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Abstract

Understanding the black-box prediction for neural networks
is challenging. To achieve this, early studies have designed
influence function (IF) to measure the effect of removing a
single training point on neural networks. However, the clas-
sic implicit Hessian-vector product (IHVP) method for cal-
culating IF is fragile, and theoretical analysis of IF in the
context of neural networks is still lacking. To this end, we
utilize the neural tangent kernel (NTK) theory to calculate IF
for the neural network trained with regularized mean-square
loss, and prove that the approximation error can be arbitrarily
small when the width is sufficiently large for two-layer ReLU
networks. We analyze the error bound for the classic IHVP
method in the over-parameterized regime to understand when
and why it fails or not. In detail, our theoretical analysis re-
veals that (1) the accuracy of IHVP depends on the regular-
ization term, and is pretty low under weak regularization; (2)
the accuracy of IHVP has a significant correlation with the
probability density of corresponding training points. We fur-
ther borrow the theory from NTK to understand the IFs better,
including quantifying the complexity for influential samples
and depicting the variation of IFs during the training dynam-
ics. Numerical experiments on real-world data confirm our
theoretical results and demonstrate our findings.

Introduction
Influence function (Hampel 1974) is a classic technique
from robust statistics, which measures the effect of changing
a single sample point on an estimator. Koh and Liang (2017)
transferred the concept of IFs to understanding why neural
networks make corresponding predictions. IF is one of the
most common approaches in explainable AI and is widely
used for boosting model performance (Wang, Huan, and Li
2018), measuring group effects (Koh et al. 2019), investi-
gating model bias (Wang, Ustun, and Calmon 2019), under-
standing generative models (Kong and Chaudhuri 2021) and
so on. Specifically, IF reflects the effect of removing one
training point on a neural network’s prediction, thus can be
used to discover the most influential training points for a
given prediction. In their work, the implicit Hessian-vector
product (IHVP) was utilized to estimate the IF for neural
networks. However, the numerical experiments in (Basu,
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Pope, and Feizi 2021) pointed out that IFs calculated via
IHVPs are often erroneous for neural networks. Further-
more, theoretical understanding for why these phenomena
happened still lacks in the neural network regime.

To theoretically understand the IF for neural networks, we
need to overcome the non-linearity and over-parameterized
properties in neural networks. Fortunately, recent advances
of NTK (Jacot, Gabriel, and Hongler 2018; Lee et al. 2019)
shed light on the theory of over-parameterized neural net-
works. The key idea of NTK is that an infinitely wide neu-
ral network trained by gradient descent is equivalent to ker-
nel regression with NTK. Remarkably, the theory of NTK
builds a bridge between the over-parameterized neural net-
works and the kernel regression method, which dramat-
ically reduces the difficulty of analyzing the neural net-
works theoretically. With the help of NTK, the theory for
over-parameterized neural networks has achieved rapid pro-
gresses (Arora et al. 2019a; Du et al. 2019a; Hu, Li, and Yu
2020; Zhang et al. 2021), which encourage us to deal with
the puzzle of calculating and understanding the IFs for neu-
ral networks in the NTK regime.

In this work, we utilize the NTK theory to calculate
IFs and analyze the behavior theoretically for the over-
parameterized neural networks. In summary, we make the
following contributions:
• We utilize the NTK theory to calculate IFs for over-

parameterized neural networks trained with regularized
mean-square loss, and prove that the approximation er-
ror can be arbitrarily small when the width is suffi-
ciently large for two-layer ReLU networks. Remarkably,
we prove the first rigorous result to build the equivalence
between the fully-trained neural network and the kernel
predictor in the regularized situation. Numerical experi-
ments confirm that IFs calculated in the NTK regime can
approximate the actual IFs with high accuracy.

