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Abstract

Offline reinforcement learning aims to maximize the ex-
pected cumulative rewards with a fixed collection of data.
The basic principle of current offline reinforcement learning
methods is to restrict the policy to the offline dataset action
space. However, they ignore the case where the dataset’s tra-
jectories fail to cover the state space completely. Especially,
when the dataset’s size is limited, it is likely that the agent
would encounter unseen states during test time. Prior policy-
constrained methods are incapable of correcting the state de-
viation, and may lead the agent to its unexpected regions fur-
ther. In this paper, we propose the state deviation correction
(SDC) method to constrain the policy’s induced state distribu-
tion by penalizing the out-of-distribution states which might
appear during the test period. We first perturb the states sam-
pled from the logged dataset, then simulate noisy next states
on the basis of a dynamics model and the policy. We then train
the policy to minimize the distances between the noisy next
states and the offline dataset. In this manner, we allow the
trained policy to guide the agent to its familiar regions. Ex-
perimental results demonstrate that our proposed method is
competitive with the state-of-the-art methods in a GridWorld
setup, offline Mujoco control suite, and a modified offline
Mujoco dataset with a finite number of valuable samples.

Introduction
In recent years, reinforcement learning has progressed in
substantial leaps in areas ranging from video games (Mnih
et al. 2015) to simulated robotic tasks (Schulman et al. 2015;
Haarnoja et al. 2018). However, the applicability of rein-
forcement learning in real-world domains is hampered by
several challenges. On the one hand, the online data collec-
tion – reinforcement learning’s innate characteristic – threat-
ens to introduce risks in safety-critical settings (Berkenkamp
et al. 2017). On the other hand, the high sample complexity
of reinforcement learning poses a significant challenge for
industry practitioners with limited resources.

Offline reinforcement learning seemingly holds the
promise of tackling the above difficulties (Levine et al.
2020). The interactive data generation process is eliminated,
and a fixed collection of data is offered. It turns out that
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in this case, the agent can get rid of risky behaviors dur-
ing the training process. Additionally, experiences from a
variety of sources such as video websites and published
datasets(Gulcehre et al. 2020) could be employed to train the
agent. By exploiting large-scale datasets, offline reinforce-
ment learning is also a solution to high sample complexity.

Nevertheless, most commonly used reinforcement learn-
ing methods easily fail to learn satisfactory strategies when
they are applied in offline settings. The cause is that these
algorithms suffer from the gap between the trained pol-
icy and the offline policy (Fujimoto, Meger, and Precup
2019), which is referred as the extrapolation error. Due to
the extrapolation error, these methods tend to opt for the
out-of-distribution target actions when running the Bellman
backup, and are bound to overestimate the Q-value function,
thus undermining their efficacies.

In the principle of reducing the extrapolation error, most
previous works attempt to constrain the trained policy to the
offline dataset’s action space (Fujimoto, Meger, and Precup
2019; Kumar et al. 2019; Wu, Tucker, and Nachum 2019;
Kumar et al. 2020). We now refer to these methods as policy-
constrained algorithms. Although these offline variants gain
considerable success in the offline setting, they neglect the
scenario where the dataset cannot cover the state space com-
pletely. In this setting, the trained policy is likely to fail to
generalize well in the state space. This issue is not severe
when presented with large-scale datasets. It comes into ef-
fect when offered a dataset with a modest number of sam-
ples since the dataset is incapable of reflecting the actual
state space and the dynamics. Without the loss of gener-
ality, we assume that an agent’s initial position during the
test time is slightly different from the dataset. The afore-
mentioned policy-constrained offline methods concern little
about whether the state at the next time step is close to the
dataset. When the agent follows these methods, it stands a
chance to encounter a new state that it never observes before.
If the agent insists on selecting the ‘correct’ action later, the
state deviation will inevitably accumulate over time.

