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Abstract
Domain adaptation aims to leverage source domain knowl-
edge to predict target domain labels. Most domain adapta-
tion methods tackle a single-source, single-target scenario,
whereas source and target domain data can often be subdi-
vided into data from different distributions in real-life ap-
plications (e.g., when the distribution of the collected data
changes with time). However, such subdomains are rarely
given and should be discovered automatically. To this end,
some recent domain adaptation works seek separations of
hidden subdomains, w.r.t. a known or fixed number of sub-
domains. In contrast, this paper introduces a new subdomain
combination method that leverages a variable number of sub-
domains. Precisely, we propose to use an inter-subdomain
divergence maximization criterion to exploit hidden subdo-
mains. Besides, our proposition stands in a target-to-source
domain adaptation scenario, where one exploits a pre-trained
source model as a black box; thus, the proposed method is
model-agnostic. By providing interpretability at two comple-
mentary levels (transformation and subdomain levels), our
method can also be easily interpreted by practitioners with or
without machine learning backgrounds. Experimental results
over two fraud detection datasets demonstrate the efficiency
of our method.

Introduction
In a traditional supervised learning paradigm, one supposes
that testing data are from the same distribution as training.
However, such an assumption is often violated in real-life
applications. For example, to expand a company’s business,
a pre-trained fraud detection system may be reused to predict
fraudsters of a new market where customers have different
payment habits. Domain adaptation (DA) methods (Pan and
Yang 2009; Torralba and Efros 2011) tackle this problem by
mitigating the gaps between the training data, the so-called
source domain data, and the testing data, the so-called tar-
get domain data. Most DA methods (e.g., Long et al. (2015);
Ganin et al. (2016)) map source data into the target domain
or transform source and target domain into a latent space.
Therefore, they require a training process to estimate a pre-
dictive model during the adaptation. However, such a train-
ing process could be undesirable, especially when dealing
with a mix of predictive models.

Copyright © 2022, Association for the Advancement of Artificial
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In many real-life industrial applications, the predictive
model is often given as a “black-box” of a mix of mod-
els of different types: SVMs, decision trees, and even ex-
pert rules, to name a few. Retraining such a model requires
tedious hyper-parameter fine-tuning and is sometimes un-
feasible due to no longer accessible expertise. Zhang et al.
(2021b,a) proposed a target to source DA method leverag-
ing one-dimensional optimal transport to address this adap-
tation problem with a pre-trained source model. The pro-
posed method transforms target data into the source domain;
thus, the pre-trained source model can be directly applied to
adapted target data. This paper stands in a similar setting
where a well-performed source domain predictive model is
given and cannot be retrained. Since such a scenario is often
used to predict tabular datasets, hereafter, we focus on the
adaptation problem of tabular data.

Furthermore, different from works of Zhang et al.
(2021b,a) that tackle a single-source single-target (single-
domain) DA setting, this article addresses a more chal-
lenging multi-source multi-target DA problem. More specif-
ically, we consider both source and target domains can
be subdivided into data from different distributions, the
so-called subdomains. Nevertheless, subdomain labels are
rarely provided; thus one should propose methods to anno-
tate them automatically. As discrepancies between subdo-
mains of the same domain are not as significant as discrepan-
cies between source and target domains, such intra-domain
drifts may be omitted and even undiscovered as “hidden”
when training a predictive model for a single domain. How-
ever, identifying such hidden subdomains contributes to DA
by increasing the precision and flexibility of adaptation
methods. Some recent works (Xu et al. 2018; Peng et al.
2019) that study multi-source or multi-target DA problems
focus on a scenario where subdomain labels are provided.
In contrast, we address a more challenging case where one
needs to discover these hidden subdomains. Although Gong,
Grauman, and Sha (2013); Mancini et al. (2018) tackle such
a hidden subdomain discovering problem, they assume that
the number of hidden subdomains is known a priori. Relying
on the single-domain DA function of Zhang et al. (2021b,a),
this paper proposes a method reweighting different target
domain classifiers adapted from the best combination of sub-
domains. Therefore, it is not necessary to know the number
of subdomains a priori. Precisely, we first provide a gen-
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eral separation criterion to exploit hidden subdomains. Then
we specialize our proposition to a practical scenario where
data drift in each domain is imputed to time. We name our
method Hidden Subdomain Adaptation with Variable Num-
ber of Subdomains (HSAV).

