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Abstract

We posit a new mechanism for cooperation in multi-agent
reinforcement learning (MARL) based upon any nonlinear
function of the team’s long-term state-action occupancy mea-
sure, i.e., a general utility. This subsumes the cumulative re-
turn but also allows one to incorporate risk-sensitivity, explo-
ration, and priors. We derive the Decentralized Shadow Re-
ward Actor-Critic (DSAC) in which agents alternate between
policy evaluation (critic), weighted averaging with neighbors
(information mixing), and local gradient updates for their pol-
icy parameters (actor). DSAC augments the classic critic step
by requiring agents to (i) estimate their local occupancy mea-
sure in order to (ii) estimate the derivative of the local utility
with respect to their occupancy measure, i.e., the “shadow re-
ward”. DSAC converges to a stationary point in sublinear rate
with high probability, depending on the amount of commu-
nications. Under proper conditions, we further establish the
non-existence of spurious stationary points for this problem,
that is, DSAC finds the globally optimal policy. Experiments
demonstrate the merits of goals beyond the cumulative return
in cooperative MARL.

Introduction
Reinforcement learning (RL) is a framework for directly
estimating the parameters of a controller through repeated
interaction with the environment (Sutton and Barto 2018),
and has gained attention for its ability to alleviate the need
for a physically exact model across a number of domains,
such as robotic manipulation (Kober, Bagnell, and Peters
2013), web services (Zhao et al. 2018), and logistics (Fein-
berg 2016), and various games (Silver et al. 2016). In RL,
an agent in a given state takes an action, and transitions to
another according to a Markov transition density, whereby
a reward informing the merit of the action is revealed by
the environment. Mathematically, this setting may be en-
capsulated by a Markov Decision Process (MDP) (Puterman
2014), in which the one seeks to select actions to maximize
the long-term accumulation of rewards.

In many domains, multiple agents interact in order to ob-
tain favorable outcomes, as in finance (Lee, Zhang et al.
2002), social networks (Jaques et al. 2019), and games
(Vinyals et al. 2019). In multi-agent RL (MARL) and more
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generally, stochastic games, a key question is the payoff
structure (Shapley 1953; Başar and Olsder 1998). We fo-
cus on common payoffs among agents, i.e., the utility of the
team is the sum of local utilities (Busoniu, Babuska, and
De Schutter 2008), which contrasts with competitive set-
tings where one agent’s gain is another’s loss, or combina-
tions thereof (Littman 1994). Whereas typically cooperative
MARL defines the global utility as the average over agents’
local reward accumulations, here we define a new mecha-
nism for cooperation that permits agents to incorporate risk-
sensitivity (Huang and Kallenberg 1994; Borkar and Meyn
2002; Prashanth and Ghavamzadeh 2016), prior experience
(Argall et al. 2009), or exploration (Hazan et al. 2019; Tar-
bouriech and Lazaric 2019). The usual common-payoff set-
ting focuses on global cumulative return of rewards, which is
a linear function of the the state-action occupancy measure.
By contrast, the aforementioned decision-making goals de-
fine nonlinear functions of the state-action occupancy mea-
sure (Kallenberg 1994). Such functions, which we call gen-
eral utilities, have recently yielded impressive performance
in practice via prioritizing exploration (Mahajan et al. 2019;
Gupta et al. 2020), risk-sensitivity (Mystery 2021), and prior
experience (Le et al. 2017; Lee and Lee 2019). However, to
the best of our knowledge, there exists few formal guaran-
tees for algorithms designed to optimize general utilities in
multi-agent settings.

This gap motivates us to put forth the first decentralized
MARL scheme for general utilities, and establish its con-
sistency and sample complexity. Our approach hinges upon
first noting that the embarking point for most RL method-
ologies is the Policy Gradient Theorem (Williams 1992; Sut-
ton et al. 2000) or Bellman’s equation, both of which break
down for general utilities. One potential path forward is a
recent generalization of the PG Theorem for general utili-
ties (Zhang et al. 2020b), which expresses the gradient as
product of the partial derivative of the utility with respect
to the occupancy measure, and the occupancy measure with
respect to the policy. However, in the team setting, this later
factor is a global nonlinear function of agents’ policies,
and hence does not permit decentralization. Thus, we define
an agent’s local occupancy measure as the joint occupancy
measure of all agents’ polices with all others’ marginalized
out, and its local general utility as any (not-necessarily con-
cave) function of its marginal occupancy measure. The team
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objective, then, is the global aggregation of all local utilities.
From this definition, we derive a new variant of the Pol-

