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Abstract

Decentralized stochastic gradient descent methods have at-
tracted increasing interest in recent years. Numerous meth-
ods have been proposed for the nonconvex finite-sum opti-
mization problem. However, existing methods have a large
sample complexity, slowing down the empirical convergence
speed. To address this issue, in this paper, we proposed a
novel decentralized stochastic gradient descent method for
the nonconvex finite-sum optimization problem, which en-
joys a better sample and communication complexity than ex-
isting methods. To the best of our knowledge, our work is
the first one achieving such favorable sample and commu-
nication complexities. Finally, we have conducted extensive
experiments and the experimental results have confirmed the
superior performance of our proposed method.

Introduction
With the emergence of large-scale distributed data, the de-
centralized training method has attracted increasing interest
in recent years in the machine learning community. In this
paper, we are interested in optimizing the following decen-
tralized nonconvex finite-sum optimization problem:

min
x∈Rd

F (x) ≜
1

K

K∑
k=1

1

n

n∑
i=1

f
(k)
i (x) . (1)

Here, it is assumed that there are K workers in a decentral-
ized training system. 1

n

∑n
i=1 f

(k)
i (x) is the loss function on

the k-th worker where x ∈ Rd denotes the model parameter
and n is the number of samples on each worker. Essentially,
optimizing Eq. (1) is to learn the model parameter x via the
collaboration between K workers.

To optimize Eq. (1), a wide variety of decentralized train-
ing methods have been proposed under both stochastic and
finite-sum settings. For instance, under the stochastic set-
ting, (Lian et al. 2017) developed the decentralized stochas-
tic gradient descent (DSGD) method and provided the con-
vergence analysis for nonconvex problems. In particular, to
achieve the ϵ-accuracy solution, the sample complexity of
DSGD is O(K/ϵ4) and the communication complexity is
also O(1/ϵ4). Here, the network topology only affects the
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high-order term of these complexities. (Yu, Jin, and Yang
2019) developed the decentralized stochastic gradient de-
scent with momentum (DSGDM) method, which has the
same theoretical sample and communication complexities as
DSGD. Recently, (Xin, Khan, and Kar 2021; Zhang et al.
2021b) proposed a hybrid decentralized stochastic gradient
descent (HSGD) method, which achieves better sample and
communication complexities. However, these methods focus
on the stochastic setting, failing to disclose how the finite-
sum structure affects those complexities.

As for the finite-sum setting, based on the variance reduc-
tion method developed in (Fang et al. 2018), (Sun, Lu, and
Hong 2020) proposed the decentralized gradient estimation
and tracking (DGET) method, whose sample complexity is
O(Kn+Kn1/2/((1−λ)pϵ2)) and communication complex-
ity is O(1/((1−λ)pϵ2)) where 1−λ is the spectral gap and
p > 1. Afterwards, GT-SARAH (Xin, Khan, and Kar 2022)
refined the theoretical analysis and achieved improved sam-
ple and communication complexities (See Table 1). How-
ever, DGET/GT-SARAH needs to compute the full gradi-
ent periodically to achieve such sample and communication
complexities, which is prohibitive for large-scale data. As
such, their sample complexity is suboptimal. Specifically, it
is inferior to that of the existing centralized method (Li and
Richtárik 2021).

To address the aforementioned problems, we developed
a novel efficient decentralized stochastic gradient descent
method for the nonconvex finite-sum optimization problem.
Particularly, to improve the sample complexity, our method
employs a variance reduction technique to estimate the gra-
dient on each worker and uses the gradient tracking strat-
egy to communicate the gradient across different workers.
Our theoretical analysis demonstrates that our method en-
joys the O(K1/2n1/2/((1 − λ)ϵ2)) sample complexity and
O(1/((1 − λ)ϵ2)) communication complexity. It is worth
noting that our communication complexity is much better
than DGET and GT-SARAH (See Table 1). To the best of
our knowledge, this is the first work achieving such favor-
able sample and communication complexities for the non-
convex finite-sum optimization problem. However, it is chal-
lenging to obtain this theoretical result. Specifically, the
variance-reduced gradient makes it difficult to bound the
consensus error under the gradient-tracking communication
setting. In this paper, we developed novel techniques to ad-
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Methods Sample Communication Requirement FG