To summarize, the contributions of this paper are three-
fold. i) We provide a new multi-source multi-target DA
paradigm to address a target to source DA scenario where
a pre-trained source domain predictive model is given and
should be preserved; thus, our method is model-agnostic in
that sense. This paradigm provides objective functions and
efficient optimization methods in both weakly supervised
(when few target labels are available) and unsupervised
(without any target label) scenarios. ii) We leverage a pre-
dictor reweighting method over a variable number of hidden
subdomains, where it is not necessary to know the number of
hidden subdomains a priori to discover them. iii) Combined
with the native interpretability of the single-domain trans-
formations, we propose in HSAV a sparse weighting factor
between target and source subdomains. The proposition en-
hances the interpretability of our method by giving practi-
tioners, with or without machine learning backgrounds, in-
sights on discovered hidden subdomains. We show the inter-
pretability of our methods in experiments empirically.

Related Works
Single-domain DA. The single-domain DA method tack-
les the case where one source domain with labeled data
and one target domain with unlabeled or weakly-labeled
data are given. Some classical methods address this prob-
lem by minimizing measures like Kullback-Leibler diver-
gence (Shimodaira 2000; Sugiyama et al. 2008) or Max-
imum Mean Discrepancy (MMD) (Pan et al. 2010; Bak-
tashmotlagh et al. 2013; Long et al. 2013) between source
and target distributions. Others focus on the alignment of
the source and target domains correlations (Sun, Feng, and
Saenko 2017) or principal axes (Fernando et al. 2013). Some
recent researches (Perrot et al. 2016; Courty et al. 2016,
2017) transform source data to target domains by seeking
the optimal transport plan and minimizing the Wasserstein
distance. Deep learning approaches are also shown to be ef-
ficient for DA tasks (Yosinski et al. 2014), especially when
dealing with image datasets. Long et al. (2015, 2017) en-
hance such transferability by plugging into neural networks
an adaptation layer to minimize MMD. Ganin et al. (2016),
Tzeng et al. (2017), Long et al. (2018), and Saito et al.
(2018) leverage advances in adversarial learning to gener-
ate domain invariant features. Several recent works (Liang,
Hu, and Feng 2020; Kurmi, Subramanian, and Namboodiri
2021; Yeh et al. 2021) leveraging a pre-trained source model
for DAs stand in a setting where source domain data are
not available. However, such methods are suboptimal when
hidden subdomains exist due to undiscovered intra-domain
drifts.

Multi-subdomain DA. To address the single-domain DA
scenario, Liu, Shao, and Fu (2016) and Peng et al. (2019)
leverage a moment matching, Zhao et al. (2018) adopt ad-
versarial networks, and Li et al. (2018) use a similarity

graph. Recent works also propose using knowledge distill-
ing (Zhao et al. 2020) or aligning outputs of classifiers seam-
lessly (Venkat et al. 2021). Similar to us, the works of Duan
et al. (2009), Mansour, Mohri, and Rostamizadeh (2009), Xu
et al. (2018), and Hoffman, Mohri, and Zhang (2018) adopt
subdomain reweighing methods for target label predictions.
However, in our proposition, instead of combining subdo-
mains, HSAV reweights separations of subdomains w.r.t. dif-
ferent subdomain numbers. Besides, it can address different
types of pre-trained source models and is not limited to neu-
ral networks. Moreover, all of the aforementioned methods
that tackle the multi-subdomain DA problem suppose that
subdomain labels are given.

When dealing with hidden subdomains without subdo-
main labels, Gong, Grauman, and Sha (2013) propose to dis-
cover them by maximizing domain discrepancies, and the
number of subdomains is chosen to be the one that maxi-
mizes the source domain prediction performances. Hoffman
et al. (2012) leverage a clustering method of the input space
to get hidden subdomains. Xu et al. (2014) and Li et al.
(2017) build subdomains by including only one source do-
main positive example, and all negative examples. However,
such a method is not scalable to massive datasets. Recent
works of Mancini et al. (2018, 2019) discover hidden subdo-
mains relying on a neural network of subdomain classifier,
while the number of subdomains should be known a priori.
In our case, instead of considering one fixed number of sub-
domains, we leverage a variable number of subdomains, that
we aggregate into an ensemble.

Supervised Hidden Subdomain Adaptation
We denote the input (resp. output) space of predictive mod-
els as X (resp. Y). As we focus on a binary classification
problem in this paper, Y={0, 1}, and the pre-trained source
domain predictor hs(x

s) : X→[0, 1] gives the probabil-
ity that one example xs is classified as 1. In a target to
source DA setting, hs(x

s) is given as a black-box classifier
of a wide variety of types (e.g., neural networks, decision
trees). Previous works addressing this case focus on a single-
domain DA problem (Zhang et al. 2021b,a). In this paper, we
generalize the method to a multi-subdomain setting for ex-
tending the flexibility of such DA approaches while preserv-
ing their appealing properties. We denote by Xsub the feature
space that encodes hidden subdomains. Note that features in
X and Xsub can be different. X stands for the discriminative
attributes in predicting class labels, whereas Xsub contains
attributes that help discover hidden subdomains and may not
be discriminative in classification; thus, Xsub can contain at-
tributes that are not in X .

