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Abstract

The Elo rating system is widely adopted to evaluate the skills
of (chess) game and sports players. Recently it has been also
integrated into machine learning algorithms in evaluating the
performance of computerised AI agents. However, an accu-
rate estimation of the Elo rating (for the top players) often re-
quires many rounds of competitions, which can be expensive
to carry out. In this paper, to improve the sample efficiency of
the Elo evaluation (for top players), we propose an efficient
online match scheduling algorithm. Specifically, we identify
and match the top players through a dueling bandits frame-
work and tailor the bandit algorithm to the gradient-based up-
date of Elo. We show that it reduces the per-step memory and
time complexity to constant, compared to the traditional like-
lihood maximization approaches requiring O(t) time. Our al-
gorithm has a regret guarantee of Õ(

√
T ), sublinear in the

number of competition rounds and has been extended to the
multidimensional Elo ratings for handling intransitive games.
We empirically demonstrate that our method achieves supe-
rior convergence speed and time efficiency on a variety of
gaming tasks.

Introduction
In this paper, we investigate the selection of best multi-agent
strategies under the Elo rating systems. The evaluation of
the competition outcome has received lots of attention, es-
pecially in view of the successful usage of reinforcement
learning in StarCraft (Vinyals et al. 2019; Han et al. 2019;
Du et al. 2019), Game of Go (Silver et al. 2017) and video
games (Mnih et al. 2015). The Elo rating system (Elo 1978)
is a predominant and valuable algorithm for evaluating and
ranking agents. In the widely adopted Bradley-Terry model
(Hunter et al. 2004) for Elo, each player is assigned a nu-
merical rating which is updated with competition outcomes
via online stochastic gradient descent. Further, for dealing
with non-transitive relations between interacting agents such
as the game of Rock-Paper-Scissors, Balduzzi et al. (2018)
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proposes multidimensional Elo (mElo), which decomposes
a game into transitive and cyclic parts to handle intransitive
skills and evaluates different strategies by computing Nash-
averaging.

In practical settings when a competition is expensive to
conduct, updating Elo rating in a sample efficient way is
highly valuable. To achieve such sample efficiency, we need
a way to select the most informative pairs for evaluation.
Two popular sampling approaches are Round-robin (Ras-
mussen and Trick 2008) and Elimination tournament (Groh
et al. 2012); The Round-robin (Rasmussen and Trick 2008)
is widely used in sport scheduling to balance the total time,
venue usage and fairness of tournaments. It would arrange
each team to play against all the others in as few as possible
days while satisfying some constraints such as each team
not playing twice in the same day to promote game fair-
ness. By contrast, the Elimination tournament (Groh et al.
2012) only allows the winners at each round to proceed to
the next round, so the stronger team will have the chance
to play more times. A recent approach, RG-UCB, Rowland
et al. (2019) introduces an adaptive sampling scheme to esti-
mate the accurate ranking among all agents. RG-UCB con-
siders sampling of agent match-ups as a collection of pure
exploration bandit problems (Bubeck, Munos, and Stoltz
2011) and requires enough pairwise comparison for estimat-
ing each pair of strategies.

However, these tournament matching/sampling methods
suffer from two major limitations which prohibit their wide
usage in the modern large scale evaluations. Firstly, both the
Round-robin and the Elimination tournament organise com-
petitions following a pre-designed schedule, and the Elimi-
nation tournament scheduling may need some prior knowl-
edge on the players’ skill. Also each pair of players only
compete once in both schemes so the results can be highly
noisy. Secondly, the main idea behind the matching schemes
of the RG-UCB and the Round-robin is random sampling,
which fails to pay more attention to more promising play-
ers and/or pairs with higher uncertainty in competition out-
come. Thus, they are less sample efficient in identifying the
best players.
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In this work, we propose two sampling algorithms, named
MaxIn-Elo and MaxIn-mElo, for the update of Elo and mElo
rating systems respectively. Specifically, we maintain a can-
didate set with promising players using UCB-based (Up-
per Confidence Bound) dueling bandits and then select the
pair with the highest uncertainty in competition outcome at
each round. On the one hand, our algorithms are adapted to
the gradient-based update of Elo rating systems, thus more
memory and time efficient compared to a prior work, Max-
InP (Saha and Gopalan 2020), which relies on maximum
likelihood estimation (MLE). One the other hand, we extend
our method to update mElo (multidimensional Elo) ratings
to handle intransitive games, while Saha and Gopalan (2020)
is based on a generalized linear model and can only fit to the
transitive games. To the best of our knowledge, this is the
first work that enables online gradient-based update for du-
eling bandits, and a theoretical guarantee on the cumulative
regret is provided.Also compared to a previous dueling ban-
dit method descending through randomly sampled gradients
at each time step (Yue and Joachims 2009), our method, by
selecting the pairs with higher information gains from a set
of top candidates, is more sample efficient and are guaran-
teed to converge at Õ(

√
T )1.