Stochastic

DSGD (Lian et al. 2017) O(K
ϵ4
) O( 1

ϵ4
) - -

DSGDM (Yu, Jin, and Yang 2019) O(K
ϵ4
) O( 1

ϵ4
) - -

HSGD (Xin, Khan, and Kar 2021) O
(

1
ϵ3

)
O
(

1
Kϵ3

)
ϵ ≲ min

{
(1−λ)3

λ4K
, (1−λ)1.5

λK

}
-

DGET (Sun, Lu, and Hong 2020) O
(

K
(1−λ)pϵ3

)
O
(

1
(1−λ)pϵ2

)
- -

Finite-sum

DGET (Sun, Lu, and Hong 2020) O
(
Kn+ Kn1/2

(1−λ)pϵ2

)
O
(

1
(1−λ)pϵ2

)
- ✓

GT-SARAH (Xin, Khan, and Kar 2022) O
(
Kn+ K1/2n1/2

ϵ2

)
* O

(
1

(1−λ)3ϵ2

)
n = O

(
K

(1−λ)6

)
✓

EDSGD (Ours) O
(

K1/2n1/2

(1−λ)ϵ2

)
O
(

1
(1−λ)ϵ2

)
- ✗

Table 1: The sample and communication complexity of different methods to achieve the ϵ-accuracy solution, i.e.,
1
T

∑T−1
t=0 ∥∇F (x̄t)∥2 ≤ ϵ2. Here, 1 − λ ∈ (0, 1) denotes the spectral gap of the network topology. The last column denotes

whether it is necessary to compute the full gradient. Note that DGET can also be used in the stochastic setting, and p ∈ R+ is
not explicitly given in (Sun, Lu, and Hong 2020). * The claimed spectral-gap-independent sample complexity of GT-SARAH
in (Xin, Khan, and Kar 2022) is not true because n depends on the spectral gap.

dress this challenging problem and successfully established
the convergence rate of our method. Finally, we applied our
method to train the decentralized nonconvex logistic regres-
sion model. The extensive experimental results have demon-
strated the superior performance of our proposed method. In
summary, our work has made the following contributions.

• We proposed a novel decentralized stochastic gradient
descent method for the nonconvex finite-sum optimiza-
tion problem, which can achieve the O(K1/2n1/2/((1−
λ)ϵ2)) sample complexity and O(1/((1 − λ)ϵ2)) com-
munication complexity.

• We developed novel techniques for bounding the consen-
sus error across different workers to establish the conver-
gence rate of our method.

• We conducted extensive experiments to verify the con-
vergence performance of our method and the experimen-
tal result can support our theoretical result.

Related Works
Decentralized optimization methods have been actively
studied in recent years due to their efficiency and robust-
ness in communication. In particular, different from the
parameter-server schema where there might be a commu-
nication bottleneck in the central server, there is no central
server in a decentralized training system, and the workers
conduct peer-to-peer communication. In this regime, numer-
ous decentralized optimization methods (Lian et al. 2017;
Yu, Jin, and Yang 2019; Koloskova et al. 2020; Lu et al.
2019; Wang et al. 2019; Shi et al. 2015; Tang et al. 2018;
Koloskova, Stich, and Jaggi 2019; Gao and Huang 2021;
Gao, Xu, and Vucetic 2021; Gao and Huang 2020) have been
proposed. In terms of the communication strategy, those
methods can be categorized into two classes: the gossip-
based method and gradient-tracking-based method. The lat-
ter one uses the gradient tracking technique to track the
global gradient so that it is more stable than the gossip-based
method. Hence, in this paper, we will focus on the gradient-
tracking-based method.