Let Xt and Xs be respectively the target and source do-
main input variables over the support X , and P (Xt) and
P (Xs) represent their distributions. Analogously, Xt

i and
Xs

j are the marginal variables of corresponding subdomains,
and P (Xt

i ) and P (Xs
j ) are subdomain distributions. Thus,

P (Xt)=

kt∑
i=1

πt
iP (Xt

i ) , and P (Xs)=

ks∑
j=1

πs
jP (Xs

j ) ,
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where πt
i and πs

j are proportions of subdomains, and
ks∈{1, . . . , ksup

s } and kt∈{1, . . . , ksup
t } refer to the number

of subdomains. ksup
t ∈ N∗ and ksup

s ∈ N∗ stand respectively
for the maximum number of subdomains that we consider.
Let Xt = {xt

l}
nt

l=1 (resp. Xs = {xs
m}ns

m=1) be nt (resp. ns)
target (resp. source) domain examples drawn from P (Xt)

(resp. P (Xs)). Analogously, we also define Xt
i = {xt

l}
nt
i

l=1,

Xs
j = {xs

m}n
s
j

m=1 sets of examples of target and source sub-
domains respectively drawn from P (Xt

i ) and P (Xs
j ). For

compactness, we denote X = {Xt
1, . . . ,Xt

kt
,Xs

1, . . . ,Xs
ks
}

the set of all target and source subdomains.
Moreover, we assume that there exists a mapping matrix

S ∈ {0, 1}kt×ks that relates hidden target subdomains to
the source ones. We denote Si,j the scalar located at the i-
th row and the j-th column of S; Si,· and S·,j represent
the row and column vectors. Si,j takes the value 1 if the
target subdomain Xt

i is mapped to the source subdomain
Xs

j , or the value 0 otherwise. Furthermore, to enhance the
interpretability, we encourage S to be sparse. Typically, we
want one target hidden subdomain maps to only one source
hidden subdomain, that is, ∀i ∈ {1, . . . , kt} ,

∑ks

j=1 Si,j=1 .
In the following, we first provide details of our adaptation

methods by starting with a known number of subdomains,
and then we generalize our method to handle a variable num-
ber of subdomains.

Hidden Subdomain Adaptation with a Known Number
of Subdomains. Let first assume that we face a DA prob-
lem from which we know a priori the underlying num-
ber of target and source subdomains kt and ks, and let
K = (kt, ks). Given xt ∈ Xt, we formalize the target do-
main classifier as

ht(x
t;K,X,S) =

kt∑
i=1

Mi(x
t;X)hi

t(x
t;K,X,S) , (1)

where hi
t is a predictor of the i-th target subdomain, and

Mi(x
t;X) is the probability that a target example xt belongs

to this subdomain. More precisely, we have

Mi(x
t;X) =

πt
iP (Xt

i = xt)∑kt

k=1 π
t
kP (Xt

k = xt)
.

Of note, as our experiments involve both categorical and nu-
merical features, the i-th subdomain density P (Xt

i = xt) is
thus computed by a product of densities of each dimension
of xt. Furthermore, we formalize the classifier of the i-th
target subdomain as

hi
t(x

t;K,X,S) =
ks∑
j=1

Si,jhs ◦ Gi,j(x
t;X) , (2)

where Gi,j(·;X) is a single-domain DA function that trans-
forms data from the i-th target subdomain Xt

i to the j-th
source subdomain Xs

j . Namely, we leverage the work of
Zhang et al. (2021a) by setting Gi,j(·;X) to be coordinate-
wise DA functions, as their method is model-agnostic and
easy to interpret.1 With known subdomains numbers K, the

1See a summary of this adaptation function in the supplemen-
tary material at https://github.com/marrvolo/HSAV.

hidden subdomain adaptation consists of estimating the op-
timal subdomain separations X and their relation matrix S.
Estimation of X. Logically, separations of subdomains are
significant if inter-subdomain discrepancies are large. As if
subdomains were similar, they could be adapted using the
same transformation, and there would be no need to dis-
tinguish them. Moreover, in a predictor weighting formal-
ization as Equations (1) and (2), one benefits from a diver-
sity between weighted elements. Here, such diversity is in-
herited from the differences between subdomains, as they
likely spawn diverse transformations Gi,j(·;X). Following
the same convention of Gong, Grauman, and Sha (2013) and
Hoffman et al. (2012), we search the optimal X by maximiz-
ing inter-subdomain discrepancies. That is,

X∗ = argmax
X

[
kt∑
i̸=j

D(Xt
i,Xt

j) +

ks∑
i̸=j

D(Xs
i ,Xs

j)

]
, (3)

where D(·, ·) is a domain discrepancy measure. In our case,
as we focus on adapting tabular data where the input space
contains categorical and numerical attributes, D(·, ·) is cho-
sen to be the sum of one-dimensional Wasserstein distances
over each feature.
Estimation of S in a weakly supervised setting. In this sec-
tion, we stand in a case where a few target domain data are
annotated with true labels. Such a small set of nw examples
is denoted D = {(xt

l , y
t
l )}

nw

l=1. Note that the next section pro-
vides an unsupervised version of our method to address the
more challenging scenario without target data.