In summary, our contributions are three-fold: Firstly, we
are the first to propose two online active sampling algo-
rithms MaxIn-Elo and MaxIn-mElo that select maximum
informative pairs with dueling bandits to update Elo and
mElo ratings. Secondly, we give the regret analysis of our
proposed MaxIn-Elo and show that the regret converge at
Õ(
√
T ). Thirdly, we demonstrate empirically on synthetic

and real-world games that our algorithms achieve signifi-
cantly lower cumulative regret than all baselines. Notably,
our methods outperform MaxInP which uses maximum like-
lihood for more accurate estimation while with lower time
and memory complexity.

Related Work
Multi-agent evaluation has attracted wide attention in rank-
ing of players (Silver et al. 2017; Lai 2015; Arneson, Hay-
ward, and Henderson 2010; Gruslys et al. 2018) and in se-
lecting stronger strategies in meta games (Muller et al. 2020;
Czarnecki et al. 2020). There are many methods used for
multi-agent evaluation problem. The Elo rating system is
widely used for two-player games such as chess and tennis.
It increases (decreases) player’s rating according to player
wins (loss) a competition, and updates ratings by online
stochastic gradient descent (SGD), which is computation-
ally efficient and simple to implement. While the Elo rat-
ing system cannot handle intransitive games such as rock-
paper-scissors, multidimensional Elo (Melo) (Balduzzi et al.
2018) was introduced. It decomposes the win-loss matrix
of an intransitive game into the transitive component and
cyclic component baked in Hodge decomposition theory
(Jiang et al. 2011). α-rank (Omidshafiei et al. 2019) is an-
other popular counterpart in tackling intransitive games; re-
cent attempts improve its sample efficiency based on noisy

1Õ ignores poly-logarithmic factors

comparisons (Du et al. 2021; Rowland et al. 2019; Omid-
shafiei et al. 2019) and scalability by stochastic optimization
(Yang et al. 2020). Despite various evaluation algorithms
discussed, how to sample agent pairs at each round is of
high value to realize these algorithms in large-scale evalu-
ation tasks.

We consider dueling bandits for online match scheduling
in the evaluation of players. The concept of dueling bandits
was firstly proposed in (Yue and Joachims 2009). Compared
to traditional bandits algorithms which pull one arm at each
round and receive the reward of this arm directly, dueling
bandits pull arm-pair at each round and only get a binary
comparison result. DBGD (Yue and Joachims 2009) models
a convex optimization problem as the dueling bandits prob-
lem which aims to find the best point in a convex space,
and DBGD uses a random gradient as the direction of ex-
ploration for selecting the next arm-pair. Yue et al. (2012)
formulates the best player identification as a dueling bandits
problem with noisy comparison results and an underlying
winning probability matrix, and proposes two algorithms as
well as their corresponding regret bounds. These algorithms
identify best arms based on the observed binary feedback
however do not learn the player’s skills (ratings), which is
helpful in predicting future competition outcomes. Szörényi
et al. (2015) regards the ranking of M alternatives (e.g. hu-
man players or agents) as a dueling bandits problem. They
introduce the confidence interval of rating or winning prob-
ability into the dueling bandits problem, and design algo-
rithms to identify the close-to-optimal item or to obtain the
close-to-optimal whole ranking respectively. Saha, Koren,
and Mansour (2021) studies the adversarial setting, in which
the winning probability is non-stationary because players’
skill may change over time. And they measure arms’ abil-
ities by estimating Borda score, however Borda score does
not possess predictive power of future competition results
and the algorithm of (Saha, Koren, and Mansour 2021) esti-
mates Borda score only by simply calculating the frequency
of wins. Heckel et al. (2019) gives an active ranking algo-
rithm that can solve the top-k player identification problem
and find the entire sequential ranking among all players.