• We analyze the error bound for the classic IHVP method
in the over-parameterized regime to understand when and
why it fails or not. On the one hand, our bounds reveal
that the accuracy of IHVP depends on the regularization
term which was only characterized before by numeri-
cal experiments in (Basu, Pope, and Feizi 2021). On the
other hand, we theoretically prove that the accuracy of
IHVP has a significant correlation with the probability
density of corresponding training points, which has not
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been revealed in previous literature. Numerical experi-
ments verify our bounds and statements.

• Furthermore, we borrow the theory from NTK to under-
stand the behavior of IFs better. On the one hand, we uti-
lize the theory of model complexity in NTK to quantify
the complexity for influential samples and reveal that the
most influential samples make the model more compli-
cated. On the other hand, we track the dynamic system of
the neural networks and depict the variation of IFs during
the training dynamics.

Related Works
Influence Functions in Machine Learning
To explain the black-box prediction in neural networks, Koh
and Liang (2017) utilized the concept of IF to trace a model’s
predictions through its learning algorithm and back to the
training data. To be specific, they considered the following
question: How would the model’s predictions change if we
did not have this training point?

To calculate the IF of a training point for neural networks,
Koh and Liang (2017) proposed an approximate method
based on IHVP and Chen et al. (2021) considered the train-
ing trajectory to avoid the calculation of Hessian matrix.
However, Basu, Pope, and Feizi (2021) figured out that the
predicting precision via IHVP may become particularly poor
under certain conditions for neural networks.

Theory and Applications of NTK
In the last few years, several papers have shown that the
infinite-width neural network with the square loss during
training can be characterized by a linear differential equation
(Jacot, Gabriel, and Hongler 2018; Lee et al. 2019; Arora
et al. 2019a). In particular, when the loss function is the
mean square loss, the inference performed by an infinite-
width neural network is equivalent to the kernel regression
with NTK. The progresses about NTK shed light on the the-
ory of over-parameterized neural networks and were utilized
to understand the optimization and generalization for shal-
low and deep neural networks (Arora et al. 2019a; Cao and
Gu 2019; Allen-Zhu, Li, and Song 2019; Nguyen and Mon-
delli 2020), regularization methods (Hu, Li, and Yu 2020),
and data augmentation methods (Li et al. 2019; Zhang et al.
2021) in the over-parameterized regime. NTK can be analyt-
ically calculated using exact Bayesian inference, which has
been implemented in NEURAL TANGENTS for working
with infinite-width networks efficiently (Novak et al. 2020).

In this work, we will firstly give rigorous prove to reveal
the equivalence between the regularized neural networks and
the kernel ridge regression predictor via NTK in the over-
parameterized regime, then utilize the tools about NTK to
calculate and better understand the properties of IFs.

Preliminaries
Notations
We utilize bold-faced letters for vectors and matrices. For a
matrix A, let [A]ij be its (i, j)-th entry and vec(A) be its
vectorization. For a vector a, let [a]i be its i-th entry. We use

∥ · ∥2 to denote the Euclidean norm of a vector or the spec-
tral norm of a matrix, and use ∥ · ∥F to denote the Frobe-
nius norm of a matrix. We use ⟨·, ·⟩ to denote the standard
Euclidean inner product between two vectors or matrices.
Let In be an n × n identity matrix, and ei denote the i-th
unit vector and [n] = {1, 2, · · · , n}. For a set A, we utilize
unif(A) to denote the uniform distribution over A. We uti-
lize I(·) to denote the indicator function. We utilize f\i to
denote the network or kernel predictor trained without the i-
th training point. To be clear, we respectively define fnn and
fntk as neural network (nn) and its corresponding NTK pre-
dictor. We further denote W(t) as the parameters of neural
networks at time t during the training process.