In a weakly supervised scenario, once X is determined,
one can minimize the prediction error over the few labeled
target domain points to estimate S. That is,

S∗ = argminS
1
nw

∑
(xt,yt)∈D l(ht(x

t;K,X∗,S), yt) ,

(4)

where l : X × Y → R+ is a loss function (e.g., binary
cross-entropy loss). The optimization details of this problem
are provided in the implementation section. Basically, we
leverage a Softmax function to approximate S∗.

Hidden Subdomain Adaptation with a Variable Number
of Subdomains. In many real-life scenarios, the number
of hidden subdomains is unknown. In such cases, a natural
choice is to estimate the optimal couple K using weakly
labeled target examples, that is,

K∗ = argminK
1
nw

∑
(xt,yt)∈D l(h†

t(x
t;K), yt) ,

where h†
t(x

t;K) = ht(x
t;K,X∗,S∗) is the estimated op-

timal target classifier of the previous section with K subdo-
mains. For a given K, h†

t(x
t;K) is the estimated optimal

target domain classifier of the previous section. However,
when using a Bagging strategy, we empirically observe that
one can hardly find a single K∗ that is significantly better
than others. Indeed, the scarcity of D leads to high variabil-
ity in Bagging predictive performances.

Therefore, instead of using h†
t(x

t;K∗) with the opti-
mal estimated K∗ as the target domain classifier, we pro-
pose aggregate multiple target predictors h†

t(x
t;K). Each

9059



h†
t(x

t;K) is obtained for different values of K. The weight
associated with each possible subdomain number is handled
by the matrix A ∈ Rksup

t ×ksup
s , such that the target domain

predictive model becomes

h∗
t (x

t;A) =

ksup
t∑

kt=1

ksup
s∑

ks=1

σkt,ks(A)h†
t(x

t; (kt, ks)) ,

where σkt,ks is a Softmax function that encourages a spar-
sity of the weighting factor:

σkt,ks
(A) =

exp(Akt,ks
)∑ksup

t
u=1

∑ksup
s

v=1 exp(Au,v)
.

Consequently, the objective function becomes

A∗ = argminA
1
nw

∑
(xt,yt)∈D l(h∗

t (x
t;A), yt) , (5)

and the corresponding target domain predictor is h∗
t (·;A

∗).

Unsupervised Hidden Subdomain Adaptation
We now address a more challenging unsupervised DA sce-
nario, such that one can still get separations of subdomains
X∗ using Equation (3), whereas it is no longer possible to
estimate S∗ relying on Equation (4), nor get the target do-
main predictive model h∗

t (·;A
∗) using Equation (5), since

yt is not accessible. Alternately, we propose to leverage a
necessary condition of the optimal DA to estimate S and A.

In real-life applications, the given pre-trained source do-
main predictive model is often well trained to be the optimal
one in source domains, that is, hs(x

s) = P (Y s=1|Xs=xs).
Under such a setting, when K is known, a necessary condi-
tion for X∗ and S∗ to be the optimal ones is

P (ht(X
t;K,X∗,S∗)) = P (hs(X

s)) . (6)

When we have a variable number of subdomains, a neces-
sary condition of the optimal A∗ is

P (h∗
t (X

t;A∗)) = P (hs(X
s)) . (7)

Basically, domain adaptation aims to align joint distributions
of target and source domains; thus the alignment of the out-
put distributions of classifiers is a necessary condition.2 In
practice, X∗ is fixed using Equation (3), and one can search
for S∗ and A∗ relying on such conditions.
Estimation of S. Inspired by Equation (6), given
K∈{(kt, ks)|kt∈{1, . . . , ksup

t }, ks∈{1, . . . , ksup
s }}, the

unsupervised optimization problem of S is formulated as

S∗ = argminS W (ht(X
t;K,X∗,S), hs(X

s)) , (8)

where W (·, ·) is the one-dimensional Wasserstein distance
over the distribution of positive outputs. Empirically, W (·, ·)
is given by

W (ht(X
t;K,X∗,S), hs(X

s)) =∑
xt∈Xt

(
ht(x

t;K,X∗,S)− F−1
s (ht(x

t;K,X∗,S))
)2

,

where F s is the cumulative distribution function of hs.
2See details at https://github.com/marrvolo/HSAV.