While existing algorithms could rely on Borda score to
update the rankings or design specific sort algorithms to
obtain the ranking of items, they are not suitable for the
Elo rating systems that adopt stochastic gradient descent to
update ratings. Eearlier attempt (Ding, Hsieh, and Sharp-
nack 2021) proposes SGD-TS for contextual bandit prob-
lem, which learns parameters in the generalized linear model
through online SGD instead and employs Thompson Sam-
pling (TS) (Thompson 1933; Agrawal and Goyal 2012,
2013) to encourage exploration in arm-pulling. Compared
to UCB-GLM (Li, Lu, and Zhou 2017) that adopt maximum
likelihood estimators, SGD-TS achieves a similar theoretical
cumulative regret bound, but lower time and memory com-
plexity.However, no prior work has studied the SGD update
in dueling bandits setting.

In this work, we will tame dueling bandits for the online
match scheduling in the Elo rating system that adopts SGD.
Saha and Gopalan (2020) proposes the algorithm that selects
Maximum-Informative-Pair (MaxInP) for K-armed contex-
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tual dueling bandits. This algorithm utilizes the MLE to es-
timate parameter θ̂ and uses UCB (Auer, Cesa-Bianchi, and
Fischer 2002) estimator to narrow down the set of candidate
pairs from which the pair of arms with the maximum un-
certainty is selected at each round. Our algorithms adopt a
similar design as MaxInP Saha and Gopalan (2020) in cal-
culating the uncertainty of a pair. However, we use an online
batch SGD instead of MLE to update Elo rating, which is
more time and memory efficient.

Methodology
Background
Suppose there are n players, the Elo rating system (Elo
1978) assigns a rating rx, x ∈ [n] to each player represent-
ing its skill. Let r∗ denote the true ratings of n players. Our
aim is to identify the best player among all n players:

x∗ = arg max
x∈[n]

r∗x (1)

Denote P as the true winning probability matrix, pxy as the
underlying groundtruth probability of x beating y. Based on
the Bradley-Terry model (Hunter et al. 2004), the predicted
probablility of player x winning y is

p̂xy = σ(rx − ry). (2)

σ(x) is a sigmoid function with σ(x) = 1
1+e−x . Elo ratings

are updated by maximizing the likelihood of win-loss pre-
dictions which corresponds to minimizing the loss:

ℓElo (pxy, p̂xy) = −pxy log p̂xy − (1− pxy) log (1− p̂xy) .
(3)

At time t player x compete with player y with outcome otxy:
otxy = 1 if x wins and otxy = 0 otherwise. We can use otxy to
compute the gradient of Eq. (3) and update Elo by gradient
descent:

rt+1
x ← rtx−η ·∇rxℓElo

(
otxy, p̂

t
xy

)
= rtx+η ·

(
otxy − p̂txy

)
.

(4)
Let T denote the total number of rounds, at each round

t ∈ [T ], we adopt a system that will pull a pair of players
(xt, yt) ∈ [n] × [n] and get comparison result ot(xt, yt) ∼
Bern(pxy). The cumulative regret of T rounds is defined as

R(T ) =
T∑

t=1

[r∗x∗ −
1

2
(r∗xt

+ r∗yt
)]. (5)

The definition is consistent with (Saha and Gopalan 2020).
It measures the reward difference between the best arm and
the two selected arms at each round.

MaxIn-Elo Algorithm
We use the notations below in the followed presentations.
• n: the number of players.
• τ : the batch size.
• r: a vector of n players’ ratings.
• r∗: the true ratings of n players.
• r̂t: estimator by MLE with t round comparisons.
• r̃j : the SGD estimator at batch j.

Algorithm 1: MaxIn-Elo: Dueling bandits with online SGD
for top player identification.

Input: batch size τ , maximum number of rounds T , N
players’ strategies, parameters α, γ.

Output: output r
1: Randomly choose a pair to compare and record as

xt, yt, ot for t ∈ [τ ]
2: Vτ+1 =

∑τ
t=1(ext

− eyt
)(ext

− eyt
)T

3: Calculate the maximum-likelihood estimator r̂τ by
solving
∇r

∑τ
t=1 ℓElo (ot, p̂(xt, yt)) = 0

4: Maintain convex set C = {r : ∥r − r̂τ∥ ≤ 2}
5: for t = τ + 1, τ + 2, . . . , T do
6: if t%τ = 1 then
7: j ← ⌊(t− 1)/τ⌋ and ηj =

1
αj

8: Calculate gradient∇rlj,τ (r̃j−1) through Eq. (4)
9: Update ratings r̃j through Eq. (8)

10: Compute r̄ = 1
j

∑j
q=1 r̃q

11: end if
12: Define a candidate optimal set S = {x | r̄x − r̄y +

γ ∥ex − ey∥V −1
t

> 0, ∀y ∈ [n]/{x}}
13: Select a pair as:

(xt, yt) = argmax(x,y)∈S ∥ex − ey∥V −1
t

.
14: Let players (xt, yt) compete and observe ot(xt, yt)
15: Compute Vt+1 = Vt + (ext

− eyt
)(ext

− eyt
)T

16: end for

• r̄ =
∑j

q=1 r̃q: the average of previous SGD iterations.

