), and adjusted rand index (ARI).

Settings
Comparison methods. The comparison methods include
four traditional methods (i.e., SRLC (Zhuge et al. 2019),
APMC (Guo and Ye 2019), TMBSD (Li et al. 2021), and
IMVTSC-MVI (Wen et al. 2021)) and three deep methods
(i.e., DiMVMC (Wei et al. 2020), CDIMC-net (Wen et al.
2020), and COMPLETER (Lin et al. 2021)).
Datasets. We use four datasets in our experiments, i.e.,
BDGP (Cai et al. 2012), Caltech (Fei-Fei, Fergus, and Per-
ona 2004), RGB-D (Kong et al. 2014), and Scene (Fei-Fei
and Perona 2005). Table 1 presents the description of the
used datasets. We construct incomplete multi-view datasets
with varying missing rates (0.1, 0.3, 0.5, 0.7). When the

Dataset Type # Sample # Class
BDGP Visual and textual views 2,500 5
Caltech HOG and GIST 2,386 20
RGB-D Visual and textual views 1,449 13
Scene GIST, PHOG, and LBP 4,485 15

Table 1: The description of datasets.

missing rate is 0.5, for example, we randomly select 50%
samples and randomly drop partial views of these samples.
Implementation details. For our DIMVC, the following
settings are adopted for all datasets. Concretely, the autoen-
coders of all views are implemented by fully connected neu-
ral networks with the same structure. For the v-th view, the
network structure can be denoted as Xv − Fc500 − Fc500 −
Fc2000 − Zv − Fc2000 − Fc500 − Fc500 − X̂v , where Fc500
represents the fully connected neural network with 500 neu-
rons. The dimensionality of embeddings Zv is reduced to
10. The activation function is ReLU (Glorot, Bordes, and
Bengio 2011). We adopt Adam (Kingma and Ba 2014) to
optimize the deep models with a learning rate of 0.001. In
the initialization phase, the autoencoders are pre-trained for
500 epochs. The batch size is set to 256. In every iteration of
the proposed alternate (EM-like) optimization strategy, the
Z-step will train the deep models for 1000 batches after the
P-step updates the learning targets. The number of iterations
is set to 10. The code is provided in the website1.

Experimental Results and Analysis
The clustering performance of all methods on four datasets
is listed in Table 2, from which we have the following obser-
vations: (1) Our DIMVC obtains the best performance on all
datasets. Compared with the second-best methods, DIMVC
has considerable improvements especially on BDGP, Cal-
tech, and Scene. (2) It is obvious that the clustering perfor-
mance of all methods is reduced when the missing rate varies
from 0.1 to 0.7. Nevertheless, our DIMVC still achieves su-
perior clustering performance in most cases.

The reasons for the above observations can be explained
as follows: (1) If the missing rate of multi-view data be-
comes high, the complementary information among multi-
ple views becomes rare. This results in the reduction of clus-
tering quality of all methods. (2) Imputation methods depend
on the estimation of data distribution. Hence, the cumulative
error increases when the missing rate is high, e.g., the per-
formance of certain methods (such as TMBSD and COM-
PLETER) is unsatisfied when the missing rate is 0.5 or 0.7.
(3) Fusion methods might be influenced by the views with
low quality, especially for incomplete multi-view learning,
e.g., even on BDGP with low missing rates, the performance
of certain methods (like DiMVMC and CDIMC-net) is poor.

Different from existing traditional and deep IMVC meth-
ods, our DIMVC is imputation-free and fusion-free. It ex-
plores the cluster complementarity by the proposed high-
dimensional mapping, and obtains promising results through
the EM-like optimization strategy. In addition to clustering

1https://github.com/SubmissionsIn/DIMVC.

8765



Missing rates 0.1 0.3 0.5 0.7
Evaluation metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

B
D

G
P

SRLC (Zhuge et al. 2019) 0.691 0.514 0.470 0.697 0.458 0.430 0.626 0.366 0.320 0.566 0.379 0.333
APMC (Guo and Ye 2019) 0.859 0.662 0.683 0.814 0.589 0.594 0.770 0.672 0.626 0.749 0.580 0.556

TMBSD (Li et al. 2021) 0.739 0.620 0.582 0.714 0.597 0.546 0.605 0.273 0.275 0.510 0.236 0.218
IMVTSC-MVI (Wen et al. 2021) 0.962 0.880 0.908 0.934 0.816 0.844 0.931 0.813 0.836 0.592 0.411 0.216

DiMVMC (Wei et al. 2020) 0.730 0.673 0.560 0.730 0.677 0.565 0.595 0.511 0.282 0.479 0.310 0.181
CDIMC-net (Wen et al. 2020) 0.875 0.755 0.640 0.757 0.692 0.467 0.657 0.530 0.271 0.549 0.426 0.225