Estimation of A. For a variable number of subdomains, in-
spired by Equation (7), we propose the following unsuper-
vised objective function to mimic Equation (5):

A∗ = argminA W (h∗
t (X

t;A), hs(X
s)) . (9)

In the implementation section, we give optimization details
of our proposed objective functions.

Specialization to Temporal Drift. In this paper, we focus
on a practical case where the feature Xsub that encodes hid-
den subdomains is one temporal dimension (the time). Such
a scenario is very common in real-life applications where
data arrive as time goes on, and there is a drift between col-
lected data. For example, in a payment fraud detection sys-
tem, payment habits are different due to the change of sea-
sonality. Moreover, time is a one-dimensional feature that
can be efficiently subdivided. Consequently, subdomains Xt

i
and Xs

j are respectively parameterized by separations of time
{tt1, . . . , ttkt−1} and {ts1, . . . , tsks−1} in such a setting. We
have

∀xt ∈ Xt
i , t

t
i−1 < T (xt) ≤ tti , and

∀xs ∈ Xs
j , t

s
j−1 < T (xs) ≤ tsj ,

where T (·) : X → Xsub gives the hidden subdomain feature
(the time in our case). As we separate subdomains following
the axis of time, instead of computing inter-subdomain dis-
crepancies between every pair of subdomains, we take into
account only discrepancies between successive subdomains.
Equation (3) is redefined as

X∗=argmax
X

[
kt−1∑
i=1

D(Xt
i,Xt

i+1)+

ks−1∑
j=1

D(Xs
j ,Xs

j+1)

]
. (10)

Recent DA works (Bobu et al. 2018; Wang, He, and Katabi
2020) addressing the temporal drift do not apply to our case,
as we adapt from target subdomains to source subdomains,
whereas they align subdomains data in the same domain.

Implementation
For both weakly supervised and unsupervised cases, the pro-
posed HSAV consists of 3 steps. i) We estimate separations
of subdomains X w.r.t. different numbers of subdomains. ii)
We estimate the corresponding sparse mapping factor S. iii)
We combine predictions of variable numbers of subdomains
relying on A.
Optimization over X. Since Equation (10) is not differen-
tiable due to the existence of categorical features, we rely
on the Nelder-Mead method (Nelder and Mead 1965) to
solve this objective function. Note that, since the two sums
of Equation (10) are independent, one can solve both parts
individually.

The maximum number of subdomains is determined by
gradually increasing the number of subdomains and solv-
ing Equation (10). Namely, we start from kt = 2 (resp.
ks = 2) and compute the subdomain separations. We in-
crease kt (resp. ks) by 1 if ∀i ∈ {1, . . . , kt} , nt

i > nm

(resp. ∀j ∈ {1, . . . , ks} , ns
j > nm), where nm is the min-

imum number of examples that we expect to have in each
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subdomain. Otherwise, we stop the process and take the cur-
rent value of kt (resp. ks) as the maximum number of target
(resp. source) subdomains ksup

t (resp. ksup
s ).

Optimization over S. Since the discrete optimization prob-
lems (Equations 4 and 8) are computationally expen-
sive, instead of directly searching S in the discrete space
{0, 1}kt×ks , we relax the constraints over S relying on a
Softmax function by row. Specifically, we set

ωi,j(S̃) =
exp(S̃i,j)∑ks

k=1 exp(S̃i,k)
,

with S̃ ∈ Rkt×ks , and ω(S̃) is a matrix where the i-th row
the j-th column is referred to as ωi,j(S̃).

Therefore, in a weakly supervised scenario, we can opti-
mize S̃ in place of S, and Equation (4) becomes

S̃
∗
=argminS̃

1
nw

∑
(xt,yt)∈D l(ht(x

t;K,X∗, ω(S̃)), yt) ,

which can be solved by classical optimization methods (e.g.,
gradient descent). Analogously, in an unsupervised scenario,
Equation (8) becomes

S̃
∗
= argminS̃ W (ht(X

t;K,X∗, ω(S̃)), hs(X
s)) .

As F−1
s is not differentiable, we solve it using an iterative

method relying on the gradient descent. At each step (de-
noted by p) of iterations, the gradient is computed by

∇gs =
∂
∑

xt∈Xt

(
ht(x

t;K,X∗, ω(S̃))−H(xt)
)2

∂S̃
,

(11)

where H(xt) = F−1
s (ht(x

t;K,X∗, ω(S̃
p−1

)). Note that
we compute H(x) using S̃

p−1
of the previous iteration,

which is considered as a constant with respect to S̃ and
does not contribute to the gradient of S̃

p
. Then we set

S̃
p
= S̃

p−1−c1∗∇gs with c1 as a learning rate and continue
the process until the stop criterion is met. We set all S̃i,j = 0
at initialization for both supervised and unsupervised cases;
thus the initial factor S̃ between each pair of target-source
subdomain is uniform.