• ∥x∥ =
√
x⊤x: the standard ℓ2 norm.

• ei: the i-th unit base vector, i.e., the i-dimension equals
1 and all other components equal 0.
• Vt: the history matrix recording previous t pulling in-

formation defined by Vt =
∑t−1

i=1(exi
− eyi

)(exi
− eyi

)⊤.
• ∥x∥V : a special ℓ2-norm associated with matrix V de-

fined by ∥x∥V =
√
x⊤V x.

• B a neighborhood of r∗ with B = {r| ∥r − r∗∥ ≤ 3}.
• C: a neighborhood of r̂τ with C = {r| ∥r − r̂τ∥ ≤ 2}.
•
∏

C(.): the projection operation defined by:∏
C
(r) = r̂τ +

2 ∗ (r − r̂τ )

min{2, ∥r − r̂τ∥}
(6)

Algorithm Overview The main idea of our MaxIn-Elo al-
gorithm is to maintain a candidate set of promising items
via UCB and select the most informative pairs out of the set
to evaluate at each round. Firstly, the ratings are initialized
by maximizing likelihood of Eq. (3) on a batch of randomly
sampled pairs with batch size τ . The solution is denoted as
r̂τ and r̃0 = r̂. Then starting from round t = τ + 1, we
update r̃j every τ rounds by solving the following objective
function

lj,τ (r) =

jτ∑
t=(j−1)τ+1

ℓElo (ot, p̂(xt, yt)). (7)

8799



The stochastic gradient update of r̃j reads

r̃j ←
∏
C

(r̃j−1 − ηj∇rlj,τ (r̃j−1)) . (8)

First, the strong convexity of the objective function is re-
quired for fast convergence, and if we select a suitable τ
through Eq. (14), the aggregated objective function lj,τ (r) is
a α-strong convex function when r ∈ B. Second, to ensure
r̃j ∈ B, r̃j is projected into the convex set C (also discussed
in the proof of Lemma 2).

For each update, a batch of pairs are selected that lead
to maximal information gain. The UCB score of a pair is
defined by:

h(xt, yt) = r̄xt − r̄yt + γ ∥ext − eyt∥V −1
t

, (9)

with the balance parameter γ. The specific V −1
t norm

γ ∥ext
− eyt

∥V −1
t

measures the uncertainty between two
arms. The UCB estimator balances the exploitation and ex-
ploration through combining ratings estimation r̄ and the un-
certainty term.

At each round t, we obtain a set of optimal player candi-
dates S with positive UCB scores:

S = {x|h(x, y) > 0, ∀ y ∈ [n]/{x}}. (10)

From the candidate set S , we then pull a pair of arms with
highest uncertainty by

(xt, yt) = arg max(x,y) ∈S×S ∥ex − ey∥V −1
t

(11)

to induce sufficient exploration. A detailed algorithm of our
MaxIn-Elo is shown in Algorithm 1.

Compared to MaxInP which uses MLE at each iteration,
MaxIn-Elo uses SGD to update the Elo rating r as traditional
Elo does. Thus, our method is more efficient in both compu-
tation and time, and simple to implement. Compared to RG-
UCB which randomly selects a pair to evaluate, our MaxIn-
Elo selects the maximum informative pair and trade-off ex-
ploration and exploitation. The online SGD update rating ac-
cording to a batch of comparisons to ensuring the α-strong
convexity of the objective function lj,τ , thus the selection
of the batch size τ is important for balancing the α-strong
convexity the and the computation complexity of mini-batch
update. To our best knowledge, this is the first algorithm that
allows stochastic gradient descent update in dueling bandits
settings. See Table1 for a comparison on time and memory.