icy Gradient [cf. (6)] where each agent estimate its pol-
icy gradient based on local information and message pass-
ing with neighbors. This leads to a model-free algorithm,
Decentralized Shadow Reward Actor-Critic (DSAC), that
generalizes multi-agent actor-critic (see (Konda and Borkar
1999; Konda and Tsitsiklis 2000)) beyond cumulative re-
turn (Zhang et al. 2018). Each agent’s procedure follows
four stages: (i) a marginalized occupancy measure estima-
tion step used to evaluate the instantaneous gradient of the
local utility with respect to the occupancy measure, which
we dub the “shadow reward” (shadow reward computation);
(ii) accumulate “shadow rewards” along a trajectory to esti-
mate “shadow” critic parameters (critic); (iii) average critic
parameters with those of its neighbors; and (iii) a stochastic
policy gradient ascent step along trajectories (actor).

Contributions. Overall, our contributions are:

• present the first MARL formulation that permits broader
goals than the cumulative return and specialization
among agents’ roles;

• derive a variant of multi-agent actor-critic to solve this
problem that employs an occupancy measure estimation
step to construct the gradient of the general utility with
respect to the occupancy measure, which serves as a
“shadow reward” for the critic step;

• for ϵ-stationarity with high probability, we respectively
establish that DSAC requires O(1/ϵ2.5) and O(1/ϵ2)
steps if agents exchange information once (Theorem 2)
or multiple times per policy update (Corollary 2). Un-
der proper assumptions, we further establish the conver-
gence to the globally optimal policy under diminishing
step-sizes (Corollary 1).

• provide experimental evaluation of this scheme for ex-
ploration maximization and safe navigation in coopera-
tive settings (Lowe et al. 2017).

Problem Formulation
Consider a Markov decision process (MDP) over the finite
state space S and a finite action space A. For each state
s ∈ S , a transition to state s′ ∈ S occurs when selecting
action a ∈ A according to a conditional probability distri-
bution s′ ∼ P(·|a, s), for which we define the short-hand
notation Pa(s, s

′). Let ξ be the initial state distribution of
the MDP, i.e., s0 ∼ ξ. We let S := |S| denote the number
of states and A := |A| the number of actions. Consider pol-
icy optimization for maximizing general objectives that are
nonlinear function of the cumulative discounted state-action
occupancy measure under policy π, which contains the cu-
mulative return as a special case (Zhang et al. 2020a,b):

max
π

R(π) := F (λπ) (1)

where F is a general (not necessarily concave) functional
and λπ is occupancy measure given by

λπ(s, a) =

∞∑
t=0

γt · P
(
st = s, at = a

∣∣∣ π, s0 ∼ ξ
)

(2)

for ∀a ∈ A, ∀s ∈ S . For instance, often in applications
one has access to demonstrations which can be used to
learn a prior on the policy for ensuring baseline perfor-
mance. Suppose λ̄ is a prior state-action distribution ob-
tained from demonstrations. One may seek to maintain base-
line performance with respect to this prior via minimizing
the Kullback-Liebler (KL) divergence between the normal-
ized distribution λ̂ = (1 − γ)λ and the prior λ̄ stated as
ρ(λ) = KL

(
(1− γ)λ||λ̄

)
. In behavioral cloning, action in-

formation is missing, in which case one may instead con-
sider a variant with respect to only the state occupancy mea-
sure. Other forms for (1) are considered in Sec. 12.

In this work, we consider the decentralized version of the
problem in (1), where the state space S , the action space
A, the policy π, and the general utility F are decentralized
among N = |V| distinct agents associated with an undi-
rected graph G = (V, E) with vertex set V and edge set E .
Each agent i ∈ V is associated with its own local incentives
and actions, detailed as follows.
Space Decomposition. The global state space S is the prod-
uct of N local spaces Si, i.e., S = S1 × S2 × · · · ×
SN , meaning that for any s ∈ S , we may write s =
(s(1), s(2), · · · , s(N)) with s(i) ∈ Si, i ∈ V . Each agent
has access to the global state s, as customary of joint-action
learners training in a decentralized manner under full ob-
servability (Kar, Moura, and Poor 2013; Zhang et al. 2018;
Lee et al. 2018; Wai et al. 2018; Qu et al. 2019; Doan,
Maguluri, and Romberg 2019). Similarly, the global ac-
tion space A is the product of N local spaces Ai: A =
A1 × A2 × · · · × AN , meaning that for any a ∈ A, we
may write a = (a(1), a(2), · · · , a(N)) with a(i) ∈ Ai, i ∈ V .
Full observability means each agent i has access to global
actions a concatenating all local ones.
Policy Factorization. The global policy π(a|s) that maps
global action a for a given global state s is defined as
the product of local policies

∏N
i=1 π

(i)(a(i)|s), which pre-
scribes statistical independence among agents’ policies. For
the parameterized policy πθ(a|s) where θ ∈ Θ, we de-
note θ = (θ1, θ2, · · · , θN ) as the parameter, so we can
write πθ(a|s) =

∏
i∈V π

(i)
θi
(a(i)|s), where the local policy

of agent i is parameterized by θi. Since the global state is
visible to all agents, the local policy is based on the observa-
tion of the global state. The parameters θi are kept private by
agent i, meaning that agents must pass messages to become
informed about others’ incentives.
Local Cumulative State-Action Occupancy Measure.