Network Models and Training Dynamics
In this paper, we consider the two-layer neural networks
with rectified linear unit (ReLU) activation:

fnn(x) =
1√
m

m∑
r=1

arσ
(
w⊤

r x
)
, (1)

where x ∈ Rd is the input, W = [w1, · · · ,wm] ∈
Rd×m is the weight matrix in the first layer, and a =
[a1, · · · , am]⊤ ∈ Rm is the weight vector in the second
layer. We initialize the parameters randomly as follows:

wr(0) ∼ N
(
0, κ2Id

)
, ar(0) ∼ unif({−1, 1}), ∀r ∈ [m],

where 0 < κ ≪ 1 controls the magnitude of initialization,
and all randomnesses are independent. For simplicity, we fix
the second layer a and only update the first layer W dur-
ing training. The same setting has been used in (Arora et al.
2019a; Du et al. 2019b).

We are given n training points (X ,Y) = {xi, yi}ni=1
drawn i.i.d. from an underlying data distribution D over
Rd ×R. For simplicity, we assume that for each (x, y) sam-
pled from D satisfying ∥x∥2 = 1 and |y| ≤ 1.

To study the effect of regularizer on calculating the IF, we
train the neural networks through gradient descent on the
regularized mean square error loss function as follows:

L(W) =
1

2

n∑
i=1

(fnn (xi;W)− yi)
2
+

λ

2
∥W −W(0)∥2F ,

(2)
where the regularizer term restricts the distance between the
network parameters to initialization, and has been previously
studied in (Hu, Li, and Yu 2020). And we consider minimiz-
ing the loss function L(W) in the gradient flow regime, i.e.,
gradient descent with infinitesimal step size, then the evo-
lution of W(t) can be described by the following ordinary
differential equation:

dW(t)

d t
= −∂L(W(t))

∂W(t)

=
n∑

i=1

(yi − fnn(xi;W(t)))
∂fnn(xi;W(t))

∂W(t)

− λ(W(t)−W(0)).

(3)
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NTK for Two-layer ReLU Neural Networks
Given two data points x and x′, the NTK associated with
two-layer ReLU neural networks has a closed form ex-
pression as follows (Xie, Liang, and Song 2017; Du et al.
2019b):

K∞(x,x′) ≜ lim
m→∞

〈
∂fnn(x;W(0))

∂W(0)
,
∂fnn(x

′;W(0))

∂W(0)

〉
= Ew∼N (0,Id)

[
x⊤x′I

{
w⊤x ≥ 0,w⊤x′ ≥ 0

}]
=

x⊤x′ (π − arccos
(
x⊤x′))

2π
.

(4)
Equipped with the NTK function, we consider the follow-

ing kernel ridge regression problem:

min
β∈Rn

1

2
∥Y −K∞

trβ∥22 +
λ

2
β⊤K∞

trβ, (5)

where K∞
tr ∈ Rn×n is the NTK matrix evaluated on the

training data, i.e., [K∞
tr ]i,j = K∞(xi,xj), and β∗ ≜

(K∞
tr +λIn)

−1Y is the optimizer of the problem (5). Hence
the prediction of kernel ridge regression using NTK on a test
point xte is:

fntk(xte) = (K∞
te )

⊤(K∞
tr + λIn)

−1Y, (6)

where K∞
te ∈ Rn is the NTK evaluated between the

test point xte and the training points X , i.e., [Kte]i =
K∞(xte,xi).

IFs for Over-parameterized Neural Networks
In this section, our goal is to evaluate the effect of a single
training point for the over-parameterized neural network’s
predictions. In detail, given a training point xi ∈ X , we
need to calculate the variation of test loss after removing
xi from X for the neural network fnn, which is denoted by
Inn(xi,xte) as follows:

Inn(xi,xte) ≜
1

2
(f\i

nn(xte)− yte)
2 − 1

2
(fnn(xte)− yte)

2.