To further reduce the computational cost of the proposed
method, instead of using one Gi,j(·;X) between each pair of
target-source subdomains, we compute a global transforma-
tion function G(·) that adapts Xt to Xs and let Gi,j(·;X) =
G(·) during optimizations. The final discrete solution of S is

S∗
i,j =

{
1 if S̃∗

i,j = maxk S̃
∗
i,k ,

0 otherwise.
(12)

Once the discrete factor S between target and source sub-
domains is determined, we re-estimate transformation func-
tions Gi,j(·;X) between the i-th subdomain of target and the
j-th subdomain of source for all S∗

i,j = 1.
Optimization over A. Following a similar approach as the
optimization of S̃, in a supervised setting, we solve Equa-
tion (5) using a gradient descent method. Supposing that
min(ksup

t , ksup
s ) > 1, at initialization, we set

Akt,ks
=

{
log(3(ksup

t ×ksup
s −1)) if kt=ks=1 ,

0 otherwise,

which makes the weighting factor of target classifiers of dif-
ferent numbers of subdomains to be

σkt,ks
(A) =

{
3/4 if kt=ks=1 ,

1/(4(ksup
t ×ksup

s −1)) otherwise.

We set σkt,ks
(A)=3/4 for kt=ks=1 to privilege this choice

if subdomains cannot significantly improve prediction per-
formances. Besides, the value of the gradient at σkt,ks

(A) =
3/4 is not too small to conduct effective training.

In an unsupervised setting, we solve Equation (9) by the
same approach as Equation (11). Namely, the gradient at the
p-th step of iterations is computed by

∇gu =
∂
∑

xt∈Xt

(
h∗
t (x

t;A)−Q(xt)
)2

∂A
,

where Q(xt)=F−1
s (h∗

t (x
t;Ap−1). Then we set Ap =

Ap−1−c2∇gu with c2 as a learning rate until the stop cri-
teria is met.

Furthermore, we adopt a Bagging method (Breiman 1996)
to enhance the robustness of estimated parameters. Pre-
cisely, in both supervised and unsupervised scenarios, S̃ and
A are estimated over 10 Bagging datasets, and the average
value is used as the final estimation results. Then S is ob-
tained relying on Equation (12) over the average of S̃.

Complexity Analysis. Note that the number of repetitions
of the Nelder-Mead search to estimate X increases linearly
as the maximum number of subdomains increases. The fac-
tors S and A can be estimated efficiently, relying on the
gradient descent or its variant. However, the number of es-
timated adaptation functions Gi,j(·;X) is of the order of
ksup
s (ksup

t )2, which seems not scalable when the expected
number of subdomains is large. Nonetheless, ksup

s and ksup
t

are generally small in a target to source DA setting.

Experiment
We tackle a target to source DA scenario with different types
of given pre-trained source models. We evaluate HSAV over
two fraud detection datasets. Note that these datasets are tab-
ular by nature. Our method is suited for these problems,
whereas many recent DA methods (involving neural net-
works) are designed for image data.3

Kaggle Fraud Detection Dataset.4 The dataset contains on-
line payment transactions issued from mobile devices and
desktop devices. The objective of this challenge is to predict
whether a transaction is fraudulent or not. The input space of
the raw dataset is of dimension greater than 400, while most
dimensions contain missing values. We discard features with
more than 1% of missing values and are not discriminative
when predicting fraudsters. Furthermore, examples with any
missing values are also removed from the dataset. After the
preprocessing, we have around 150,000 examples with 43
numerical and 8 categorical features, and the proportion of
fraudsters is around 7% on average. We consider one source

3See more details and experiments at https://github.com/
marrvolo/HSAV.

4www.kaggle.com/c/ieee-fraud-detection
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Method D-1 to M D-2 to M D-3 to M AVG

NN HSAV 5.26 3.24 5.51 4.67
MultiDA 4.59 -7.29 -4.64 -2.45
DCTN -16.87 -13.40 -8.59 -12.95

NN SCDA 3.23 2.88 5.41 3.84
DAN 12.31 -3.20 1.41 3.51
DANN 3.47 -2.90 -4.21 -1.21
MCD -11.47 -6.29 -6.81 -8.19

LGB HSAV 32.87 7.41 14.43 18.24
LGB SCDA 32.68 7.14 14.31 18.04
LGB Baseline 26.43 4.36 7.60 12.80

(a) Kaggle fraud detection dataset in an unsupervised setting.