Similar to the global occupancy measure λπ(s, a) [cf. (2)],
define the local cumulative state-action occupancy measure:

λπ
(i)(s(i), a(i)) =

∞∑
t=0

γt·P
(
st(i) = s(i), a

t
(i) = a(i)

∣∣∣π, s0 ∼ ξ
)

(3)
for ∀a(i) ∈ Ai, s(i) ∈ Si. This local occupancy measure is
the marginalization of the global occupancy measure with
respect to all others’ measures than agent i, whose indices
are denoted as {−i} ⊂ V . Via marginalization, we write

λπ
(i)(s(i), a(i)) =

∑
a∈{a(i)}×A−i

∑
s∈{s(i)}×S−i

λπ(s, a) (4)
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Objective Approach Convergence

Cumulative Return Value-Based [In caption] ✓


This
Work

!
Policy-Based (Zhang et al. 2018; Chen et al. 2018) ✓

Risk (Mystery 2021) ✗
Exploration (Mahajan et al. 2019; Gupta et al. 2020) ✗
Priors (Le et al. 2017; Lee and Lee 2019) ✗

Table 1: Cumulative Returns, Risk-Sensitivity, Exploration, and the incorporation of Priors are common goals in multi-agent reinforcement learning, and subsumed by the general
utilities considered here. Value-based approaches for the cumulative return include (Kar, Moura, and Poor 2013; Wai et al. 2018; Lee et al. 2018; Qu et al. 2019; Doan, Maguluri,
and Romberg 2019). We focus on the setting when agents are cooperative and transition according to a common global dynamics model (Busoniu, Babuska, and De Schutter 2008).
The state space model under consideration is most similar to (Zhang et al. 2018). We note that the technical settings of (Le et al. 2017; Lee and Lee 2019; Mahajan et al. 2019; Gupta
et al. 2020; Mystery 2021) are different; their inclusion here is to spotlight their use of goals beyond cumulative return, which is given a conceptual underpinning for the first time in
this work.

with A−i=Πj ̸=iAj and S−i=Πj ̸=iSj . Note that (4) is a lin-
ear transform of λπ in (2).

Local Utility. Let Si = |Si| denote the number of local
states and Ai := |Ai| the number of local actions. For agent
i, define the local utility function Fi(·) : RSiAi 7→ R as a
function of λπ

(i), depends on θi when agent i follows policy
πθi . Then, define the global utility as the sum of local ones:

R(πθ) = F (λπθ ) :=
1

N

N∑
i=1

Fi

(
λπθ

(i)

)
. (5)

Note that (5) is not node-separable, and local occu-
pancy measures depend on the global one through (4). This
means that the policy parameters θi of agent i depends
on global policy π, and hence on global parameter θ =
(θ1, θ2, · · · , θN ). This is a key point of departure from stan-
dard multi-agent optimization (Nedic and Ozdaglar 2009).
Next we shift to deriving a variant of actor-critic that is at-
tuned to the multi-agent setting with general utilities (5).

Elements of MARL with General Utilities
This section develops an actor-critic type algorithm for
MARL with general utilities (5). One challenge is that the
occupancy measure, the policy parameters, and the utility
are coupled. Specifically, the value function is not additive
across trajectories, and hence invalidates RL approaches tai-
lored to maximizing cumulative returns based upon either
the Policy Gradient Theorem (Williams 1992; Sutton et al.
2000) or Bellman’s equation (Puterman 2014). To address
this issue, we employ a combination of the chain rule, an
additional density estimation step, and the construction of
a “shadow reward.” We first define the shadow reward and
value function as follows and then will proceed towards the
proposed algorithm.