We show in Figure 1 that state deviation could undermine
the policy’s performance. The majority of the actions in the
dataset are ’right’. The offline policy tends to choose the
’up’ action when the agent runs into the wall. If the agent
is initialized at the purple point close to the static dataset
and complies with the default policy during the test time, it
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Figure 1: The agent diverges from the dataset when it starts
form the purple point.

will diverge considerably from the dataset. As this example
points out, it is vital for the agent to simultaneously constrain
both its state and action in the support set.

In this paper, we propose the state deviation correction
(SDC) method to reduce the state visitation mismatch be-
tween the trained policy and the offline dataset. Our basic
idea is to predict the outcome of executing the policy and en-
sure that the generated state is in the support of the dataset.
The framework of our proposed method consists of three
components: a dynamics model, a state transition model, and
an actor-critic agent. The dynamics model is trained to pre-
dict the next state conditioned on the state and the action.
Meanwhile, we maintain a state transition model that takes a
state as input and predicts the next state. Note that the state
transition model, which is a generative model and specifies
the support of the state space, is independent of actions. We
train the policy so that it can yield the action which directs
the agent to the in-distribution region when perturbing the
starting state. The perturbed state is used to represent the sit-
uation where the state deviation appears. The in-distribution
region is modeled by the state transition model. In the mean-
time, the dynamics model is utilized to predict the state at the
next time step when starting from the noisy state and follow-
ing the policy. The agent is thus expected to predict potential
next states and move to the state close to the static dataset,
therefore reducing state deviation.

To aid understanding of SDC, we show the existence of
state deviation of most commonly used offline RL methods
in a GridWorld setting, highlighting the advantage of our
state-constrained method. We then evaluate our proposed
method on D4RL (Fu et al. 2020) tasks. The experimental
results demonstrate that our method is competitive with the
state-of-the-art algorithms in the Mujoco control suite. Ad-
ditionally, to test the validity of our methods when presented
with limited data, we design a new task by reducing the num-
ber of expert samples gradually. Our proposed method per-
forms better than the policy-constrained methods by a large
margin in this setting.

Related Work
Offline reinforcement learning (Lange, Gabel, and Ried-
miller 2012; Riedmiller 2005) focuses on training a pol-
icy given a fixed dataset and receives increasing attention
recently (Siegel et al. 2020; Kostrikov et al. 2021; Urpı́,

Curi, and Krause 2021; Jin, Yang, and Wang 2021; Yu
et al. 2021). It has been applied in healthcare (Gottesman
et al. 2018), recommendation systems (Swaminathan and
Joachims 2015), dialogue systems (Zhou et al. 2017), and
autonomous driving (Sallab et al. 2017). In this case, stan-
dard off-policy methods (Mnih et al. 2015) fail to perform
robustly and they are sensitive to the dataset distribution.
The problem has been studied in approximate dynamic pro-
gramming (Bertsekas and Tsitsiklis 1995). This study as-
cribes it to the errors arising from distribution shift and
function approximation. Recently, Van Hasselt et al. (2018)
shows that the temporal difference algorithms will diverge
when represented with function approximators and trained
under off-policy data.

Some works mitigate the extrapolation error problem in
the view of restricting the value function. Agarwal, Schuur-
mans, and Norouzi (2019) introduces value function ensem-
bles to stabilize the update of the Q-function. Kumar et al.
(2020) learns a lower bound of the Q-value of policy by pe-
nalizing out-of-distribution state-action samples and maxi-
mizing the Q-value of the in-distribution samples. Our pro-
posed method is in the line of restraining the policy dis-
tribution. Fujimoto, Meger, and Precup (2019) minimizes
the state-action distribution distance between the trained
and offline policies. Kumar et al. (2019) directly constrains
the policy by minimizing the Maximum Mean Discrepancy
(MMD) (Gretton et al. 2012) between the trained policy and
the offline policy. Jaques et al. (2019) takes advantage of
KL-divergence and proposes a regularization term to train
the policy. Wu, Tucker, and Nachum (2019) proposes an ex-
tra reward which denotes the KL-divergence between the
current policy and a generative policy model. Ghasemipour,
Schuurmans, and Gu (2021) introduces EMaQ which sim-
plifies BCQ and considers the number of samples and the
proposal distribution. These methods attempt to constrain
the policy in the offline action space. Unlike these works,
we observe that the out-of-distribution states during the test
time could weaken the policy’s performance and we turn to
control the state visitation to be in the support of the dataset.