(7)
To calculate Inn(xi,xte) for all xi, it is impossible to re-

train the neural network one by one. Furthermore, due to the
fact that the neural network is over-parameterized, it is pro-
hibitively slow to calculate the IF via the IHVP method (Koh
and Liang 2017). In this work, we utilize the correspond-
ing NTK predictor fntk to approximate the behavior of fnn,
hence we define the IF in the NTK regime as follows:

Intk(xi,xte) ≜
1

2
(f

\i
ntk(xte)−yte)

2− 1

2
(fntk(xte)−yte)

2.

(8)
To calculate f

\i
ntk(xte) efficiently, we borrow the tech-

nique from the online Gaussian regression to update the in-
verse of kernel matrix (Csató and Opper 2002; Engel, Man-
nor, and Meir 2004). Then we have:

f
\i
ntk(xte) = (K∞

te )
⊤

(
(K∞

tr + λIn)
−1 −

k−ik
⊤
−i

k−ii

)
Y,

(9)

where k−i and k−ii denote the i-th column and the (i, i)-th
entry of (K∞

tr + λIn)
−1 respectively.

After giving a calculation method for Intk(xi,xte), we
show that Intk(xi,xte) can be a good approximation of
Inn(xi,xte) in the over-parameterized regime. Note that in
the ridgeless regime, i.e., λ = 0, Arora et al. (2019b) rigor-
ously showed the equivalence between a fully-trained neural
network and its corresponding kernel predictor. However, in
the kernel ridge regime, i.e., λ > 0, there is no rigorous re-
sult so far. In this paper, we propose the following theorem
which reveals the equivalence between the two-layer fully-
trained wide ReLU neural network fnn and its correspond-
ing NTK predictor fntk in the ridge regression regime.

Theorem 1 Suppose 0 < λ < n
1
2 , κ = O

(√
δλϵ
n

)
and

m = Ω
(

n8

κ2ϵ2δ4λ6

)
, then for any xte ∈ Rd with ∥xte∥2 = 1,

with probability at least 1−δ over random initialization, we
have:

|fnn(xte)− fntk(xte)| = O(ϵ). (10)
For the proof of Theorem 1, we first analyze the evolu-

tion of W(t) and prove the perturbation of parameters are
small during training. Then we follow the ideas from (Du
et al. 2019b; Arora et al. 2019a) to prove the perturbation of
the kernel matrix can be bounded by the perturbation of pa-
rameters during training, and build the equivalence between
the wide neural network and its linearization. After that, we
borrow the lemma from (Arora et al. 2019a) to establish the
equivalence between the linearization of neural network and
NTK predictor, then the theorem can be proved via triangle
inequality. See Appendix B for the proof.

After proving Theorem 1, the approximation error can be
evaluated via simple analysis, which is shown in the follow-
ing theorem. See Appendix B for the proof.

Theorem 2 Suppose 0 < λ < n
1
2 , κ = O

(√
δλϵ
n

)
, and

m = Ω
(

n8

κ2ϵ2δ4λ6

)
, fnn and fntk are uniformly bounded

over the unit sphere by a constant C, i.e. |fnn(x)| < C
and |fntk(x)| < C for all ∥x∥2 = 1. Then for any training
point xi ∈ X and test point xte ∈ Rd with ∥xte∥2 = 1,
with probability at least 1−δ over random initialization, we
have:

|Inn(xi,xte)− Intk(xi,xte)| = O(ϵ). (11)

Theorem 2 reveals that the IF calculated in the NTK
regime can be arbitrarily close to the actual ones with high
probability as long as the hidden layer is sufficiently wide.
We compare the IFs calculated in the NTK regime and the
ones obtained via leave-one-out retraining to verify our the-
ory. In particular, we evaluate our method on MNIST (Lecun
et al. 1998) and CIFAR-10 (Krizhevsky and Hinton 2009)
for two-layer ReLU neural networks with the width from
104 to 8× 104 respectively. Details of experimental settings
and more experiments can be seen in the Appendix A. The
numerical results are shown in Figure 1 and Table 1 respec-
tively. We find that the predicted IFs are highly close to the
actual ones, with the Pearson correlation coefficient (R) and
Spearman’s rank correlation coefficient (ρ) greater than 0.90
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Figure 1: Comparison of predicted IFs and actual ones on
the 40 most influential training points for a two-layer ReLU
networks with 8× 104 neurons in the hidden layer.