Shadow Rewards and Policy Evaluation
The general utility objective cannot be written as cumulative
sum of returns. The nonlinearity invalidates the additivity,
which is the origination of the definition of the conventional
reward function and Q function, quantities that are central
to approaches for maximizing cumulative-returns, via either
dynamic programming (Puterman 2014) or policy search
(Williams 1992; Sutton et al. 2000). To circumvent the need

for additivity, we will introduce auxiliary variables, which
we call shadow rewards and shadow Q functions.
Definition 1 (Shadow Reward and Shadow Q Function).
The shadow reward rπ : S × A 7→ R of policy π w.r.t. gen-
eral utility F is rπ(s, a) := ∂F (λπ)

∂λ(s,a) , with associated shadow

Q function Qπ
F (s, a) := E

[∑+∞
t=0 γ

t · rπ(st, at)
∣∣ s0 =

s, a0 = a, π
]
.

To understand these definitions, consider linearizing (dif-
ferentiating) general utility F with respect to λπ . The lin-
earized problem, via the chain rule, is equivalent to a MDP
with cumulative return, with the shadow reward and Q func-
tion in place of the usual reward and Q functions:

∇θF (λπθ)=E

[
+∞∑
t=0

γtQπ
F (s

t, at)∇θ log πθ(a
t|st)

∣∣s0 ∼ ξ, π

]
.

(6)
This expression for the policy gradient illuminates the cen-
trality of the shadow reward/value function for nonlinear
functions of the occupancy measure (2), which motivates the
generalized policy evaluation scheme we present next.
Policy Evaluation Criterion. We shift to how one may
compute the Shadow Q-function from trajectory informa-
tion, upon the basis of which we can estimate the param-
eters of a critic. To do so, we use function approximation
to parameterize the high-dimensional shadow Q-function.
One simple choice is linear function approximation. That is,
given a set of feature vectors {ϕ(s, a) ∈ Rd : s ∈ S, a ∈
A}, we want to find some weight parameter w ∈ Rd so that

Qw(s, a) := ⟨ϕ(s, a), w⟩ ∀(s, a) ∈ S ×A. (8)

In our algorithm, we will update a sequence of ŵ to closely
approximate the sequence of implicit shadow Q functions,
as policy gets updated. In practice, the parametrization (8)
needs not be linear. Indeed, experimentally, we consider Q
defined by a multi-layer neural network.

Thus, the critic objective of policy π is defined as the
mean-square-error w.r.t. shadow Q-function:

ℓ(w;π) :=E
[ ∞∑
t=0

γt

2

(
Qw(s

t, at)−Qπ
F (s

t, at)
)2∣∣s0∼ξ, π

]
=
1

2

∑
s,a

λπ(s, a)
(
ϕ(s, a)⊤w−Qπ

F (s, a)
)
2. (9)
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Algorithm 1: Decentralized Shadow Reward Actor-
Critic (DSAC)

1 Input: initial policy θ0; actor step-sizes {ηkθ}; Batch
sizes {Bk}; Episode lengths {Hk}; initial critic
W 0 := [w0

1, w
0
2, ..., w

0
N ] ∈ Rd with w0

i = w0
j , for

all i, j; critic step-size {ηkw}; mixing matrix
M ∈ RN×N

+ ; mixing round m ≥ 1.
2 for iteration k = 0, 1, 2, ... do
3 Perform Bk Monte Carlo rollouts to obtain

trajectories τ = {s0, a0, · · · , sHk , aHk} with
initial dist. ξ, policy πθk collected as batch Bk.

4 for agent i = 1, 2, ..., N do
5 Compute empirical local occupancy measure

λ̂k
i =

1

Bk

∑
τ∈Bk

Hk∑
t=0

γt · e
(
st(i), a

t
(i)

)
. (7)

Estimate shadow reward r̂ki = ∇λi
Fi(λ̂

k
i ).

6 for agent i = 1, 2, ..., N do
7 With localized policy gradient estimate

Gwi
(τ, ri, wi) =

∑H
t=0 γ

t · (Qwi
(st, at)−

Q̂t
i) · ∇wi

Qwi
(st, at), compute

∆̂k
wi
=

1

Bk

∑
τ∈Bk

Gwi(τ, r̂
k
i , w

k
i ) , w

k+1
i = wk

i −ηkw∆̂
k
wi
.

8 for iter = 1, ...,m do
9 for agent i = 1, 2, ..., N do

10 Exchange information with neighbours:
wk+1

i =
∑

{j:(j,i)∈E} M(j, i) · wk+1
i .

11 for agent i = 1, 2, ..., N do
12 With Gθi(τ, wi) =∑H

t=0 γ
tQwi

(st, at)∇θi log π
(i)
θi
(at(i)|s

t),
update the policy:

∆̂k
θi:=

1

Bk

∑
τ∈Bk

Gθi(τ, w
k+1
i ) , θk+1

i = θki +ηkθ ∆̂
k
θi .