Furthermore, our proposed method is related to Yu et al.
(2020); Kidambi et al. (2020) since they also utilize a
learned model. Yu et al. (2020) learns a dynamics model
and simulates samples from the dynamics model to train
the policy network. Kidambi et al. (2020) draws on the
static dataset to learn a pessimistic MDP and trains a near-
optimal policy in this pessimistic MDP. This method em-
ploys an unknown state-action detector to determine if
a state-action pair is unknown and uses a model-based
method (Rajeswaran, Mordatch, and Kumar 2020) to train
the policy. Swazinna, Udluft, and Runkler (2021) uses a dy-
namics model to rollout trajectories and punish the out-of-
distribution states and actions. Our method predicts one step
where the model has high prediction accuracy and pulls the
agent back at once when it deviates from the dataset.

Compared with them, our proposed method does not uti-
lize imaginary samples to train the policy directly and we
focus on state deviation. We generate noisy next states based
on the dynamic model, minimize their distance from the
dataset, and backpropagate the gradient through the policy.
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Background
In general, we consider a reinforcement learning problem
which could be modeled by a Markov decision process
(S,A, P,R, γ), with the state space S, the action space A,
the transition probability matrix P , the reward function R,
and the discount factor γ. Each term of P denotes the prob-
ability of arriving at s′ when selecting a at state s. At each
time step, an agent is located at s and chooses an action a.
After interacting with an environment, it arrives at next state
s′ and obtains a reward r. The goal of reinforcement learning
is to train a policy π(a|s) to maximize the expected return:

max
π

Eπ[
∑
t=0

γtrt]. (1)

In reinforcement learning, the cumulative rewards ex-
pectation is defined as value function Qπ(s, a) =
Eπ[

∑
t=0 γ

trt|s, a]. Q-learning method(Watkins and Dayan
1992) trains the value function by forming a Bellman target:

T Q(s, a) := E[r + γmax
a′

Q(s′, a′)], (2)

where T is the Bellman operator. When the state space is
huge or continuous, it is hard to enumerate all the states.
Neural networks are recently utilized to approximate the ac-
tual value function. DQN updates the value function by min-
imizing:

Es,a,r,s′∼D(Q(s, a; θ)− (r+ γ(max
a′

Q(s′, a′; θ−)))2, (3)

where D is a replay buffer collecting previous samples, and
θ, θ− are parameters of the Q neural network and target Q
network, respectively. When the action space is continuous,
selecting an optimal action is challenging. A policy π(a|s) is
employed to sample actions, and the loss function is defined
as:

Es,a,r,s′∼D(Q(s, a; θ)− (r + γ(Q(s′, π(a′|s′;ω); θ−)))2,
(4)

where ω is the parameter of the policy. The policy is updated
to yield the action with the maximal Q-value:

max
ω

Q(s, π(a|s;ω); θ) (5)

State Deviation
State deviation is introduced by the state space and the tran-
sition function’s mismatches between the offline data and
the actual environment. To be specific, there are two ways
in the following sections that the mismatches could lead to
state deviation and impair the trained policy’s performance.

Initial State Difference
The initial state distribution ρ̂ of the offline dataset might be
different from that of the actual environment ρ. Considering
that the initial states of the agent may vary drastically across
episodes in many scenarios, a modest number of trajecto-
ries are likely to induce an empirical distribution far from
ρ. For instance, the initial state of the Halfcheetah agent in
the Mujoco control suite has 17 dimensions, each of which
has a range of [−0.1, 0.1]. When the game is reset, the ini-
tial state is sampled randomly from this region. However,

the offline dataset in D4RL(Fu et al. 2020) has an insuffi-
cient amount of initial data. Because D4RL dataset has up
to 1, 000, 000 samples for each difficulty level and merely
1, 000 initial state samples for the Halfcheetah task. During
the test period, there is a high possibility that the agent has
never encountered the initial state in the training dataset.