MaxIn-mElo Algorithm
To enable the rating system to handle the intransitive skills,
we extend the online sampling algorithm to multidimen-
sional Elo ratings (mElo) (Balduzzi et al. 2018). Baking in
the Hodge decomposition theory (Jiang et al. 2011), mElo
proposed to decompose the antisymmetric logits matrix of
win-loss probabilities into a transitive component, i.e. gradi-
ent flow of rating vector, and a cyclic component to capture
the intransitive relations. By learning a 2k-dimensional vec-
tor cx and a rating rx per player, the win-loss prediction for
mElo2k is defined as:

p̂xy = σ
(
rx − ry + c⊤x · Ω2k×2k · cy

)
. (12)

Algorithms Regret Time Complexity Memory
DBGD O(T 2/3) O(T ) O(n)

RG-UCB No O(T ) O(n)
Random No O(T ) O(n)

MaxInP Õ(
√
T ) O(nT 2 + n2T ) O(nT )

MaxIn-Elo Õ(
√
T ) O(n2T ) O(n2)

Table 1: Comparison of regret, time complexity and mem-
ory with other algorithms. Our MaxIn-Elo and the MaxInP
achieve the lowest regret bound Õ(

√
T ), but our MaxIn-Elo

has lower time and memory complexity than the MaxInP.

where Ω2k×2k =
∑k

i=1(e2i−1e
⊤
2i − e2ie

⊤
2i−1).

The UCB estimate of a pair (xt, yt) for mElo then be-
comes:

h(xt, yt) = r̄xt − r̄yt + c̄TxΩc̄y + γ ∥ext − eyt∥V −1
t

. (13)

Notice that compared to Elo ratings with k = 0 (Eq. (2)),
mElo ratings assign a feature vector per player to approxi-
mated intransitive interactions. We present the details for the
mElo ratings and Algorithm 2 for MaxIn-mElo in Appendix.

Regret Analysis
We give the cumulative regret bound of MaxIn-Elo, as for as
we know, this is the first work that combines the online gra-
dient update with dueling bandits and gives the cumulative
regret of dueling bandits while being updated with SGD. We
make a mild assumption on the link function σ.

Assumption 1. Define cη = inf{∥r−r∗∥≤η} σ
′ (rx − ry),

where (x, y) ∈ [n]× [n], and we assume c3 > 0.

This assumption is similar to that in (Ding, Hsieh, and
Sharpnack 2021). Our main results rely on the following
concentration events and the proofs of which are deferred
to Appendix.

Lemma 1. Suppose we sample a sequence of arm pairs
{(x1, y1), (x2, y2), . . . , (xt, yt)} through Algorithm 1 up to
round t, and assume the selected batch size τ satisfy that
λmin(Vτ+1) ≥ 1, where λmin(Vτ+1) means the minimum
eigenvalue of the matrix (Vτ+1), Then ∀t > 0,

τ+t∑
i=τ+1

∥(exi
− eyi

)∥V −1
i

<

√
2nt log

(
2τ + t

n

)
.

Lemma 1 gives the bound of the sum of selected pair’s
uncertainty from round τ + 1 to t. And this lemma will be
adopted to derive the cumulative regret bound. In the follow-
ing Lemma 2, we show that when the batch size τ is chosen
as Eq. (14), we have the concentration property of the aver-
aged SGD estimator r̄.

Lemma 2. Assume that there exists a positive constant λf

such that λmin

(
E[(ext − eyt)(ext − eyt)

T ]
)
≥ λf holds at

each round t > τ , where (xt, yt) is sampled through Algo-
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rithm 1. Let the batch size τ satisfies

τ1 = 2

(
C1
√
n+ C2

√
2 log T

λmin(B)

)2

+
16(n+ 2 log T )

c21λmin(B)
,

τ2 = 2

(
C1
√
n+ C2

√
2 log T

λf

)2

+
4α

c3λf
,

τ = ⌈max {τ1, τ2}⌉ ,
(14)

where B = E
(x,y)

iid∼ [n]×[n]

[
(ex − ey)(ex − ey)

T
]
. Define

g1(t) and g2(j),

g1(t) =
1

2c1

√
n

2
log

(
1 +

2t

n

)
+ 2 log T , (15)

g2(j) =
τ

α

√
1 + log j. (16)

For a constant α ≥ c3, there exists two positive constants
C1, C2 such that if the batch size τ is chosen as Eq. (14),
then we have that at each round t > τ corresponding to
batch j = ⌊ t−1

τ ⌋, event E1(t) holds with probability at least
1− 5

T 2 , where E1(t) = {∀(x, y) :
∣∣(ex − ey)

T (r̄j − r∗)
∣∣ ≤

g1(jτ)∥ex − ey∥V −1
jτ+1

+ g2(j)
√
2√
j
}.

The following Lemma 3 shows how to select a suitable
balanced parameter γ of UCB score that ensures the best
player is always in the candidate set.

Lemma 3. Define the constant C =
√

2nT log
(
T+τ
n

)
.