Via the definition of the occupancy measure λπ [cf. (2)],
the expectation may be substituted by weighting factors
in the summand on the second line. We assume features
{ϕ(s, a)}s∈S,a∈A are bounded (see (Zhang et al. 2021) for
details). With the shadow reward and associated Q-function
(Definition 1), the policy evaluation criterion (9), and its
smoothness properties with respect to critic parameters w
in place, we expand on their role in the multi-agent setting.

Multi-Agent Optimization for Critic Estimation
Setting aside the issue of policy parameter updates for
now, we focus on estimating the global general utility. The
shadow Q function and shadow reward (Definition 1) de-

pend on global knowledge of all local utilities, which are
unavailable as local incentives are local only. To mitigate
this issue, we introduce their localized components, which
together comprise the global shadow Q function and reward.
Specifically, define the local shadow reward rπi for agent i:

rπi (s(i), a(i)) :=
∂Fi(λ

π
(i))

∂λ(i)(s(i), a(i))
, ∀(s(i), a(i)) ∈ Si ×Ai.

(10)
Clearly, it holds that rπ(s, a) = 1

N

∑N
i=1 r

π
i (s(i), a(i)).

Based on the local observation of the its own shadow re-
ward, agent i may access its local shadow Q function Q :
S ×A → R:

Qπ
i (s, a) := E

[
+∞∑
t=0

γt · rπi
(
st(i), a

t
(i)

) ∣∣ s0 = s, a0 = a, π

]
,

(11)
for ∀(s, a) ∈ S × A. Therefore, we also have Qπ

F (s, a) =
1
N

∑N
i=1 Q

π
i (s, a). Then, each agent i seeks to estimate

common critic parameters w that well-represent its shadow
Q function in the sense of minimizing the global mean-
square error (9). By exploiting the aforementioned node-
separability and introducing a localized critic parameter vec-
tor wi associated to agent i, this may equivalently be ex-
pressed as a consensus optimization problem (Nedic and
Ozdaglar 2009):

min
{wi}N

i=1

1

N

N∑
i=1

ℓi(wi;π) s.t. wi=wj ,(i, j)∈E , (12)

where the local policy evaluation criterion is defined as
ℓi(wi;π) := E

[∑∞
t=0

γt

2

(
Qwi

(st,at)−Qπ
Fi
(st,at)

)2∣∣s0∼ξ, π
]
.

This formulation allows agent i to evaluate its policy with re-
spect to global utility (5) through the local criterion ℓi(wi;π)
as a surrogate for that which aggregates global information
(9), when consensus over local parameters wi is imposed.
Next, we incorporate solutions to (12) into the critic step
together with a policy parameter θi update along stochastic
ascent directions via (6) for the actor to assemble DSAC.

Decentralized Shadow Reward Actor-Critic
Next, we put together these pieces to present Decentralized
Shadow Reward Actor-Critic (DSAC) as Algorithm 1. This
scheme allows agents to keep their local utilities Fi, and
policies πθi with associated parameters θi private. The
agents share a common function approximator for the
shadow Q function. Further, they retain local copies wi of
the shadow critic parameters, which they communicate to
neighbors according to the network structure defined by
edge set E and mixing matrix M to be subsequently spec-
ified. Algorithm 1 proceeds in four stages: (i) density es-
timation step for to obtain the shadow reward; (ii) shadow
critic updates; (iii) information mixing via weighted averag-
ing; and (iv) actor updates. Each step is detailed in Algo-
rithm 1.

Consistency and Sample Complexity
In this section, we study the finite sample performance of
Algorithm 1. We show Õ(ϵ−2.5) (Theorem 2) or Õ(ϵ−2)
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(Corollary 2) sample complexities to obtain ϵ-stationary
points of global utility, depending on the number of commu-
nications per step, akin to best known rates for non-concave
expected maximization problems (Shapiro, Dentcheva, and
Ruszczyński 2014). We also establish the nonexistance of
spurious extrema for this setting, indicating the convergence
to global optimality (Corollary 1). Before continuing, we
present a few key technical conditions for the utility F , the
policy πθ, the mixing matrix M , and the critic approxima-
tion. The other assumptions are stated in Appendix B.2 of
the supplementary material (see (Zhang et al. 2021) for de-
tails).

Assumption 1. For utility F [cf. (5)], we assume for ∀i that:
(i). Fi(·) is private to agent i.
(ii). ∃CF > 0 s.t. ∥∇λ(i)

Fi(λ(i))∥∞ ≤CF in a neighbour-
hood of the occupancy measure set.

(iii). ∃Lλ > 0 s.t. ∥∇λ(i)
Fi(λ(i))−∇λ(i)

Fi(λ
′
(i))∥∞ ≤

Lλ∥λ(i) − λ′
(i)∥.