Dynamics Bias
The empirical distribution of the dynamics of the offline
dataset P̂ might differ from the true dynamics P . The
dynamics bias has no effect if P̂ (s′|s, a) > 0 where
P (s′|s, a) > 0 for all s, a. However, for some s, a, if
P̂ (s′|s, a) = 0 where P (s′|s, a) > 0, the agent might move
to a foreign state when it executes the action a at the state s.

Based on initial state difference and dynamics bias, state
deviation ∆t might appear at each time step. Especially in
continuous domains, it is challenging to observe the exact
same states or actions in a dataset. What’s more, the approx-
imation error of the neural network would enlarge the devi-
ation further. Since the deviation at the previous time step
would prompt the later departure from the support, the cu-
mulative variations might end up affecting the policy’s per-
formance in the long run. We will alleviate this issue and
illustrate our proposed method in the next section.

State Deviation Correction
As explained in the previous section, the state deviation
could be readily generated, but the current offline reinforce-
ment learning methods ignore this problem. As a result, out-
of-distribution states would be met during the test time and
influence the performance of the trained policy. We propose
state deviation correction (SDC) to suppress the state devia-
tion caused by the limited data.

Specifically, SDC is trained to help the policy yield ac-
tions which are reward-seeking and also guide the agent lo-
cated in the out-of-distribution states to the regions close to
the offline dataset. In this manner, any departure from the
offline state space would be penalized immediately.

Networks
We maintain a dynamics model network M , a state transi-
tion model network U , an actor-critic architecture for our
proposed SDC. The dynamic model is trained to model the
environment’s dynamics. The state transition model learns
to predict the next states given current states.

For the dynamics model, we use an ensemble of mod-
els parameterized by neural networks (Chua et al. 2018).
Each component of the ensemble is a Bayesian neural net-
work that represents a Gaussian distribution. The outputs of
each network are mean and diagonal covariance of the dis-
tribution: pi (s′, r | s, a) = N

(
µi (s, a) ,Σi (s, a)

)
. Each

Bayesian neural network represents aleatoric uncertainty of
the dynamics and the bootstrap ensemble accounts for epis-
temic uncertainty. As Chua et al. (2018) mentions, captur-
ing aleatoric uncertainty and epistemic uncertainty allows
the model to predict accurately.

The state transition model is a network that takes input s
and outputs s′. Note that it is independent of the action. We
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Figure 2: The framework of SDC. The left, middle and right parts are the training processes of the state transition model, the
dynamics model, and the policy network, respectively.

use a conditional variational auto-encoder (CVAE) (Kingma
and Welling 2013; Sohn, Lee, and Yan 2015) to model the
state transition network. The generator is capable of sam-
pling the next states given current states. The state transition
model is used to provide supervision for out-of-distribution
states. We will illustrate its usage in detail in the following
subsection.

Besides, we maintain and update two Q networks and a
policy network according to the soft actor-critic (Haarnoja
et al. 2018) algorithm.

Implementation
Given a state s, SDC first adds a noise ϵ with small magni-
tude to the state and formulates a noisy state as:

ŝ = s+ β · ϵ, (6)
where ϵ is sampled from a Gaussian distribution N (0, 1)
and β is a small constant. The perturbation aims to con-
struct a broader state space that contains substantial out-
of-distribution states. For initial positions, the induced state
space is likely to cover the range of the most initial states.

We then obtain an action â by feeding ŝ to the policy net-
work π. The dynamics model takes ŝ and â as inputs and
outputs a noisy next state ŝ′. It simulates the scenario where
an agent starts from an out-of-distribution state and follows
the trained policy. To reduce state deviation, we expect to
train the policy so that it can lead the agent to a reasonable
ŝ′, which is close to the dataset. To that end, we generate
a next state s̄′ by feeding s to the state transition network,
which acts as a signal for ŝ′. It represents the state the agent
will arrive at when it executes the offline policy at state s.