At each round t > τ , let UCB balanced parameter γ =
2g1(t) and assume ∆ > g1(T )C, if α satisfies that α ≥√

2τ
√
1+log j

(∆−g1(T )C)
√
j
, then we have x∗ ∈ S holds with proba-

bility at least 1 − 5
T 2 , where j = ⌊ t−1

τ ⌋, ∆ is the differ-
ence between ratings of optimal player x∗ and sub-optimal
player x′. Recall x∗ = arg maxx∈[n] r

∗
x, and define x′ =

arg maxx∈[n]/x∗ r∗x, ∆ = r∗x∗ − r∗x′ .
Lemma 3 shows that if we properly select UCB bal-

anced parameter γ and parameter α which describes objec-
tive function lj,τ as a α-strongly convex, then it is promised
that the best player x∗ is in candidates set S with high prob-
ability. This property is helpful for the top-1 identification
because the candidate set S will become tighter with the
time, and x∗ always in S , thus candidate set S only con-
tains x∗ eventually. Together we are ready to present our
main results in Theorem 1.
Theorem 1. We run our Algorithm 1 to get a se-
quence of arm-pair, and let the learning rate parameter
α ≥ max{c3,

√
2τ

√
1+log j

(∆−g1(T )C)
√
j
} with assumption that ∆ >

g1(T )C, the balanced parameter γ = 2g1(t), there exists
two positive parameter C1, C2 such that if the batch size τ
is chosen as Eq. (14), then we have the cumulative regret
satisfies that:

R(T ) ≤ τ ∗∆max + (2 + τ)g1(T )

√
2nT log(

2τ + T

n
) + 4g2(J)

√
τT ,

with probability at least 1 − 10
T , where J = ⌊Tτ ⌋, ∆max =

maxi r
∗
i −mini r

∗
i , g1(T ), g2(J) is defined in Eq. (15) and

C is a constant defined as C =
√
2nT log

(
T+τ
n

)
.

Note that τ ∼ O(max{n, log T}) (Eq. (14)), g1(T ) ∼
O(
√
n log T ), g2(J) ∼ O(

√
log T ). Combining the above

analysis, we have R(T ) ∼ O(n log T
√
T ) (or Õ(

√
T ).

This regret upper bound is equivalent to that in (Saha and
Gopalan 2020) which employs MLE estimators. However,
our algorithm improves the efficiency in terms of memory
and time. The memory cost is constant with respect to T
while MaxInP’s memory cost is linear in the time horizon
T . The time complexity of our MaxIn-Elo is O(n2T ), while
MaxInP’s time complexity is O(nT 2 + n2T ). See Table 1
for a detailed comparison. Detailed proofs are referred to
Appendix.

Experiments
We consider the following two batteries of experiments to
evaluate the performance of our algorithms in the scenarios
of transitive and intransitive real world meta-games. Abla-
tion studies of parameter γ, dimension of mElo and the batch
size τ can be found in Appendix.

Baselines
Random: The pairwise matching scheme of the classical
Round-robin (Rasmussen and Trick 2008) tournament is
based on random sampling. We construct a simple baseline
that randomly select a pair from all n ∗ (n− 1)/2 pairs with
replacement. After sampling a pair, we use the Elo/mElo
model to update the ratings.

RG-UCB (Rowland et al. 2019): This algorithm adopts
a pure exploration sampling scheme, which uniformly sam-
ples a pair from the set containing pairs that need to be es-
timated. And the stopping condition C(δ) controls the total
number of comparisons of each pair, where δ is a hyper pa-
rameter deciding the confidence level of estimated competi-
tive results.

DBGD (Yue and Joachims 2009): This dueling bandits
algorithm is popular in ranking tasks when only pair-wise
binary feedback is available. It maintains one winning arm
at each round, and randomly synthesizes a gradient to ob-
tain the opponent arm in the contextual bandit setting. In our
feature free setting, this is equivalent to randomly selecting
a player as the opponent.

α-IG (Rashid, Zhang, and Ciosek 2021): This is an active
sampling algorithm used for estimating the α-rank (Omid-
shafiei et al. 2019). This algorithm selects a pair with largest
information gain at each round. In the transitive case, the top
player has an α-rank score equal to 1. Due to the high com-
putation cost at each round ( computing α-rank for 80000
times in a 4 × 4 game), we only compare with it in a 4 × 4
transitive game: the ‘2 Good, 2Bad’ game given by α-IG.