(iv). ∃Lθ>0 s.t. F ◦ λ(·) is Lθ-smooth.

Assumption 2. For πθ and the occupancy measure λπθ , we
assume:

(i). The local policy π
(i)
θi

is private to each agent i.
(ii). ∃ Cπ > 0 s.t. for each agent i, its score function is

bounded: ∥∇θi log π
(i)
θi
(a(i)|s)∥ ≤ Cπ , for ∀ θ and ∀(s, a).

(iii). ∃ ℓθ > 0 s.t. ∥λπθ − λπθ′∥ ≤ ℓθ∥θ − θ′∥.

Assumption 3. The mixing matrix M is a doubly stochastic
matrix satisfying:

(i). M∈SN×N
+ , M(i,j)>0 iff. (i,j)∈E .

(ii). M · 1N =1N , where 1N ∈ RN is an all-ones vector.
(iii). Let the eigenvalues of M be 1 = σ1(M)>σ2(M)≥

· · ·≥σN (M). We define ρ :=max{|σ2(M)|, |σN (M)|}<1.

Assumption 4. For ∀θ, define the optimal critic parame-
ter w∗(θ) := argminw

1
N

∑N
i=1 ℓi(w;πθ). We assume that

∃W > 0 s.t. E2
θ =

∑N
i=1∥∇θiF (λπθ )−∆θi∥

2 ≤W , for ∀θ,
where ∆θi := E

[∑+∞
t=0γ

t·Qw∗(θ)(s
t,at)·∇θi log π

(i)
θi
(at|st)∣∣s0 ∼ ξ, πθ

]
is the PG estimate under w∗(θ).

Assumption 1 requires the boundedness and Lipschitz
continuity of the gradient of the utility function. Assump-
tion 2 ensures that the score function is bounded, and the
occupancy measure is Lipschitz w.r.t. the policy parameters.
These conditions are common to RL algorithms focusing
on occupancy measures in recent years (Hazan et al. 2019;
Zhang et al. 2020b), and are automatically satisfied by com-
mon policies such as the softmax. Assumption 3 holds for
any undirected connected loop-free static graph (Chung and
Graham 1997). Assumption 4 states that the feature mis-
specification error is uniformally upper bounded by W .

Next, we present a brief proof sketch with details provided
in the appendices.
Step 1. We begin by a standard stochastic gradient ascent

analysis (Lemma ??), which yields:

F (λπ
θk+1 )− F (λπ

θk )≥η
k
θ

4
∥∇θF (λπ

θk )∥2 (13)

− 3ηkθ
4

N∑
i=1

∥∥∥∇θiF (λπ
θk )− ∆̂k

θi

∥∥∥2 .
Step 2. We provide high probability bounds for gradient es-
timation errors:

N∑
i=1

∥∥∇wiℓi(w
k
i;πθk)− ∆̂k

wi

∥∥2≤O(B−1
k ) and (14)

N∑
i=1

∥∥∇θiF (λπθk)−∆̂k
θi

∥∥2≤O
(
B−1

k +
N∑
i=1

∥wk+1
i −wk+1

∗ ∥2
)
,

where w∗
k+1 := argminw

1
N

∑N
i=1 ℓi(w;πθk) is the ideal

critic variable at policy πθk (Lemma ??).
Step 3. By analyzing the consensus error of the communica-
tion steps and the gradient descent step for the critic update,
we bound critic fitting error term

∑N
i=1∥w

k+1
i −wk+1

∗ ∥2 with
high probability:

∥w̄k+1−wk+1
∗ ∥2≤(1− c)∥w̄k−wk

∗∥2 +O(B−1
k )

+O
( N∑

i=1

∥wk
i −w̄k∥2

)
+other controllable noise, (15)

where c ∈ (0, 1) is some constant, w̄k =
∑N

i=1w
k
i /N is the

average critic variable in the k-the iteration, and
∑N

i=1∥wk
i−

w̄k∥2≤O
((
ρm

∑k
k′=0η

k′

wρ
m(k−k′)

)2)
. See Lemmas ?? - ??.

Step 4. Next, we construct the following potential function
with a carefully selected constant α as to enable the conver-
gence analysis:

Rk := F (λπ
θk )− α∥w̄k − wk

∗∥2. (16)

Taking the advantage of the contraction property of ∥w̄k−
wk

∗∥2 and this specific potential function, we characterize al-
gorithm performance in terms of optimization error, the fea-
ture mis-specification error, the stochastic PG approxima-
tion error, and the multi-agent consensus error. See Lemma
??.