Method G-1 to B G-2 to B G-3 to B AVG

NN HSAV 8.77 12.93 7.38 9.70
MultiDA -7.07 -6.68 8.26 -1.83
DCTN 2.14 -0.15 1.98 1.32

NN SCDA 8.02 11.72 5.95 8.56
DAN 7.31 5.47 10.01 7.60
DANN 4.38 6.43 5.28 5.37
MCD 6.46 1.41 6.84 4.91

LGB HSAV 5.60 6.28 9.97 7.28
LGB SCDA 1.83 2.77 7.11 3.90
LGB Baseline 9.91 3.59 -1.94 3.85

(b) Real fraud detection dataset in an unsupervised setting.

Method D-1 to M D-2 to M D-3 to M AVG

NN HSAV 12.61 5.64 4.87 7.70
MultiDA -5.71 -2.87 -0.25 -2.94
DCTN -13.58 -11.77 -5.00 -10.12

NN SCDA 1.30 2.98 3.72 2.66
DAN 15.40 -0.57 1.53 5.45
DANN 5.77 -0.87 -2.40 0.83
MCD 8.96 -2.48 -2.89 1.20
FineTune 4.23 2.12 4.95 3.76

LGB HSAV 29.52 8.49 14.51 17.51
LGB SCDA 27.85 7.18 13.66 16.23
LGB Baseline 26.43 4.36 7.60 12.80

(c) Kaggle fraud detection dataset in a weakly supervised setting.

Method D-1 to M D-2 to M D-3 to M AVG

NN HSAV 12.57 14.30 11.79 12.88
MultiDA 0.90 -3.85 19.18 5.41
DCTN 8.30 10.41 19.17 12.63

NN SCDA 11.75 8.89 13.62 11.42
DAN 9.40 11.85 8.85 10.03
DANN 9.56 10.27 10.46 10.10
MCD 1.64 1.77 12.71 5.38
FineTune 8.04 10.91 5.32 8.09

LGB HSAV 23.43 19.52 17.39 20.11
LGB SCDA 22.65 17.84 15.21 18.56
LGB Baseline 9.91 3.59 -1.94 3.85

(d) Real fraud detection dataset in a weakly supervised setting.

Table 1: Prediction performances in PR AUC of multi-subdomain adaptation (above dashed lines) and single-source single-
target adaptation (below dashed lines). All performances are compared to NN baseline models without any adaptation, and the
percentage of improvements is reported. Methods above solid lines are NN based, and that below solid lines are LGB based.

domain (denoted by M) that contains all data from mobile
devices and three target domains (denoted by D-i) of desk-
top devices over 3 different periods. Hidden subdomains are
further discovered automatically by our proposed method.
Real Fraud Detection Dataset. This private dataset (pro-
vided by an IT company) contains real anonymous clients’
card transactions from July 2018 to September 2018 of two
geographical domains: Belgium and Germany. The input
space has 23 numerical features and 7 categorical ones. The
Belgian dataset has over 30 million examples with a fraud
rate of 0.3%, and the German dataset has around 15 mil-
lion examples with 0.5% of frauds. We consider the Belgian
dataset the source domain (denoted by B) and let each month
of German data be one target domain (denoted by G-i).
Other General Setup Details. We pre-train two source do-
main predictive models: a neural network (NN) and a gra-
dient boosting decision tree implemented in LightGBM
(LGB) Python package. The models are estimated using
source domain data with 10 different random states. The
one that achieves the best prediction performance over
source domain testing data is further used as the pre-trained
model during our DA process. We compare our proposition
with single-domain DA methods: DAN (Long et al. 2015),
DANN (Ganin et al. 2016), MCD (Saito et al. 2018), and

SCDA (Zhang et al. 2021a), and multi-subdomain DA meth-
ods: DCTN (Xu et al. 2018) and MultiDA (Mancini et al.
2018, 2019). All these adaptation methods are estimated un-
der different hyper-parameters, and the one that achieves the
best performance over source domain testing data is cho-
sen. For compared multi-subdomain DA methods, we fix the
number of hidden subdomains to be 2 in the source domain
and 1 in target domains, as target domains contain a shorter
period than the source one. At the preprocessing stage of all
adaptation methods, we adopt the strategy of Lin, Lee, and
Wahba (2002) to adjust the proportion of fraud in the source
and target domains to be the same. In a weakly supervised
case, we also train a FineTune model by fine-tuning the last
layer of NN pre-trained models using weakly labeled target
data.

Adaptation Performance. As datasets are highly imbal-
anced, we evaluate predictive models based on the area un-
der the precision-recall curve (PR AUC). For the sake of
comparison, we set the NN model as a reference and report
the percentage of PR AUC improvements compared to NN.
In a weakly supervised setting, we annotate respectively 200
and 5000 labeled examples of target domains of the Kag-
gle and real fraud detection datasets. For all other compared
methods, we extend them to a weakly supervised case by us-
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Figure 1: Variances of improvements in PR AUC of the
Kaggle adaptation task D-1 to M in a weakly supervised set-
ting with different random states.

ing labeled target data for hyper-parameter selection. In the
unsupervised setting, no labeled target data are used.