MaxInP (Saha and Gopalan 2020): This algorithm is for
the generalized linear contextual dueling bandits problem, in
which arms are represented as feature vectors. At each round
t, it uses MLE to estimate model parameters θ relying on
all historical comparisons. This algorithm calculates a can-
didate set containing advanced arms and pulls an arm-pair
with the largest uncertainty. In order to fit their model, each
player is described as a one-hot vector, and the estimated
parameters θ correspond to players’ ratings in our setting.
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MaxIn-Elo: Our first algorithm adopts dueling bandits to
adaptively sample pairs for Elo rating update in Eq. (2). The
aim of our MaxIn-Elo is to identify the advanced players
gradually, and to minimize the cumulative regret described
in Eq. (5) simultaneously.

MaxIn-mElo: Our second algorithm tames the intransi-
tive scenarios. Different to MaxIn-Elo, there is an extra vec-
tor c to capture intransitive relationship in competition out-
come prediction. The dimension of c is set to 8 in experi-
ments. For the MaxIn-mElo algorithm, we hope to identify
players with superior mElo ratings and to minimize cumula-
tive regret on mElo ratings.

Experiments Setting
Real world games We do our experiments on twelve real-
games released by Czarnecki et al. (2020), most of which
are implemented on the OpenSpiel framework (Lanctot et al.
2019). The six games used for evaluating Elo are Triangular
game, Transitive game, Elo game, and three noisy variants
of Elo games. The first three are transitive games; the three
variants of Elo game are Elo games with additive Gaussian
noises. The six intransitive games used for evaluating mElo
are Kuhn-poker, AlphaStar, tic tac toe, hex, Blotto and 5,3-
Blotto game.

The intransitivity of games can be revealed by sink
strongly connected components (SSCCs) (Omidshafiei et al.
2019), which is a set of strategies that cannot be defeated by
external strategies and all internal strategies become a circle,
such as Rock, Paper, Scissors. The statistics of these games
is shown in Table 2 in Appendix.

Metrics Except the cumulative regret defined in Eq. (5),
we introduce three other metrics for Reciprocal Rank (RR),
Normalized Discounted Cumulative Gain (NDCG), and Hit
Raio (HR). RR is used for the results on generating top-1
players. NDCG and HR report discrete performance for top-
1 performance and are thus used in top-k results.

Reciprocal Rank (RR) (Donmez, Svore, and Burges 2009)
give the reciprocal of predicted ranking of the best player
x∗. Define RR = 1/R(x∗), where R(x) returns the ranking
of player x relying on currently predicted ratings r̄. Larger
RR corresponds to better performance on the top-1 player
identification.

Hit Ratio@K (He et al. 2015) is defined as the ratio of
the predicted top-k that belong to the true top-k. Since hit
ratio does not consider the positions of correct predictions,
we also adopt NDCG (Donmez, Svore, and Burges 2009)
which assigns higher importance to top ranks. Normalized
Discounted Cumulative Gain (NDCG) is widely used in the
evaluation of rankings and NDCG@k measures the impor-
tance of predicted top-k players. It is given by

NDCG@K =
1

NK

K∑
i=1

2l(di) − 1

log(i+ 1)
,

where Nk is a normalizer to ensure that the perfect ranking
would result in NDCG@K = 1. di denote the index of pre-
dicted i-th player, and l(x) ∈ {0, 1} is the relevance level
about top-k identification, we set l(x) = 1 if player x in true
top-k otherwise 0.
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Figure 1: Results on 4× 4 game (2 Good 2 Bad).
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Figure 2: Results of Elo on transitive games.

Parameters setting For Random, DBGD, and RG-UCB
baseline, we perform a grid search for the initial step size
η in the range {0.01, 0.05, 0.1, 0.5, 1, 5, 10}. For RG-UCB,
stopping confidence δ = 0.2. For MaxInP, we tune the UCB
balanced parameter γ ∈ {0.2, 0.4, 0.6, ..., 2.0}. For MaxIn-
Elo and MaxIn-mElo, we tune the initialized learning rate
η ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10}, and the learning rate at
batch j is set as η

j . And the UCB balanced parameter γ ∈
{0.2, 0.4, 0.6, ..., 2.0}. The batch size τ of MaxInP, MaxIn-
Elo and MaxIn-mElo is set to 0.7 ∗ n. When baselines ues
mElo model to calculate ratings, we set the dimension of the
extra vector c as 8. We use the parameters that report the best
performance for α-IG. We repeat experiments 5 times with
different random seeds and plot the averaged performance
with standard deviations.

All experiments were run in a single x86 64 GNU/Linux
machine with 256 AMD EPYC 7742 64-Core Processor and
2 A100 PCIe 40GB GPU. We use sklearn(0.24.2) to solve
the MLE.