To optimize the large-scale machine learning models ef-
ficiently, a wide variety of works have been proposed to
improve the convergence performance of decentralized op-
timization algorithms. For instance, (Lian et al. 2017) de-
veloped DSGD and disclosed that the dominant term of its
convergence rate is consistent with the centralized coun-
terpart. (Koloskova et al. 2020) studied the convergence
rate of decentralized SGD with changing topology and lo-
cal updates for both convex and nonconvex problems. (Pu
and Nedić 2021) investigated the convergence rate of the
gradient-tracking-based decentralized SGD for convex prob-
lems, while (Lu et al. 2019) established its convergence
rate for the nonconvex problems. Additionally, (Yu, Jin, and
Yang 2019; Lin et al. 2021; Yuan et al. 2021) applied the
momentum technique to decentralized SGD for accelerating
the convergence speed. However, the sample complexity and
communication complexity of these methods are suboptimal
due to the large variance of stochastic gradients.

More recently, to improve the sample complexity and
communication complexity of decentralized SGD, a line of
research (Li et al. 2020; Qureshi et al. 2021; Sun, Lu, and
Hong 2020; Xin, Khan, and Kar 2021; Zhang et al. 2021b,a;
Xin, Khan, and Kar 2020) focuses on reducing the variance
of stochastic gradients (Defazio, Bach, and Lacoste-Julien
2014; Fang et al. 2018; Nguyen et al. 2017; Zhou, Xu, and
Gu 2018). For instance, (Xin, Khan, and Kar 2020) applied
SAGA (Defazio, Bach, and Lacoste-Julien 2014) and SVRG
(Johnson and Zhang 2013) to the decentralized SGD method
and established the convergence rate for convex problems.
(Sun, Lu, and Hong 2020) developed the decentralized gra-
dient estimation and tracking (DGET) method by incorpo-
rating the SPIDER (Fang et al. 2018) gradient estimator into
the gradient tracking framework, resulting better sample and
communication complexities than traditional decentralized
SGD method for nonconvex problems. Additionally, (Xin,
Khan, and Kar 2021; Zhang et al. 2021b) developed another
decentralized variance-reduced SGD (HSGD) method based
on the STORM gradient estimator (Cutkosky and Orabona
2019). However, it has a worse communication complexity
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than DGET. Thus, it is necessary to develop more efficient
decentralized methods to improve the sample and communi-
cation complexity.

Efficient Decentralized Stochastic Gradient
Descent Method

In Algorithm 1, we developed an efficient decentralized
stochastic gradient descent (EDSGD) method to have bet-
ter sample and communication complexities. In detail, in
the t-th iteration, each worker k randomly selects a subset
S(k)
t from the local dataset and then computes the following

variance-reduced gradient:

v
(k)
t =

1

st

∑
i∈S(k)

t

(
∇f

(k)
i (x

(k)
t )−∇f

(k)
i (x

(k)
t−1

)

+ ρt

( 1

st

∑
i∈S(k)

t

(∇f
(k)
i (x

(k)
t−1)− g

(k)
i,t−1) +

1

n

n∑
j=1

g
(k)
j,t−1

)
+ (1− ρt)v

(k)
t−1 ,

(2)
where |S(k)

t | = st, ρt ∈ [0, 1] is a hyperparameter, g(k)
i,t is

the historical gradient of the i-th sample on the k-th worker,
which is updated by

g
(k)
i,t =

{
∇f

(k)
i (x

(k)
t ), for i ∈ S(k)

t

g
(k)
i,t−1, otherwise .

With this variance reduced gradient v(k)
t , our algorithm uti-

lizes the gradient tracking strategy to update the model pa-
rameter as follows:

u
(k)
t =

∑
j∈Nk

wkju
(j)
t−1 + v

(k)
t − v

(k)
t−1 ,

x
(k)
t+1 =

∑
j∈Nk

wkjx
(j)
t − ηu

(k)
t ,

(3)

where Nk denotes the neighbors of the k-th worker, wkj > 0
denotes the edge weight between the k-th worker and the
j-th worker, u(k)

t is used to track the global gradient, and
η > 0 is the learning rate.