MNIST
Width (104) 8 4 2 1
Pearson’s R 0.9925 0.9866 0.9802 0.9766
Spearman’s ρ 0.9728 0.9565 0.9531 0.9341

CIFAR
Width (104) 8 4 2 1
Pearson’s R 0.9960 0.9904 0.9808 0.9683
Spearman’s ρ 0.9606 0.9146 0.8672 0.8583

Table 1: The correlation coefficients between actual and pre-
dicted IFs on MNIST and CIFAR respectively.

in general, and the approximate accuracy is increasing with
the width of neural networks, which is consistent with The-
orem 2.

Error Analysis for the IHVP Method
In this section, we aim to analyze the approximation error of
the IHVP method (Koh and Liang 2017) when calculating
the IF in the over-parameterized regime. Our analysis also
reveals when and why IHVP can be accurate or not, which
theoretically explains the phenomenon that the regulariza-
tion term controls the estimation accuracy of IFs proposed in
(Basu, Pope, and Feizi 2021), and also brings new insights
into the understanding of IHVP.

The IHVP Method in Over-parameterized Regime
Formally, we utilize Înn(xi,xte) to denote the IF calculated
by IHVP, which is defined as follows:

Înn(xi,xte) = vec

(
∂ℓ(xte)

∂W

)⊤

H(∞)−1 vec

(
∂ℓ(xi)

∂W

)
,

(12)
where ℓ(x) ≜ 1

2 (fnn(x) − y)2 and H(∞) ≜∑n
i=1 ∇2

Wℓ (xi;W(∞)) + λImd denote the mean-square
loss and the Hessian matrix at the end of training respec-
tively. Remarkably, the calculation of Equation (12) is in-
feasible due to the size of modern neural networks. To
solve this problem, Koh and Liang (2017) and Chen et al.
(2021) utilized stochastic estimation or hypergradient-based
optimization to calculate Equation (12) respectively. How-
ever, the gap between Înn(xi,xte) and the actual IF is in-

evitable in general, and cannot be avoided by these meth-
ods. Thus in this work, we only analyze the error between
Înn(xi,xte) and the actual IF in the over-parameterized
regime. The following proposition shows that Înn(xi,xte)

tends to Întk(xi,xte) when the width m goes to infinity,
where Întk(xi,xte) denotes the IF calculated via IHVP
method in the NTK regime.

Proposition 1 For any xte ∈ Rd with ∥xte∥2 = 1, let the
width m → ∞, then with probability arbitrarily close to 1
over random initialization, we have:

Înn(xi,xte) →α(xi,xte)(fntk(xte)− yte)(fntk(xi)− yi)

≜Întk(xi,xte),
(13)

where α(xi,xte) ≜ (K∞
te )

⊤(K∞
tr + λIn)

−1ei.

For simplicity of analysis, we rewrite Intk(xi,xte) as fol-
lows:

Proposition 2 For any xte ∈ Rd with ∥xte∥2 = 1 and xi ∈
X , we have:

Intk(xi,xte) = α(xi,xte)(fntk(xte)− yte)(f
\i
ntk(xi)− yi)︸ ︷︷ ︸

I

+
1

2
α(xi,xte)

2(f
\i
ntk(xi)− yi)

2︸ ︷︷ ︸
II

.