Combining the above steps and suitably specify the pa-
rameters, we have the final theorem.

Theorem 2. Under Assumption ??, 1, 2, ?? and 3, with one
communication round per iteration, i.e. m = 1, Algorithm 1
satisfies, under the following parameter selections:
(i) For final iteration T =O(ϵ−1.5), trajectory lengths Hk ≡
O (log(1/ϵ)/1− γ), δk ≡ δ/(3N(T+1)), δ ∈ (0, 1), batch
sizes Bk ≡ log(1/δk)ϵ

−1, constant step-sizes ηw = O(
√
ϵ),

ηθ = min
{

(1−γ)µwηw

CwCϕCπ
· 1
max{4

√
3N,6

√
10} ,

1
4Lθ

}
= O(

√
ϵ),

then

1

T

T∑
k=1

∥∇θF (λπ
θk )∥2 ≤ O (ϵ+W ) . w.p. 1− δ

(ii) For unspecified final iteration T , we adaptively set: δk =
2δ

Nπ2(k+1)2 , δ ∈ (0, 1), trajectory lengths Hk = O((1 −
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(a) Shadow reward (b) Entropy comparison (c) State space coverage

Figure 1: (a) Occupancy measure (first row) and shadow reward (second row) for MountainCar environment. Each subplot
represents a heatmap for two dimentional state space. Observe that over the course of training the measure and shadow reward’s
coverage of the state and action spaces grows, as a consequence of selecting actions towards maximizing the entropy. (b) Com-
parison for exploration maximization in a cooperative multiagent environment, (c) Agent 1 marginalized occupancy measure.
For the DSCA implementation, each agents needs to estimate only 100 dimensional marginalized occupancy measure while for
the centralized counterpart MaxEnt, we need to estimate 104 dimensional occupancy measure making it slow in practice.

γ)−1 log(k+ 1)), batchsizes Bk = log(1/δk)(k+ 1)
2
3 , and

step-sizes ηkθ = min
{
(1−γ)µwηk+1

w

CwCϕCπ
· 1
max{4

√
3N,6

√
10} ,

1
4Lθ

}
,

ηkw = min{(k + 1)−
1
3 , L−1

w }, then∑T
k=1 η

k
θ

∥∥∇θF (λπ
θk )

∥∥2∑T
k=1 η

k
θ

≤O
(
log T

T
2
3

+W

)
, w.p. 1−δ

In either case, Algorithm 1 requires Õ(ϵ2.5) samples to sat-

isfy
∑T

k=1 ηk
θ∥∇θF (λ

π
θk )∥2∑T

k=1 ηk
θ

≤ O(ϵ+W ).

Next, we establish that for concave general utilities (1),
there are no spurious stationary points.
Corollary 1 (Convergence to global optimality). Suppose
F is concave, and the shadow Q function QF is realizable,
i.e., W = 0 in Assumption 4. For πθ satisfying Assump-
tion 1 of (Zhang et al. 2020b), every stationary point is a
global optimizer. In Theorem 2(ii), if we further let θ̄T be the
parameter randomly chosen from {θk}Tk=1 where θ̄T = θk

w.p. ηkθ/(
∑T

k′=1 η
k′

θ ), then limT→∞ E[∥∇θF (λπθ̄T )∥2] = 0
w.p. 1 − δ. Thus, Algorithm 1 converges to the set of global
optimizers.

Next we spotlight the role of the number of communica-
tion steps in the convergence rate.
Corollary 2 (Multiple-round communication). Suppose
multiple-round communication is allowed, i.e., m > 1. Un-
der the same parameter selections as Theorem 2(i), while
setting final iteration index T = ϵ−1, communication rounds
m = O((1 − ρ)−1 log(ϵ−1)), and the step-sizes ηkθ ≡
min

{
(1−γ)µw/Lw

CwCϕCπ
· 1

max{4
√
3N,6

√
10} ,

1
4Lθ

}
, ηkw ≡ L−1

w ,

then the total sample complexity is O(ϵ−2).
Namely, with additional communication rounds m =

O((1−ρ)−1log(ϵ−1)) per iteration, the convergence rate re-
fines from O(ϵ−2.5) to O(ϵ−2). Next, we investigate the ex-
perimental merit of the proposed approach for giving rise to
emergent teamwork among multiple agents.

Experimental Results
We experimentally investigate the merit of Algorithm 1 in
the context of both single and multi-agent problems. The
single-node case (N = 1) bears investigation as the pro-
posed scheme is a new way to solve RL problems with gen-
eral utilities relative to (Zhang et al. 2020b). For this case,
we consider the continuous MountainCar environment of
OpenAI Gym (Brockman et al. 2016).