In Algorithm 1, the gradient estimator v(k)
t has a smaller

variance so that the convergence speed can be acceler-
ated. Additionally, compared with DGET (Sun, Lu, and
Hong 2020), Algorithm 1 does not need to compute the
full gradient periodically. Thus, our method is more effi-
cient than those methods. In fact, the gradient estimator in
Eq. (1) was first developed in (Li and Richtárik 2021). It
can be viewed as the combination of SPIDER (Fang et al.
2018; Nguyen et al. 2017) and SAGA (Defazio, Bach, and
Lacoste-Julien 2014). However, (Li and Richtárik 2021)
only studied its convergence rate for the standard noncon-
vex finite-sum problem, rather than the decentralized opti-
mization problem. Hence, it is still unclear whether v(k)

t can
be applied to the decentralized setting. Especially when the

Algorithm 1: Efficient Decentralized Stochastic Gradient
Descent Method (EDSGD)

Input: x
(k)
−1 = x

(k)
0 = x0, v(k)

−1 = 0,g
(k)
i,−1 = 0, ρt ∈ [0, 1],

η > 0, st > 0
1: for t = 0, · · · , T − 1 do
2: Randomly select a subset of samples S(k)

t with
|S(k)

t | = st:
v
(k)
t = 1

st

∑
i∈S(k)

t

(
∇f

(k)
i (x

(k)
t )−∇f

(k)
i (x

(k)
t−1

)
+

(1 − ρt)v
(k)
t−1 + ρt

(
1
st

∑
i∈S(k)

t
(∇f

(k)
i (x

(k)
t−1) −

g
(k)
i,t−1) +

1
n

∑n
j=1 g

(k)
j,t−1

)
3: Update x:

u
(k)
t =

∑
j∈Nk

wkju
(j)
t−1 + v

(k)
t − v

(k)
t−1

x
(k)
t+1 =

∑
j∈Nk

wkjx
(j)
t − ηu

(k)
t

4: Update g
(k)
i,t :

g
(k)
i,t =

{
∇f

(k)
i (x

(k)
t ), for i ∈ S(k)

t

g
(k)
i,t−1, otherwise

5: end for

gradient tracking communication strategy is used, it is un-
clear whether v(k)

t can lead to better sample and communi-
cation complexities. In particular, the variance reduced gra-
dient v(k)

t and the tracked gradient u(k)
t make it extraordi-

narily challenging to bound the consensus error ∥x(k)
t −x̄t∥2

(where x̄t = 1
K

∑K
k=1 x

(k)
t ) for establishing the conver-

gence rate of our Algorithm 1. In this paper, we addressed
this challenging problem and theoretically demonstrated that
Algorithm 1 can achieve better sample and communication
complexities than DGET.

To establish the convergence rate of our method, we in-
troduce the following commonly used assumptions.

Assumption 1. (L-smooth) For ∀x,y, there exists a con-
stant L > 0, such that

∥∇f
(k)
i (x)−∇f

(k)
i (y)∥ ≤ L∥x− y∥ , ∀i, k. (4)

Assumption 2. (Network topology) The adjacency matrix
W = [wij ] ∈ RK×K

+ is symmetric and doubly stochastic.
Here, wij > 0 indicates that the i-th worker and the j-th
worker are connected. In addition, the eigenvalues {λi}ni=1
of W are assumed to satisfy |λn| ≤ · · · ≤ |λ2| < |λ1| = 1.

Based on Assumption 2, we can represent the spectral gap
of the network topology as 1− λ where λ ≜ |λ2| < 1. With
these two assumptions, we established the convergence rate
of Algorithm 1 in Theorem 1.

Theorem 1. Given Assumptions 1-2, for Algorithm 1,
by setting η ≤ min

{
1
2L ,

s1√
504nL

,
(

− 2
1−λ2 +√

4
(1−λ2)2 + 42n

s21

(1−λ2)2

ρ1

)/
252nL

s21
, (1−λ2)

2L

/(
1 + 504n

s21

)}
,

s0 ≤ n, st ≡ s1 for t ≥ 1, ρ0 = 1, ρt ≡ ρ1 = s1
2n for t ≥ 1,
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we can obtain

1

T

T−1∑
t=0

E[∥∇F (x̄t)∥2] ≤
2(F (x0)− F (x∗))