Finally, SDC minimizes the distance from ŝ′ to s̄′ with
respect to the parameter of the policy. We use maxi-
mum mean discrepancy (MMD) between ŝ′ and s̄′ to de-
note the distance: MMD2(x, y) = 1

n2

∑
i,i′ k (xi, xi′) −

2
nm

∑
i,j k (xi, yj) +

1
m2

∑
j,j′ k (yj , yj′), where k(·, ·) is a

kernel function. x is the set of size n, which is constructed
by the samples generated by the dynamics model M , and
y is the set of size m induced by the state transition model
U . In our implementation, we use Gaussian kernels and set
n = m = 4. s̄′ is offered as a label for the noisy next state
and the gradient does not backpropagate through the state
transition model. The parameter of the dynamics model is
fixed when we minimize the MMD loss. In this way, SDC
encourages the agent to move to familiar regions when the
agent encounters a noisy state.

The optimization in the policy improvement is defined as:
π(·|s) :=max

π
Ea∼π(·|s) [Q(s, a)]

s.t. Es∼D[MMD(M(ŝ, π(· | ŝ)), U(· | s))] ≤ η,
(7)

where η is a threshold to control the degree of the MMD
loss compared to the policy loss. We choose η = 0.05 in
our experiment. In addition, the policy is trained to max-
imize the likelihood of the actions which correspond with
high Q-values. In our implementation, we use dual gradient
descent with Lagrange multiplier α. The policy loss function
is translated into:

Lπ := L(1)
π + L(2)

π = −Ea∼π(·|s) [Q(s, a)]

+α(Es∼D[MMD(M(ŝ, π(· | ŝ)), U(· | s))]− η),
(8)

The two Q-networks are updated by the conservative Q-
learning algorithm (Kumar et al. 2020). The target of Q-
learning is the minimum of the two Bellman targets. Mean-
while, the Q-networks are updated to maximize the value of
in-distribution state-action pairs and minimize the value of
out-of-distribution state-action pairs.

min
Q

(Es∼D,a∼π(·|s)[Q(s, a)]− Es,a∼D[Q(s, a)])

+ Es,a,s′∼D

[
(Q(s, a)− T Q(s, a))

2
] (9)
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Algorithm 1: State Deviation Correction
Input: offline dataset D, maximal update iterations tmax

Parameter: policy network π, Q-networks Q1, Q2, dynam-
ics model M , state transition model U ,
Output: learnt policy network π

1: Initialize the policy network, Q-networks, the dynamics
model and the state transition model.

2: Let t = 0.
3: while t < tmax do
4: Sample mini-batch of N samples (s, a, r, s′) from D.
5: Train the dynamics model M and state transition

model U .
6: Perturb the state s and get ŝ according to Equation 6.
7: Feed ŝ to the policy π and get â.
8: Feed ŝ and â to the dynamics model M and get ŝ′.
9: Feed s to the transition model U and get s̄′.

10: Update the policy π according to Equation 8.
11: Update the Q-networks according to Equation 9.
12: end while

The whole process is summarized in Algorithm 1. The
diagram of our proposed method is shown as Figure 2.

It should be noted that our method still differs from the
policy-constrained methods even when the additional noise
is eliminated. Unlike imitation learning, the policy in of-
fline reinforcement learning is allowed to deviate from the
dataset, which enables itself to receive a higher return than
the behavior policy. The policy-constrained methods might
produce promising actions but care little about whether these
actions will produce out-of-distribution states. Our method,
on the contrary, constrains the policy to generate actions that
lead to in-distribution states.

We now discuss the adoption of different architectures to
model the dynamics model and the state transition network.
For the state transition model, it is important to fit the dis-
tribution and capture the mode of the distribution for gen-
erative ability. As with BCQ (Fujimoto, Meger, and Precup
2019) which learns a parametric behavior policy by CVAE,
we use CVAE to model the state transition network. For the
dynamics model, the ensemble of Gaussian enjoys the high-
est accuracy in high-dimensional continuous domains than
other architectures (Chua et al. 2018).