Concept of Shadow Reward
To understand the concept of shadow reward, we experiment
with the single-agent setup. We consider the exploration
maximization problem for the MountainCar environment
in which the two dimensional continuous state space is di-
vided into [12, 11] grid size. We run the proposed algorithm
for 40 epochs and then plot the count based occupancy mea-
sure estimate in the first row of Fig. 1(a). In the figure, light
color denotes lower value and dark color represent the higher
values as shown in the colorbar. We see that as we go from
epoch 1 to epoch 39, the algorithm yields occupancy mea-
sures that better cover the state space, which is achieved by
the special structure of the “shadow reward” we define as a
by-product of the general utility.

Multi-Agent Experiments
For multi-agent problems, we experiment with N ≥ 2
agents moving in a two-dimensional continuous space as-
sociated with the problem of Cooperative navigation (Lowe
et al. 2017).

Exploration Maximization. We consider a variant of the
cooperative navigation multi-agent environment provided in
(Lowe et al. 2017) for N = 2 agents. The goal of maximum
entropy exploration in the multi-agent setting is one in which
all agents in the network seek to cover the unknown space,
whereby their local utility is the entropy in (5) is given by
Fi(λ

π
(i))=−

∑
s(i)λ

π
(i)(s(i))·log(λπ

(i)(s(i))).
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(a) World model (b) Average return (c) Average cost

Figure 2: (a) Two agent safe navigation with green safe and brown unsafe state space. The goal is to reach G1 and G2 safely
from the starting positions A1 and A2, respectively. (b) Undiscounted average reward comparison and (c) average constraint
violation comparison for different values of penalty parameter z. Observe that imposing constraints allows agents to avoid
collision and the unsafe region, while effectively reaching the goals more often.

(a) Average return (b) Average cost (c) Consensus error

Figure 3: Safe navigation in a multi-agent cooperative environment with 4 agents and 4 landmarks. Note that the state space in
this case would be 16 dimensional (location of agent and landmarks). We run this experiment for three different communication
graphs among agents; fully connected (FC) (all the agents are connected to each other), ring (all the agents are connected using
ring topology), and random (where agents are randomly using Erdős-Rényi random graph model). (a) Running average of the
reward return, (b) running average of the constraint violation, and (c) running average of the consensus error for agent 1 and
agent 4 for ring and random network connectivity.

We compare DSAC against its corresponding centralized
implementations (Cen-AC) or a variant that uses Monte-
Carlo rollouts (Cen-R, Dec-R), as well as existing Max-
Ent (Hazan et al. 2019) in Fig.1(b)-1(c). Observe that Max-
Ent does not achieve comparable performance, and DSAC
achieves comparable performance to its variants that re-
quire centralization. Fig. 1(c) visualizes the heatmap of the
marginalized measure at agent 1 for DSAC (red) at different
epochs as compared to MaxEnt (purple) and random base-
line (green) – note the superior space coverage of DSAC
(red).

Safe Cooperative Navigation. We consider a two agent
cooperative environment from (Lowe et al. 2017) where
each agent needs to reach its assigned goal while travers-
ing only through the safe region as visualized in Fig.2(a).
Agents receive a negative reward proportional to its distance
from the landmark, and an additional negative reward of −1
if agents collide. Additionally, each agents receive a high
cost of c = 1 if it passes through the unsafe region (mid-
dle of the state space) – see Fig. 2(a). We impose safety
via the constraint for each agent ⟨λπ

i , c⟩ ≤ C where λπ
i

in the marginalized occupancy measure, and including the
constraint as a quadratic penalty in a manner similar to (??)
(see (Zhang et al. 2021) for further details). To solve this

problem, we compare the performance of DSAC for various
values of its penalty parameter z to its centralized variant,
and a version of multi-agent actor-critic that only ignores
the cost. Results for the average reward and constraint viola-
tion, respectively, are given in Fig. 2(b)-2(c). The decentral-
ized DSAC achieves comparable performance to its central-
ized variant, and outperforms existing alternatives, yielding
effective learned behaviors for navigation in team settings.
Demonstrations for larger networks with different connec-
tivities are in Figure 3.

1 Conclusions

We contributed a conceptual basis for defining agents’ be-
havior in cooperative MARL beyond the cumulative return
via nonlinear functions of their occupancy measure. This
motivates defining “shadow rewards” and DSAC, whose
critic employs shadow value functions and weighted averag-
ing. Its consistency and sample complexity was rigorously
established. Further, experiments illuminated the upsides of
general utilities for teams. Future work includes improv-
ing communications and sample efficiencies, connections to
meta-learning, and allowing information asymmetry.
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