ηT

+
14(s0 − s20/n)

s0s1

1

TK

K∑
k=1

1

n

n∑
i=1

∥∇f
(k)
i (x0)∥2

+
24(n− s0)

s0s1

1

TK

K∑
k=1

1

n

n∑
i=1

∥∇f
(k)
i (x0)∥2 ,

(5)

where x∗ denotes the optimal solution.
Remark 1. (Communication complexity) From Theorem 1,
it can be observed that η = O(1 − λ). Thus, to achieve
the ϵ-accuracy solution, the convergence rate (i.e., the com-
munication complexity) of Algorithm 1 is O

(
1

(1−λ)ϵ2

)
. It

is worth noting that this communication complexity enjoys
better dependence on the spectral gap 1 − λ than existing
methods. Specifically, DGET (Sun, Lu, and Hong 2020) has
the communication complexity O

(
1

(1−λ)pϵ2

)
where p > 1,

and the best communication complexity of GT-SARAH (Xin,
Khan, and Kar 2022) is O

(
1

(1−λ)2ϵ2

)
in the big-data or

large-network regime. Thus, our communication complexity
is better than those methods according to the spectral gap.
Remark 2. (Sample complexity) By setting
s0 = s1 =

√
n/K where K < n, then

η ≤ min
{

1
2L ,

1√
504KL

, 1
252KL

(
− 2

1−λ2 +√
4

(1−λ2)2 + 84n1/2K3/2(1− λ2)2
)
, (1−λ2)
2(1+504K)L

}
,

we can get

1

T

T−1∑
t=0

E[∥∇F (x̄t)∥2] ≤
2(F (x0)− F (x∗))

ηT

+
14 + 24K

TK

K∑
k=1

1

n

n∑
i=1

∥∇f
(k)
i (x0)∥2 .

(6)

Hence, to achieve the ϵ-accuracy solution, the sam-
ple complexity of Algorithm 1 is K × s1 × T =

O
(

K1/2n1/2

(1−λ)ϵ2

)
. Obviously, it is better than the sample com-

plexity O
(
Kn+ Kn1/2

((1−λ)pϵ2)

)
of DGET. This improvement is

because our method does not need to compute the full gra-
dient periodically as DGET. Note that GT-SARAH claims
that it can achieve a topology-independent sample complex-
ity O

(
Kn+ K1/2n1/2

ϵ2

)
when the number of samples n is as

large as O
(

K
(1−λ)6

)
and the communication complexity is

increased to O
(

1
(1−λ)3ϵ2

)
. However, it is not true because

n depends on the spectral gap heavily. Thus, its sample com-
plexity is worse than ours according to the spectral gap.

In summary, our method can achieve better sample and
communication complexities than DGET and GT-SARAH.
Hence, our method is more efficient than those existing de-
centralized methods.

Theoretical Analysis
In this section, we present the proof sketch of Theorem 1.
The detailed proof can be found in Supplementary Material.

Throughout our theoretical analysis, we use m̄t =
1
K

∑K
k=1 m

(k)
t to represent the averaged variable across all

workers, where m
(k)
t includes x

(k)
t , v

(k)
t , u

(k)
t . In addi-

tion, we use Mt = [m
(1)
t ,m

(2)
t , · · · ,m(K)

t ] to denote the
variables in all workers. Furthermore, we denote M̄t =
[m̄t, m̄t, · · · , m̄t], which includes K copies of m̄t. To es-
tablish the convergence rate of Algorithm 1, an important
step is to bound the consensus errors

∑K
k=1 ∥x

(k)
t − x̄t∥2

and
∑K

k=1 ∥u
(k)
t − ūt∥2. However, it is challenging due to

the interaction between the variance-reduced gradient v(k)
t

and the tracked gradient u(k)
t . To address this challenging

problem, we first constructed the recursive upper bound for
these two consensus errors and then developed a novel Lya-
punov function. With these novel techniques, we can estab-
lish the convergence rate of Algorithm 1. To this end, we
first introduce two auxiliary lemmas.

Lemma 1. With Assumption 2, we can get

K∑
k=1

∥x(k)
t+1 − x

(k)
t ∥2 ≤ 12

K∑
k=1

∥x(k)
t − x̄t∥2

+ 3η2
K∑

k=1

∥u(k)
t − ūt∥2 + 3η2K∥v̄t∥2 .