Experiments
In this section, we expect to understand our proposed
method by conducting experiments in diverse offline set-
tings. The main objectives of our evaluation are to an-
swer the following three questions: (1) Does our proposed
method actually reduce state deviation compared to the
policy-constrained counterparts? (2) How well does SDC
perform on the benchmark offline reinforcement learning
tasks-Mujoco control suite? (3) Compared with previous
methods, is our method less sensitive to the decreasing
number of valuable samples? For the dataset, we use a
GridWorld setting and the Mujoco datasets in the D4RL

Figure 3: The visualization of a GridWorld example.

benchmarks (Fu et al. 2020). D4RL datasets introduce stan-
dard datasets for Hopper, Halfcheetah, and Walker2d bench-
marks. For each type of control environment, D4RL pro-
vides five kinds of datasets(“random”, “medium”, “medium-
replay”, “medium-expert”, and “expert”). The “random”
dataset is produced by rolling out a randomly initialized pol-
icy for 106 steps. The “medium” dataset is generated by a
soft actor-critic policy trained to reach approximately 1/3
of the expert’s performance. The “medium-replay” dataset
comprises all samples in the replay buffer during training un-
til the policy reaches the medium level of performance. The
“expert” dataset consists of 1, 000, 000 samples produced by
a soft actor-critic policy, which is trained until convergence.
The “medium-expert” dataset is introduced by mixing equal
numbers of expert-level samples and medium-level samples.

Visualization of State Deviation Correction
GridWorld Example To understand the utility of our ap-
proach, we deploy the SDC method on a modified Grid-
World task. The visualization of the environment is shown
in the left part of Figure 3. The map ranges from −1 to 1
in two dimensions. An agent starts from the left side(purple
region) of the environment, with the aim to reach the goal
district depicted by the orange rectangle. The gray region
denotes the obstacle which the agent cannot pass through.
The state space is continuous and contains the position of the
agent. The action is the agent’s velocity. At each time step,
the agent will receive a penalty −0.1. When it steps into the
goal district, it will get a bonus 100 and the episode is over.
The offline dataset is constituted by the samples stored in the
replay buffer over the course of the training of a soft-actor-
critic agent until convergence. Note that all trajectories start
from the positions with y ≤ 0.8, which simulates the setting
where the training data fails to cover the state space.

For offline training, we compare our method with
CQL (Kumar et al. 2020) and BEAR (Kumar et al. 2019),
which are both policy-constrained methods. Note that when
evaluating the algorithms, the agent is initialized at the po-
sition whose y-coordinate ranges from 0.8 to 0.9. This dis-
tinction from the dataset requires the agent to bypass the ob-
stacle and track the states of the dataset.

We run five instances for each method. The learning
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(a) GridWorld Results (b) Ablation on β (c) Ablation on η

Figure 4: (a) The learning curves of the three algorithms SDC, CQL and BEAR on the GridWorld. (b) Ablation study on β. (c)
Ablation study on η.

curves shown in Figure 4(a) suggest that our method sur-
passes the other methods by a large margin. The result cor-
responds with the state density distribution visualized in the
right part of Figure 3. The blue region denotes the state den-
sity distribution of the dataset. The green patch and the red
patch denote the state distribution of SDC and BEAR, re-
spectively. (We omit the visualization of CQL since its state
distribution is similar to BEAR.) Our method learns to con-
strain the state in the support of the dataset. By contrast,
BEAR and CQL simply follow the behavior policy, thus end
up failing to perform the task when the initial location is
slightly different from the dataset. This study implies that
when the dataset can not fully represent the environment,
there is a necessity to guarantee the policy’s induced state
distribution to remain in the support of the static dataset.

Ablation Study We also present ablation studies to study
the relationship between the hyperparameters and our pro-
posed method.

The scale of the additional noise with respect to the state
affects the performance of our method. Figure 4(b) demon-
strates the learning progress of our method when tuning β.
It is evident that when β is large, the target is too far from
the noisy next state and is not able to act as a valid supervi-
sion signal, thus the performance of the algorithm degrades.
When β is small, the policy has no chance to be trained on
alien states, thus fails to complete the task.