(14)

The proof of these two propositions can be seen in the
Appendix C. It is worth mentioning that the expectation
of |fntk(xte)− yte| and

∣∣∣f\i
ntk(xi)− yi

∣∣∣ both represent the
generalization error of the model (Elisseeff, Pontil et al.
2003). And α(xi,xte) represents the coefficient correspond-
ing to xi when projecting J(xte) onto J(X ), where J(·) de-
notes the feature map in NTK. In general, α(xi,xte) is dis-
tinctly smaller than 1. Thus we have |term I| ≫ |term II|,
which means it is reasonable to approximate Intk(xi,xte)
as follows:

Intk(xi,xte) ≈ α(xi,xte)(fntk(xte)− yte)(f
\i
ntk(xi)− yi).

(15)
By Comparing Equation (15) with Equation (13), we can

obtain that the main approximation error is caused by the
variance between f

\i
ntk(xi) and fntk(xi), which plays a key

role when bounding the approximation error of IHVP. In the
following two subsections, we reveal why and how the regu-
larization term and the probability density of the correspond-
ing training points control the approximation error.

The Effects of Regularization
Although previous literature (Basu, Pope, and Feizi 2021)
has pointed out that the regularization term is essential to
get high-quality IF estimates via numerical experiments, this
phenomenon is not well-understood for neural networks in
theory. In this subsection, we prove that the lower bound of
the approximation error is controlled by the regularization
parameter λ, and the least eigenvalue of NTK also plays a
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Figure 2: Comparison of the theoretical lower bound of error
rates and the actual error rates for different λ on MNIST and
CIFAR respectively.

key role. The following theorem reveals the relationship be-
tween the approximation error and the regularization term
for over-parameterized neural networks. See Appendix C for
the proof.

Theorem 3 Given xi ∈ X and xte ∈ Rd with ∥xte∥2 = 1,
we have:∣∣∣Intk(xi,xte)− Întk(xi,xte)

∣∣∣
≥ λmin

λmin + λ
|Intk(xi,xte)| −

1

2
α(xi,xte)

2(f
\i
ntk(xi)− yi)

2,

(16)
where λmin is the least eigenvalue of K∞

tr . Furthermore,
if |α(xi,xte)| ≤

√
γ
n∥α(xte)∥2 for some γ > 0, where

α(xte) ≜ (K∞
te )

⊤(K∞
tr + λIn)

−1, and Ex∼D[(fntk(x) −
y)2] = O(

√
1/n), then with probability at least 1 − δ we

have: ∣∣∣Intk(xi,xte)− Întk(xi,xte)
∣∣∣

≥ λmin

λmin + λ
|Intk(xi,xte)| − O(

γ

δλn3/2
).

(17)

Remark: Similar to Theorem 3, we can give a upper bound
of the error rate controlled by λmax

λmax+λ , where λmax is
the largest eigenvalue of K∞

tr . However, λmax is of or-
der O(n) (Li, Soltanolkotabi, and Oymak 2020), hence the
term λmax

λmax+λ will close to 1 and be meaningless in gen-
eral. Arora et al. (2019a) proved that the generalization error
Ex∼D[(fntk(x)− y)2] is in the order of O(

√
1/n) for two-

layer ReLU networks when the data is generated by certain
functions in Theorem 5.1. Hence this assumption is reason-
able.

Theorem 3 reveals that the error rate can be lower
bounded by λmin

λmin+λ . To verify our lower bound, we com-
pare the theoretical lower bound of error rates with the mean
actual error rates for different λ, ranging from 2−4 to 24 re-
spectively. Numerical experiment results reveal our bound
can reflect the performance of IHVP well in the NTK regime
(Figure 2).

The Effects of Training Points
In this subsection, we show that the approximation error is
highly related to the probability density of corresponding
training point, which has not been clearly revealed in previ-
ous literature. To model this phenomenon, we firstly assume
the data sampled from the following finite mixture distribu-
tion.

Definition 1 Consider the data is generated from a fi-
nite mixture distribution D as follows. There are K un-
known distributions {Dk}Kk=1 over Rd with probabilities
{pk}Kk=1 respectively, such that

∑K
k=1 pk = 1. Assume

we sample nk data points from Dk respectively such that∑K
k=1 nk = n, and let Xk be the training data sampled

from Dk. Let us define the support of a distribution D
with density p over Rd as supp(D) ≜ {x : p(x) > 0},
and the radius of a distribution D over Rd as r (D) ≜
max {∥x− Ez∼D[z]∥2 : x ∈ supp(D)} . Then we make the
following assumptions about the data.