(7)

Lemma 2. With Assumption 1, for t > 0, we set the batch
size as st = s1 and ρt = ρ1. we can get

E[∥v(k)
t+1 − v

(k)
t ∥2]

≤ 3L2

s1
E[∥x(k)

t+1 − x
(k)
t ∥2] + 3ρ21E[∥v

(k)
t −∇f (k)(x

(k)
t )∥2]

+
3ρ21
s1

1

n

n∑
j=1

E[∥∇f
(k)
j (x

(k)
t )− g

(k)
j,t ∥

2] .

(8)

Based on these two lemmas, we can establish the upper
bound for the consensus error in Lemma 3 and Lemma 4,
respectively.

Lemma 3. With Assumption 2, we can get

K∑
k=1

∥u(k)
t+1 − ūt+1∥2 ≤ 1 + λ2

2

K∑
k=1

∥u(k)
t − ūt∥2

+
6L2

(1− λ2)s1

K∑
k=1

∥x(k)
t+1 − x

(k)
t ∥2

+
6ρ21

1− λ2

K∑
k=1

∥v(k)
t −∇f (k)(x

(k)
t )∥2

+
6ρ21

(1− λ2)s1

K∑
k=1

1

n

n∑
j=1

∥∇f
(k)
j (x

(k)
t )− g

(k)
j,t ∥

2 .

(9)
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Lemma 4. With Assumption 2, we can get

K∑
k=1

∥x(k)
t+1 − x̄t+1∥2 ≤ 1 + λ2

2

K∑
k=1

∥x(k)
t − x̄t∥2

+
2η2

1− λ2

K∑
k=1

∥u(k)
t − ūt∥2 .

(10)

Furthermore, we introduce the following descent lemma
for the objective function value.
Lemma 5. With Assumption 1, we can get

F (x̄t+1) ≤ F (x̄t)−
η

2
∥∇F (x̄t)∥2 +

(η2L
2

− η

2

)
∥v̄t∥2

+
ηL2

K

K∑
k=1

∥x̄t − x
(k)
t ∥2 + η

K

K∑
k=1

∥∇f (k)(x
(k)
t )− v

(k)
t ∥2 .

(11)
The proof of the aforementioned lemmas can be found

in Supplementary Material. Moreover, we include two ad-
ditional lemmas to bound the gradient variance. Their proof
can be found in (Li and Richtárik 2021).
Lemma 6. (Li and Richtárik 2021) For t > 0, we set the
batch size as st = s1 and ρt = ρ1. Then, we can get

E[∥v(k)
t −∇f (k)(x

(k)
t )∥2] ≤ 2L2

s1
E[∥x(k)

t − x
(k)
t−1∥2]

+
2ρ21
s1

1

n

n∑
i=1

E[∥∇f
(k)
i (x

(k)
t−1)− g

(k)
i,t−1∥

2]

+ (1− ρ1)
2E[∥v(k)

t−1 −∇f (k)(x
(k)
t−1)∥2] .

(12)
For t = 0, we set the batch size as s0 and ρ0 = 1, then we
can get

E[∥v(k)
0 −∇f (k)(x0)∥2]

=
n− s0

(n− 1)s0

1

n

n∑
i=1

∥∇f
(k)
i (x0)∥2 .

(13)

Lemma 7. (Li and Richtárik 2021) For t > 0, we set the
batch size as st = s1 and α1 > 0. Then, we can get

E[
1

n

n∑
i=1

∥∇f
(k)
i (x

(k)
t )− g

(k)
i,t ∥

2]

≤ 2L2(1− s1
n
)(1 +

1

α1
)E[∥x(k)

t − x
(k)
t−1∥2]

+ (1− s1
n
)(1 + α1)

1

n

n∑
i=1

E[∥∇f
(k)
i (x

(k)
t−1)− g

(k)
i,t−1∥

2] .

(14)
When t = 0, we can get

E[
1

n

n∑
i=1

∥∇f
(k)
i (x0)− g

(k)
i,0 ∥

2]

=
n− b0
n2

n∑
i=1

∥∇f
(k)
i (x0)∥2 .