Figure 4(c) demonstrates SDC’s performance varies ac-
cording to the scale of η in the MMD loss. When η is too
large, the constraint of Equation 7 is too loose, the algorithm
thus fails.

High-dimensional Settings To evaluate the effectiveness
of SDC in high-dimensional settings, we investigate how our
method constrains the state distribution on D4RL datasets.
We compare SDC with an implicit policy-constrained
method CQL and a direct policy-constrained method BEAR
on “Halfcheetah-medium-expert”. We also present the result
of “Halfcheetah-expert” in the Appendix.

For each task, we train a CQL agent, a BEAR agent,
and an SDC agent for 1, 000, 000 updates. Then we col-
lect 100, 000 samples by running these trained policies sep-
arately. To visualize the results clearly, we plot the distribu-
tions of the offline dataset, CQL-induced dataset and SDC-
induced dataset with t-Distributed Stochastic Neighbor Em-

Figure 5: The visualizations of the state distributions of ex-
periments on the “Halfcheetah-medium-expert” task. The
left part is CQL(red) vs SDC(green). The right part is
BEAR(red) vs SDC(green)

bedding (t-SNE) (Hinton and Roweis 2002) in the left part
of Figure 5. The blue region depicts the distribution of the
offline dataset, while the red and green represent the dataset
generated by the CQL policy and the SDC policy, respec-
tively. We also show the distributions of the offline dataset,
BEAR-induced dataset and SDC-induced dataset by a scat-
ter figure(the right part of Figure 5). The blue points de-
note the offline dataset, while the red and green represent
the dataset generated by the BEAR policy and the SDC pol-
icy, respectively.

The result shows that CQL and BEAR fail to follow of-
fline state distribution in high-dimensional settings. They
only induce state distributions that cover a part of the offline
dataset and produce out-of-distribution samples. By con-
trast, there is a merely slight divergence between the state
distribution of the SDC policy and the offline dataset. Our
proposed method produces fewer outliers and follows the
support of the dataset more accurately.

Offline Mujoco Control Datasets
In this section, we evaluate our proposed method on the
Mujoco datasets in the D4RL benchmarks (Fu et al. 2020).
We compare our method with BC, SAC (Haarnoja et al.
2018), BEAR (Kumar et al. 2019), BRAC (Wu, Tucker, and
Nachum 2019), and MOPO (Yu et al. 2020), which enjoy
significant empirical success in offline setting. The results
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Task Name SAC BC BEAR BRAC-p BRAC-v CQL MOPO SDC

Halfcheetah-random 30.5 2.1 25.5 23.5 28.1 35.4 31.9 36.2±1.3
Walker2d-random 4.1 1.6 6.7 0.8 0.5 7.0 13.3 14.3±4.5
Hopper-random 11.3 9.8 9.5 11.1 12.0 10.8 13.0 10.6±0.3
Halfcheetah-medium -4.3 36.1 38.6 44.0 45.4 44.4 40.2 47.1±0.2
Walker2d-medium 0.9 6.6 33.2 72.7 81.3 79.2 26.5 81.1±0.4
Hopper-medium 0.8 29.0 47.6 31.2 32.3 58.0 14.0 91.3±0.8
Halfcheetah-medium-replay -2.4 38.4 36.2 45.6 46.9 46.2 54.0 47.3±1.0
Walker2d-medium-replay 1.9 11.3 10.8 -0.3 0.9 26.7 92.5 30.3±4.7
Hopper-medium-replay 3.5 11.8 25.3 0.7 0.8 48.6 42.7 48.2±2.7
Halfcheetah-medium-expert 1.8 35.8 51.7 43.8 45.3 62.4 57.9 101.3±3.6
Walker2d-medium-expert 1.9 11.3 10.8 -0.3 0.9 98.7 51.7 105.3±4.0
Hopper-medium-expert 1.6 111.9 4.0 1.1 0.8 111.0 55.0 112.9±0.2
Halfcheetah-expert -1.9 107.0 108.2 3.8 -1.1 104.8 - 106.6±1.1
Walker2d-expert -0.3 125.7 106.1 -0.2 -0.0 153.9 - 108.3±3.7
Hopper-expert 0.7 109.0 110.3 6.6 3.7 109.9 - 112.6±0.1

Table 1: Results of SDC, SAC, BC, BEAR, BRAC, and CQL on offline Mujoco control suite tasks, on the normalized return
metric, averaged over four seeds. Note that SDC performs better or similar to other methods on most of the tasks.