(A1) (Sample Proportion) We have nk = pk · n for all
k ∈ [K] .

(A2) (Uniformly Bounded) There exists a constant r > 0,
such that r(Dk) < r for all k ∈ [K].

The above assumptions of data follow that of the pre-
vious works in (Li and Liang 2018; Dong et al. 2019; Li,
Soltanolkotabi, and Oymak 2020). We prove the following
theorem which reveals the relationship between the approx-
imation error for IFs of xi ∈ Xk and its corresponding prob-
ability density pk. See Appendix C for the proof.

Theorem 4 Consider a dataset (X ,Y) = {xi, yi}ni=1 gen-
erated from the finite mixture model described in Defini-
tion 1. Let α(xi) ≜ (K∞

tr )
⊤(K∞

tr + λIn)
−1ei. Suppose

|[α(xi)]i| ≤
√

γ
n∥α(xi)∥2 for some γ > 0, and λ >

√
2λmaxϵr
1−

√
2ϵr

, where ϵ2r ≜ 2r2 + arccos(1 − 2r2) is a small
constant. Then for xi ∈ Xk and xte ∼ D, we have:∣∣∣Intk(xi,xte)− Întk(xi,xte)

∣∣∣
≤
√

γ

n2pk
|Intk(xi,xte)|︸ ︷︷ ︸

I

+
1

2
α(xi,xte)

2(f
\i
ntk(xi)− yi)

2︸ ︷︷ ︸
II

.

(18)

Remark: Notice that term I decreases with pk, and term II
represents the leave-one-out error which also decreases with
pk in general. In the theorem, we require λ >

√
2λmaxϵr
1−

√
2ϵr

,
which can be well controlled when r is small, and our
numerical experiments show the phenomenon is founded
whether λ is large or small.

We can see that the approximation error rate of the classic
IHVP method has a significant correlation with the proba-
bility density of corresponding training points no matter λ
is large or not, which confirms our conclusion in the NTK
regime (Figure 3). More experiments on simulated data can
be seen in the Appendix A.

9086



Figure 3: The probability density of training data and its
corresponding error rate of estimating the IFs via IHVP on
MNIST and CIFAR, respectively. Density for training data
is calculated through the Gaussian kernel density estimate
method.

Towards Understanding of IFs
The NTK theory can not only be utilized to calculate the IFs
and estimate the approximation error, but also help to un-
derstand IFs better from two new views. On the one hand,
we can quantify the complexity for the influential samples
through the complexity metric in the NTK theory. On the
other hand, we can trace the influential samples during the
training process through the linear ODE depicting the train-
ing dynamics.

Quantify the Complexity for Influential Samples
After calculating the IF for every training point, one natu-
ral question is that what is the difference between influen-
tial samples and uninfluential ones. It is interesting to see
in Figure 4 that the uninfluential samples seem to be ho-
mogenized, while the most influential ones tend to be more
complicated. For instance, planes in the uninfluential groups
have the backgrounds of daylight or airport in general, while
the backgrounds in the influential groups tend to be more di-
verse, such as grassland, dusk, midnight. To quantify this
phenomenon, we borrow the complexity metric in NTK the-
ory and define the complexity of XI ⊂ X as follows:

C(XI) ≜
√
Y⊤(K∞

tr )
−1Y −

√
(Y\I)⊤(K

\I
tr )

−1Y\I ,

(19)
where Y\I and K

\I
tr denote the label sets and kernel ma-

trix constituted without XI respectively. On the one hand,
for a function f(x) =

∑n
i=1 βik(x,xi) in the reproduc-

ing kernel Hilbert space (RKHS) H, its RKHS norm is

∥f∥H =

√
βTKβ (Mohri, Rostamizadeh, and Talwalkar

Helpful Training Images (MNIST)

Harmful Training Images (MNIST)

Uninfluential Training Images (MNIST)

Helpful Training Images (CIFAR)

Harmful Training Images (CIFAR)

Uninfluential Training Images (CIFAR)

Figure 4: The most helpful, harmful and uninfluential im-
ages in MNIST and CIFAR respectively.