Kaggle Adaptation Task. Table 1a reports performances of
HSAV based on NN pre-trained model (NN HSAV) and
LGB pre-trained model (LGB HSAV) in an unsupervised
setting. Regarding NN models, NN HSAV outperforms all
other adaptation methods on average. Nevertheless, other
subdomain adaptation methods with a fixed number of sub-
domains (MultiDA, DCTN) have an effect of negative trans-
fer over this dataset. Although DAN significantly improves
the baseline of NN models of the adaptation task D-1 to M,
the improvement is less significant compared to LGB mod-
els. The LGB baseline model without adaptation method ex-
ceeds all NN models. Indeed, the LGB model is efficient in
dealing with tabular data with categorical variables. More-
over, LGB HSAV further improves the LGB baseline and is
also better than the single-domain DA method LGB SCDA.
Table 1c reports the results in a weakly supervised case. Re-
lying on labeled target data, all adaptation methods based
on NN models improve their performances compared to the
unsupervised case. However, LGB HSAV and LGB SCDA
are no better than their unsupervised version, mainly in the
adaptation task D-1 to M. We explain this result by the insta-
bility related to the scarcity of weakly labeled data. To better
understand the variance of all adaptation methods, we illus-
trate the adaptation task D-1 to M using a boxplot (Figure 1).
Note that, in this task, our method is much more stable than
most of the other adaptation methods.

Real Data Adaptation Task. A similar conclusion can be
drawn from Tables 1b and 1d where we evaluate adaptation
methods over the real fraud detection dataset. On average,
our propositions (NN HSAV and LGB HSAV) outperform
other adaptation methods. In contrast to the Kaggle adap-
tation tasks, in the unsupervised setting, LGB HSAV per-
forms no better than NN HSAV. This may be related to the
low performance of LGB SCDA compared to NN SCDA, as
LGB HSAV combines LGB SCDA as elementary adaptation
methods. Unlike the weakly supervised case on the Kag-
gle datasets, labeled target data always increase the perfor-
mances of all adaptation methods in this case, especially for
the multi-subdomain DA method DCTN. The weakly super-
vised DCTN achieves the second-best performance among

1 20.0
0.4
0.8

1 2 30.0
0.4
0.8

(a) Subdomains weights in the target (left), and the source (right).
X-axis: subdomain numbers, Y-axis: subdomain weights.

1 2 3

1
2

1 0 0

1 0 0

1 2

1
2

0 1

1 0

(b) Sparse matrix S, kt=ks=2 (left), and kt=2 , ks=3 (right). X-
axis: target subdomain index, Y-axis: source subdomain index.

Figure 2: Interpretability study on the Kaggle task D-2 to M.

all NN models. Furthermore, LGB HSAV also improves NN
HSAV significantly in the weakly supervised case. Note that,
for both Kaggle and real data adaptation tasks, HSAV suc-
ceeds in leveraging multi hidden subdomains information to
improve DAs. However, other multi-subdomain DA methods
(MultiDA, DCTN) suffer in most adaptation tasks. Indeed,
such methods generally have high variances and are very
sensitive to hyper-parameters and even random states.

Interpretability study. The following shows the inter-
pretability of our method by illustrating the adaptation re-
sults of the Kaggle adaptation task D-2 to M. Parameter
σ(A) and S values are displayed in Figure 2. More pre-
cisely, Figure 2a is obtained by summing σ(A) by rows and
columns. It shows the weights of each number of subdo-
mains in source and target domains. Specifically, in the tar-
get domain, we give more weights to the case where kt=1
(no subdomain). As for the number of subdomains in the
source domain, although ks=3 has more weights than the
others, the difference is not very significant. Therefore, one
should also take into account the case when ks=1 and ks=2
to have a good prediction performance. Such an observa-
tion intuitively explains the reason why traditional multi-
subdomain DA methods with a fixed number of subdomains
cannot achieve good results. Figure 2b provides the mapping
matrix S of the case when kt=2 and ks ∈ {2, 3}. When
ks=2, the first target subdomain maps to the second source
subdomain, while the second target subdomain maps to the
first source subdomain. When ks=3, all subdomains of the
target domain are mapped to the first source subdomain.

Conclusion
Standing in a target to source DA scenario, we provide a pre-
dictor reweighting method for a multi-subdomain DA sce-
nario in weakly supervised and unsupervised settings. We
first introduce a general subdomain division criterion and
then specialize in a real-life case of temporal drift. We eval-
uate HSAV over two fraud detection datasets and illustrate
the estimated parameters. Our current proposition focuses
more on the small number of hidden subdomains. We aim
to generalize our method to deal with a larger number of
subdomains for future research.
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