Task Name CQL SDC

Halfcheetah-random-expert-0.5 67.8±2.2 88.4±1.3
Halfcheetah-random-expert-0.6 44.5±4.5 90.9±2.9
Halfcheetah-random-expert-0.7 46.7±6.8 85.2±1.7
Halfcheetah-random-expert-0.8 42.6±2.1 88.4±3.2
Halfcheetah-random-expert-0.9 34.7±3.4 70.2±5.7
Walker2d-random-expert-0.5 88.3±4.9 88.8±3.9
Walker2d-random-expert-0.6 81.5±6.3 65.9±5.0
Walker2d-random-expert-0.7 48.3±5.8 85.5±4.7
Walker2d-random-expert-0.8 50.5±7.2 49.8±5.6
Walker2d-random-expert-0.9 17.6±3.0 26.8±2.1
Hopper-random-expert-0.5 111.2±0.1 112.8±0.2
Hopper-random-expert-0.6 111.0±0.1 111.6±0.1
Hopper-random-expert-0.7 110.4±0.3 112.0±0.3
Hopper-random-expert-0.8 110.8±0.2 112.3±0.1
Hopper-random-expert-0.9 102.2 ±0.3 108.5±0.2

Table 2: Results of CQL and SDC on the datasets with lim-
ited valuable samples, on the normalized return metric, av-
eraged over four seeds. Note that SDC outperforms CQL
greatly on Halfcheetah datasets.

for BEAR, BRAC, SAC, and BC are obtained by Fu et al.
(2020). Results for these 15 tasks are shown in Table 1.
We bold the approximate highest scores across all the al-
gorithms. Our proposed method performs similarly or bet-
ter than the state-of-art methods on most tasks. Especially,
our proposed method exceeds the best previous methods
by a large margin on “Hopper-medium” and “Halfcheetah-
medium-expert” tasks.

Limited Valuable Data
In this section, we try to understand our method’s efficacy
when presented with limited valuable data. We propose a
new task by mixing the expert-level dataset and random-

level dataset with different ratios for Halfcheetah, Walker2d,
and Hopper. We design five datasets for each environment
where the proportions of random samples are 0.5, 0.6, 0.7,
0.8, and 0.9. Accordingly, the ratios of expert samples de-
cline. All datasets consist of 1, 000, 000 samples.

We compare our proposed method with CQL on these
tasks. The results are shown in Table 2. As expected, the
trained policy’s performance shows degradation with de-
creased expert samples. Our proposed method achieves bet-
ter results than CQL in most tasks. For Halfcheetah tasks,
the performance of SDC decreases more slowly as the size
of valuable data reduces. For Hopper tasks, our proposed
method performs competitively to CQL in the former four
tasks and outperforms CQL with a small margin when the
random ratio is 0.9. As the results show, our proposed
method is less sensitive to the reduction of the expert sam-
ples and can yield a policy whose state distribution is close
to the support of the dataset.

Conclusions

In conclusion, we introduce the state deviation correc-
tion(SDC) algorithm. We attribute the state deviation to the
initial data difference, the dynamics bias, and deviation ac-
cumulation. We build a dynamics model and a state transi-
tion model. By perturbing the state, we obtain a noisy state
and feed it to the policy and the dynamics model sequen-
tially. By minimizing the distance of the generated noisy
next state to the next state sampled from the state transition
model, we encourage the policy to guide the agent to arrive
at its familiar regions. In the experiment, we compare our
method with current offline reinforcement learning meth-
ods on a GridWorld setup, Mujoco control suite tasks, and a
modified Mujoco dataset with limited valuable samples. Our
method is competitive with the state-of-art methods on these
offline reinforcement learning benchmarks.
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