COMPLETER (Lin et al. 2021) 0.596 0.528 0.254 0.552 0.511 0.255 0.541 0.504 0.228 0.529 0.426 0.203
DIMVC (ours) 0.964 0.892 0.912 0.954 0.866 0.889 0.947 0.845 0.873 0.929 0.802 0.831

C
al

te
ch

SRLC (Zhuge et al. 2019) 0.478 0.588 0.349 0.453 0.566 0.311 0.433 0.570 0.304 0.416 0.468 0.269
APMC (Guo and Ye 2019) 0.523 0.625 0.421 0.437 0.600 0.302 0.429 0.597 0.295 0.427 0.585 0.293

TMBSD (Li et al. 2021) 0.404 0.608 0.274 0.415 0.615 0.281 0.407 0.620 0.286 0.418 0.606 0.284
IMVTSC-MVI (Wen et al. 2021) 0.625 0.642 0.507 0.590 0.668 0.445 0.549 0.520 0.395 0.461 0.517 0.333

DiMVMC (Wei et al. 2020) 0.373 0.551 0.315 0.358 0.521 0.301 0.322 0.454 0.285 0.304 0.342 0.242
CDIMC-net (Wen et al. 2020) 0.452 0.589 0.325 0.443 0.439 0.265 0.362 0.400 0.184 0.327 0.353 0.106

COMPLETER (Lin et al. 2021) 0.742 0.712 0.843 0.741 0.690 0.835 0.716 0.681 0.814 0.687 0.655 0.753
DIMVC (ours) 0.772 0.726 0.870 0.761 0.697 0.842 0.758 0.685 0.835 0.710 0.638 0.802

R
G

B
-D

SRLC (Zhuge et al. 2019) 0.383 0.237 0.152 0.352 0.214 0.126 0.322 0.184 0.104 0.317 0.170 0.099
APMC (Guo and Ye 2019) 0.412 0.319 0.216 0.373 0.271 0.166 0.345 0.254 0.149 0.308 0.226 0.123

TMBSD (Li et al. 2021) 0.377 0.323 0.263 0.317 0.210 0.132 0.299 0.182 0.107 0.274 0.167 0.096
IMVTSC-MVI (Wen et al. 2021) 0.422 0.322 0.229 0.401 0.311 0.193 0.362 0.267 0.151 0.318 0.228 0.124

DiMVMC (Wei et al. 2020) 0.371 0.323 0.209 0.355 0.269 0.178 0.251 0.222 0.116 0.248 0.173 0.079
CDIMC-net (Wen et al. 2020) 0.358 0.334 0.249 0.393 0.368 0.161 0.302 0.270 0.149 0.260 0.187 0.106

COMPLETER (Lin et al. 2021) 0.418 0.265 0.237 0.398 0.236 0.213 0.370 0.236 0.127 0.319 0.203 0.106
DIMVC (ours) 0.436 0.353 0.258 0.405 0.316 0.215 0.391 0.288 0.193 0.380 0.289 0.159

Sc
en

e

SRLC (Zhuge et al. 2019) 0.366 0.351 0.189 0.332 0.307 0.163 0.333 0.292 0.148 0.299 0.264 0.137
APMC (Guo and Ye 2019) 0.433 0.434 0.269 0.414 0.401 0.248 0.408 0.383 0.236 0.388 0.346 0.213

TMBSD (Li et al. 2021) 0.437 0.398 0.271 0.364 0.325 0.185 0.344 0.293 0.166 0.300 0.253 0.131
IMVTSC-MVI (Wen et al. 2021) 0.330 0.302 0.161 0.277 0.245 0.117 0.265 0.211 0.101 0.226 0.184 0.082

DiMVMC (Wei et al. 2020) 0.315 0.291 0.156 0.241 0.206 0.083 0.183 0.136 0.045 0.173 0.137 0.042
CDIMC-net (Wen et al. 2020) 0.346 0.374 0.143 0.246 0.219 0.112 0.309 0.288 0.136 0.264 0.228 0.121

COMPLETER (Lin et al. 2021) – – – – – – – – – – – –
DIMVC (ours) 0.474 0.465 0.306 0.440 0.403 0.254 0.428 0.394 0.252 0.401 0.355 0.221

Table 2: Clustering results of all methods on four datasets. The best and second-best results are highlighted with bold and
underline, respectively. The symbol ‘–’ denotes unknown results as COMPLETER mainly focuses on two-view clustering.

(a) Missing rate = 0.1 (b) Missing rate = 0.3 (c) Missing rate = 0.5 (d) Missing rate = 0.7

Figure 3: Visualization of the embedding features and centroids on BDGP (textual view) with 4 missing rates via t-SNE (Maaten
and Hinton 2008). Dots denote the samples with complete data and digits represent the samples with incomplete data.

performance, the learned embedding features and centroids
are visualized in Figure 3. We find that the incomplete data
points have the similar cluster structures in accord with that
of the complete data points. This indicates that our method
achieves the consistency for the complete data and incom-
plete data, and has good feature generalization capability.