2018). Hence for fntk(x) in the NTK regime, we have
∥fntk∥H =

√
Y⊤(K∞

tr )
−1Y , and C(XI) actually denotes

the increment of RKHS norm contributed from the training
data XI . On the other hand,

√
Y⊤(K∞

tr )
−1Y controls the

upper bound of Rademacher complexity for a class of neu-
ral networks, and thus controls the test error (Arora et al.
2019a).

Next, we explore the relationship between the complex-
ity and the IF for each training point. In detail, we divide the
training set into ten groups sorted by their IFs, from the most
harmful groups to the most helpful groups. Then we calcu-
late C(XI) for each group, and it is interesting to see that
the more influential data make the model more complicated.
Two most influential groups (Group 0 and 9) contribute the
most to the model complexity (Figure 5). The results indi-
cate that the most helpful data increase the complexity and
the generalization ability of the model. In contrast, the most
harmful data increase the complexity of the model but hurts
the generalization.
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Figure 5: The relationship between complexity and influ-
ence of each group divided by their IFs on MNIST and CI-
FAR respectively. Notice that Group 0 and 9 denote the most
harmful and helpful groups respectively, which contribute
the most to the model complexity.

Time
1 10 102 103 104 ∞

1 10 102 103 104 ∞

Figure 6: Variation of the most influential images for some
test data on MNIST and CIFAR during the training dynam-
ics.

Track Influential Samples During Training
Different with IHVP, which can only calculate the IF at the
end of training, the NTK theory depicts the training dynam-

ics via the following linear ODE:

fntk(xte; t)

=(K∞
te )

⊤ (K∞
tr )

−1

(
In − exp

(
−2t

n
K∞

tr

))
Y,

(20)

hence we can track influential samples efficiently during the
training process. The most influential images for certain test
points do not keep constant in general (Figure 6). Consider-
ing the variation of IFs in the different processes can help to
understand the model behavior better. For instance, we track
the most influential images for every test point in the pres-
ence of label noise during the training process and record the
proportion of the clean and noise data in the most influential
data in Figure 7 respectively.

At the beginning of the training process, most test images
are affected by the clean samples (Figure 7). However, as
the training progresses, the influence of noise samples begin
to dominate the training, which means that the model begins
to learn the noise data. After that, the model has learned the
label noise, thus the influence of the noise samples begin to
decrease gradually. Numerical experiments reveal the varia-
tion of the most influential samples in the presence of label
noise and help us understand why early-stopping can prevent
over-fitting from the perspective of IFs (Figure 7).

Figure 7: The proportion of the most influential images for
1000 test images on MNIST and CIFAR with the presence of
label noise during the training dynamics. We flip the labels
of 40% training data to simulate the label noise.

Conclusion
In this paper, we calculate the IFs for over-parameterized
neural networks and utilize the NTK theory to understand
when and why the IHVP method fails or not. At last, we
quantify the complexity and track the variation of influen-
tial samples. Our research can help understand IFs better in
the regime of neural networks and bring new insights for ex-
plaining the training process through IFs. Some future works
are mentioned as follows: (1) Explore the approximation er-
ror caused by stochastic estimation in IHVP; (2) Generalize
our results in Theorem 2 to broad scenarios, such as deep
neural networks, convolutional neural networks and non-
convex loss functions; (3) Track the IFs to reveal what does
neural networks learn during training dynamics.
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