Results
Figure 1, 2, 3 show the results of top-1 identification on 13
games. To ensure a fair comparison between all baselines,
we perform a grid search to select parameters with the best
RR performance for each random seed. If the winning prob-
ability matrix can be fitted into the Elo model, then we cal-
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Figure 3: Results of mElo on intransitive games.

culate the true ratings through Eq. (2), otherwise we use the
mElo ratings as the true ratings through Eq. (12).

Evaluation of MaxIn-Elo Figure 1 shows the results of
a 4 × 4 transitive game. MaxIn-Elo has the highest con-
vergence rate on both RR and cumulative regret metrics,
and MaxIn-Elo has the lowest cumulative regret close to
0. As shown in Figure 2, MaxIn-Elo significantly outper-
forms all other baselines on five games and achieves similar
performance on Triangular game. Regarding the RR metric,
MaxIn-Elo can converges to 1 on four games. Even on Tran-
sitive game and Elo game + noise=0.1, RR scores as up to
0.6 and 0.8 respectively, which indicates that the rank of the
top player is no more than 2. Thus we think MaxIn-Elo has
the ability to effectively identify the top player . On the Elo
game, Elo game + noise=0.01, and Elo game + noise=0.05,
the cumulative regret is closed to convergence at around 500
rounds. When the cumulative regret meets convergence, the
candidate optimal set S only contains the top player, and no
regret increasing.

Different from the other 5 stochastic games, Triangular
game is a deterministic game with all winning probabilities
are equal to 1 or 0, thus it is easy to evaluate. For DBGD
baseline, it maintains the current best player and randomly
selects an opponent, so it could find the best player more
quickly, but has a large cumulative regret because of ran-
domly selected opponents.

Evaluation of MaxIn-mElo Figure 3 shows the results
of baselines on six real-world intransitive games. MaxInP is
based on the Elo model for it is a special generalized linear
model only with rating parameter r without cyclic vector
parameter c, but all other baselines are based on the mElo
model. As the Figure 3 shows, MaxIn-mElo has the low-
est cumulative regret and the highest RR on all six games.
With regard to the RR, MaxIn-mElo can be up to 1 on all
games except for Blotto. One possible reason why MaxIn-
mElo cannot be up to 1 on Blotto may be that its size of top
SSCC is very large. The other reason is that we use the low-
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Figure 4: Results of Top-k player identification on transitive
games. γ in red and purple indicates that reports best perfor-
mance for MaxInP and MaxIn-Elo respectively.

rank approximation of the probability matrix’s rotation on
the mElo model. Although we misidentified the top-1 player,
we are still better than all other baselines.

Results of Top-k player identification Figure 4 gives the
results of top-k predictions on transitive games. MaxIn-Elo
and MaxInP both have a parameter γ used to balance ex-
ploration and exploitation, larger γ can lead to a larger can-
didate set then lead to better top-k performance. We keep
other parameters fixed and run experiments with different
γ ∈ {0.2, 0.4, 0.6, ..., 2.0}, and we report the performance
of MaxInP and MaxIn-Elo under the best γ. Figure 4 shows
that MaxIn-Elo has the best performance of the top-1 iden-
tification on all games, and it achieves the comparable per-
formance of top-k identification on most games. Results of
different γ can be found in Appendix.

Discussions

This work studied the problem of multi-agent evaluation
with Elo ratings. We have adopted an online match schedul-
ing framework to improve the sample efficiency of the Elo
rating system and its extension mElo for the intransitive set-
tings. Both empirical and theoretical results justify that our
algorithms can achieve higher sample efficiency and lower
regret on most of the tasks.

We consider two limitations of this work. Firstly, the
match outcome prediction in our algorithm is based on only
ratings without considering features that describe players.
Future work may consider adding features into the match
prediction. Secondly, our algorithm focuses more on iden-
tifying the best player without being tailored for identifying
top-k players. Future work can consider active sampling that
achieves better results on both top-1 and top-k cases.
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Ethics Statement
This work proposes algorithms for online match schedul-
ing that improve the efficiency in identifying top players in
competitive games such as chess. While empirical studies in
this work, which are based on AI agents, have demonstrated
the superior gain of using our proposed methods, there is a
caveat that our algorithms assume that the all players’ skill
levels remain unchanged throughout the repeated competi-
tion rounds. This assumption likely does not hold for human
players whose playing strengths will be affected by energy
consumption due to frequent matches. Therefore, extra cau-
tion needs to be taken when deploying our methods to sched-
ule real-world competitions involving human players and an
interesting research extension would be to model such per-
formance strength changes explicitly in designing the match
scheduling algorithms.
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