(15)

To establish the convergence rate of Algorithm 1, we fur-
ther developed a novel Lyapunov function

Ht = E[F (x̄t)] +
C1

K

K∑
k=1

E[∥∇f (k)(x
(k)
t )− v

(k)
t ∥2]

+
C2

K

K∑
k=1

1

n

n∑
j=1

E[∥∇fj(x
(k)
t )− g

(k)
j,t ∥

2]

+
C3

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] + C4

K

K∑
k=1

E[∥ūt − u
(k)
t ∥2] ,

(16)
where C1 = 3η

ρ1
, C2 = 14nηρ1

s21
, C3 = L, C4 = (1−λ2)η

6ρ1
. For

all the items in Ht, we have established their upper bound
in the aforementioned lemmas. Then, based on this novel
Lyapunov function, we can bound the gradient norm in each
iteration. Consequently, the convergence rate of Algorithm 1
can be established. In the following, we present the details
to prove Theorem 1.

Proof. Based on the aforementioned lemmas, we can get
Ht+1 −Ht

≤ E[F (x̄t)]−
η

2
E[∥∇F (x̄t)∥2]

+
A1

K

K∑
k=1

E[∥x(k)
t − x̄t∥2] +

A2

K

K∑
k=1

E[∥u(k)
t − ūt∥2]

+
A4

K

K∑
k=1

1

n

n∑
j=1

E[∥∇f
(k)
j (x

(k)
t )− g

(k)
j,t ∥

2]

+
A5

K

K∑
k=1

E[∥v(k)
t −∇f (k)(x

(k)
t )∥2] +A3E[∥v̄t∥2] ,

(17)
where

A1 = 12
(
2L2(1− s1

n
)(1 +

1

α1
)C2 +

2L2

s1
C1

+
6L2

(1− λ2)s1
C4

)
− 1− λ2

2
C3 + ηL2 ,

A2 = 3η2
(
2L2(1− s1

n
)(1 +

1

α1
)C2 +

2L2

s1
C1

+
6L2

(1− λ2)s1
C4

)
− 1− λ2

2
C4 +

2η2

1− λ2
C3 ,

A3 = 3η2
(
2L2(1− s1

n
)(1 +

1

α1
)C2 +

2L2

s1
C1

+
6L2

(1− λ2)s1
C4

)
+

(η2L
2

− η

2

)
,

A4 =
2ρ21
s1

C1 +
(
(1− s1

n
)(1 + α1)− 1

)
C2

+
6ρ21

(1− λ2)s1
C4 ,

A5 = (1− ρ1)
2C1 − C1 + η +

6ρ21
1− λ2

C4 .

(18)
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Dataset Instance Dimensionality
a9a (LIBSVM) 32,561 123
w8a (LIBSVM) 49,749 300
ijcnn1 (LIBSVM) 49,990 22
cod-rna (LIBSVM) 59,535 8
covtype (LIBSVM) 581012 54
MiniBooNE (OpenML) 130,064 50

Table 2: Description of Benchmark Datasets

By setting ρ1 = s1
2n and η ≤ min

{
1
2L ,

s1√
504nL

,
(
− 2

1−λ2 +√
4

(1−λ2)2 + 42n
s21

(1−λ2)2

ρ1

)/
252nL

s21
, (1−λ2)

2L

/(
1 + 504n

s21

)}
,

we can get Ai ≤ 0 for i = 1, 2, 3, 4, 5. Hence, by summing
t from 1 to T − 1, we can get

η

2

T−1∑
t=1

E[∥∇F (x̄t)∥2] ≤ H1 −HT

≤ E[F (x̄1)]− F (x∗) +
C1

K

K∑
k=1

E[∥∇f (k)(x
(k)
1 )− v

(k)
1 ∥2]

+
C2

K

K∑
k=1

E[
1

n

n∑
j=1

∥∇fj(x
(k)
1 )− g

(k)
j,1 ∥

2]

+
C3

K

K∑
k=1

E[∥x̄1 − x
(k)
1 ∥2] + C4

K

K∑
k=1

E[∥ū1 − u
(k)
1 ∥2]