Ablation Study

We conduct the ablation study to demonstrate the impor-
tance of each component of our method. As shown in Ta-

ble 3, View-v denotes the K-means clustering performance
on the v-th view’s embedding features obtained by the au-
toencoder (AE). Item-1 obtains better performance than any
single view, which experimentally validates our Theorem
1, i.e., the multi-view complementary information mined
by the mapping H improves clustering performance. Item-
2 does not apply the proposed EM-like strategy to optimize
the framework. The results indicate that Item-2 cannot effec-
tively leverage the mined complementary information. The
improvement of Item-3 is limited as it does not apply the
function E(S) to enhance the confidence of samples. The
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Components BDGP Caltech RGB-D Scene
AE H E(S) EM ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

View-1 X 0.473 0.298 0.260 0.454 0.611 0.402 0.411 0.344 0.234 0.357 0.370 0.192
View-2 X 0.876 0.750 0.708 0.413 0.546 0.348 0.162 0.056 0.017 0.274 0.198 0.106
View-3 X 0.370 0.401 0.224
Item-1 X X 0.935 0.833 0.844 0.455 0.636 0.419 0.433 0.392 0.268 0.437 0.429 0.271
Item-2 X X X 0.506 0.393 0.270 0.416 0.652 0.398 0.237 0.181 0.131 0.235 0.256 0.099
Item-3 X X X 0.962 0.912 0.909 0.476 0.659 0.436 0.366 0.224 0.158 0.424 0.421 0.256
Item-4 X X X X 0.982 0.932 0.945 0.792 0.731 0.879 0.475 0.419 0.302 0.490 0.482 0.319

Table 3: Ablation experiments on four datasets with missing rate = 0.

(a) BDGP (b) Caltech (c) RGB-D (d) Scene

Figure 4: Clustering accuracy (ACC) and loss values on four datasets.

(a) ACC vs. Dimensionality (b) ACC vs. α

Figure 5: Dimensionality and parameter analysis.

best performance is achieved by Item-4, which illustrates the
significance of the different parts in our framework.

Model Analysis
Convergence and training process. In our proposed alter-
nate (EM-like) optimization strategy, both the P-step and the
Z-step are performed at each iteration. We report the con-
vergence of the optimization strategy in Figure 4, where we
record the total loss at the end of every iteration. In the train-
ing process, the clustering accuracy of all views is gradually
improved. It indicates that the complementary information
mined by the P-step improves the separability of embedding
features learned by the Z-step, and vice versa. In this way,
the P-step and the Z-step can promote each other alternately.
Dimensionality. We investigate the influence of the di-
mensionality of embedding features for our proposed high-
dimensional mapping and show the results in Figure 5(a).
Obviously, the accuracy is low when the dimensionality
is set to 1. That is because 1-dimensional embedding fea-
tures cannot capture the salient information well. The per-
formance is stable for the high-dimensional features, which
demonstrates that our method is still feasible in a very high-

dimensional feature space. In our experiments, the dimen-
sionality of embedding features is set to 10 for all datasets.
Parameter analysis. In the Z-step of our proposed opti-
mization strategy, the loss of each view isLv = Lv

rec+Lv
con.

We investigate whether a coefficient is needed to balance
Lv
rec and Lv

con, i.e., Lv = Lv
rec + αLv

con. As shown in Fig-
ure 5(b), the performance reduces to some extent when the
value of α is too small and too large (e.g., 10−3 and 103).
This indicates that both Lv

rec and Lv
con are important. They

contribute to maintaining the salient information contained
in embedding features of autoencoders as well as achiev-
ing the consistency of multi-view clustering, respectively. In
conclusion, the hyper-parameter α is insensitive in the range
of [10−1, 101] and we let α = 1.0 for all datasets.

Conclusion

In this paper, we presented an imputation-free and fusion-
free deep incomplete multi-view clustering framework.
Firstly, we developed a novel strategy to mine the com-
plementary information among multiple views, i.e., map-
ping embedding features of all views into the concatenated
weighted feature space (CWFS). As a result, the new fea-
tures in CWFS are more likely to be linearly separable due
to the multi-view cluster complementarity. Furthermore, the
feature learning and clustering were conducted with an alter-
nate (EM-like) optimization strategy, where the complemen-
tary information was transformed to the supervised informa-
tion to achieve the consistency of multiple views. In con-
clusion, our method can effectively explore the multi-view
complementary information from the complete data, and has
robust generalization capability to handle the incomplete
data. Extensive experiments demonstrated that our method
can achieve the state-of-the-art clustering performance.
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