≤ F (x̄0)− F (x∗)−
η

2
E[∥∇F (x̄0)∥2]

+
14nηρ1

s21
(1− s0

n
)
1

K

K∑
k=1

1

n

n∑
i=1

∥∇f
(k)
i (x0)∥2

+
3η

ρ1

n− s0
(n− 1)s0

1

K

K∑
k=1

1

n

n∑
i=1

∥∇f
(k)
i (x0)∥2

≤ F (x0)− F (x∗)−
η

2
E[∥∇F (x̄0)∥2]

+
7η(s0 − s20/n)

s0s1

1

K

K∑
k=1

1

n

n∑
i=1

∥∇f
(k)
i (x0)∥2

+
12η(n− s0)

s0s1

1

K

K∑
k=1

1

n

n∑
i=1

∥∇f
(k)
i (x0)∥2

(19)
where the second step follows from the definition of H1 and
HT ≥ F (x∗), the third step follows from Lemmas 3, 4, 6, 7,
the last step follows from ρ1 = s1

2n . By reformulating this
inequality and dividing ηT

2 on both sides, we complete the
proof. More details can be found in Supplementary Material.

Experiments
To verify the performance of our method, we use Algo-
rithm 1 to optimize the decentralized logistic regression

problem which is defined as:

min
x∈Rd

− 1

K

K∑
k=1

{
1

n

n∑
i=1

(
b
(k)
i log(

1

1 + e−xT a
(k)
i

)

+ (1− b
(k)
i ) log(

e−xT a
(k)
i

1 + e−xT a
(k)
i

)
)}

+ γ
d∑

j=1

x2
j

1 + x2
j

,

(20)
Here, (a

(k)
i , b

(k)
i ) represents the i-th sample on the k-th

worker where a
(k)
i is the feature vector and b

(k)
i is its label.

Throughout our experiments, the regularization coefficient
γ is set to 0.001.

In our experiments, we use six classification datasets,
which are available at LIBSVM1 and OpenML2. The statis-
tic information of these datasets is summarized in Table ??.
In our experiment, ten workers are used to collaboratively
train the logistic regression model. To simulate the commu-
nication graph, we use the Erdós-Rényi random graph to
generate the connection between different workers, where
the edge probability is set to 0.4. Then, the samples are ran-
domly distributed to ten workers and each worker uses its
own dataset to compute the stochastic gradient for updating
model parameters.

The baseline methods used include DSGD (Lian et al.
2017), DSGDM (Yu, Jin, and Yang 2019), HSGD (Xin,
Khan, and Kar 2021; Zhang et al. 2021b), DGET (Sun,
Lu, and Hong 2020), and GT-SARAH (Xin, Khan, and Kar
2022). According to the theoretical results of those baseline
methods, we set the batch size of the first three methods to
256 and DGET to

√
n. As for GT-SARAH and our method,

we set it to
√

n/K. Similar to (Sun, Lu, and Hong 2020),
we set the learning rate to 0.001 for all methods.

In Figure 1, we plot the loss function value with respect
to the number of gradient evaluations. It can be observed
that our proposed EDSGD method converges faster than
DGET and GT-SARAH, confirming that our method is sam-
ple efficient. The reason is that our method does not need
to periodically compute the full gradient. In Figure 2, we
plot the gradient norm with respect to the number of gradi-
ent evaluations. Similarly, EDSGD outperforms DGET and
GT-SARAH, which further confirms the effectiveness of
our method. In summary, our method outperforms baseline
methods theoretically and empirically.

Conclusion
In this paper, we developed a novel decentralized stochastic
gradient descent method. Specifically, our method does not
need to compute the full gradient as existing methods. We
further developed novel techniques to bound the consensus
error and a new Lyapunov function to establish the conver-
gence rate of our methods, showing that our method enjoy
better sample and communication complexities than existing
methods. Both the theoretical and empirical results demon-
strate that our method is superior to existing methods.

1https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
2https://www.openml.org
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Figure 1: The objective function value versus the number of gradient evaluations.
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Figure 2: The gradient norm versus the number of gradient evaluations.
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