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Abstract

Despite the recent progress in Graph Neural Networks
(GNNs), it remains challenging to explain the predictions
made by GNNs. Existing explanation methods mainly focus
on post-hoc explanations where another explanatory model
is employed to provide explanations for a trained GNN. The
fact that post-hoc methods fail to reveal the original reason-
ing process of GNNs raises the need of building GNNs with
built-in interpretability. In this work, we propose Prototype
Graph Neural Network (ProtGNN), which combines proto-
type learning with GNNs and provides a new perspective on
the explanations of GNNs. In ProtGNN, the explanations are
naturally derived from the case-based reasoning process and
are actually used during classification. The prediction of Prot-
GNN is obtained by comparing the inputs to a few learned
prototypes in the latent space. Furthermore, for better inter-
pretability and higher efficiency, a novel conditional subgraph
sampling module is incorporated to indicate which part of
the input graph is most similar to each prototype in Prot-
GNN+. Finally, we evaluate our method on a wide range of
datasets and perform concrete case studies. Extensive results
show that ProtGNN and ProtGNN+ can provide inherent in-
terpretability while achieving accuracy on par with the non-
interpretable counterparts.

Introduction
Graph Neural Networks (GNNs) have become increasingly
popular since many real-world relational data can be repre-
sented as graphs, such as social networks (Bian et al. 2020),
molecules (Lu et al. 2019) and financial data (Yang et al.
2020). Following a message passing paradigm to learn node
representations, GNNs have achieved state-of-the-art perfor-
mance in node classification, graph classification, and link
prediction (Kipf and Welling 2017; Veličković et al. 2017;
Xu et al. 2019). Despite the remarkable effectiveness of
GNNs, explaining predictions made by GNNs remains a
challenging open problem. Without understanding the ratio-
nales behind the predictions, these black-box models cannot
be fully trusted and widely applied in critical areas such as
medical diagnosis. In addition, model explanations can fa-
cilitate model debugging and error analysis. These indicate
the necessity of investigating the explainability of GNNs.

*Qi Liu and Cheekong Lee are the corresponding authors.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Recently, extensive efforts have been made to study explana-
tion techniques for GNNs (Yuan et al. 2020b). These meth-
ods can explain the predictions of node or graph classifi-
cations of trained GNNs with different strategies. For exam-
ple, GNNExplainer (Ying et al. 2019) and PGExplainer (Luo
et al. 2020) are proposed to select a compact subgraph struc-
ture that maximizes the mutual information with the GNN’s
predictions as the explanation. PGM-Explainer (Vu and Thai
2020) firstly obtains a local dataset by random node feature
perturbation. Then it employs an interpretable Bayesian net-
work to fit the local dataset and to explain the predictions
of the original GNN model. In addition, XGNN (Yuan et al.
2020a) generates graph patterns to maximize the predicted
probability for a certain class and provides model-level ex-
planation. Despite the tremendous developments in the in-
terpretation of GNNs, most existing approaches can be clas-
sified as post-hoc explanations where another explanatory
model is used to provide explanations for a trained GNN.
Post-hoc explanations can be inaccurate or incomplete in re-
vealing the actual reasoning process of the original model
(Rudin 2018). Therefore, it is more desirable to build mod-
els with inherent interpretability where the explanations are
generated by the model themselves.

We leverage the concept of prototype learning to construct
GNNs with built-in interpretability (i.e. self-explaining
GNNs). In contrast to post-hoc explanation methods, the ex-
planations generated by self-explaining GNNs are actually
used during classification and are not generated post-hoc.
Prototype learning is a form of case-based reasoning (Kolod-
ner 1992; Schmidt et al. 2001), which makes the predictions
for new instances by comparing them with several learned
exemplar cases (i.e. prototypes). It is a natural practice in
solving problems with graph-structured data. For example,
chemists identify potential drug candidates based on known
functional groups (i.e. key subgraphs) in molecular graphs
(He et al. 2010; Zhang et al. 2021c). Prototype learning
provides better interpretability by imitating such a human
problem-solving process. Recently the concept of the proto-
type has been incorporated in convolutional neural networks
to build interpretable image classifiers (Chen et al. 2018; Ry-
marczyk et al. 2021). However, so far prototype learning is
not yet explored for explaining GNNs.

Building self-explaining GNNs based on prototype learning
brings unique challenges. First, the discreteness of the edges
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makes the projection and visualization of the graph proto-
types difficult. Second, the combinatorial nature of graph
structure makes it hard to build self-explaining models with
both efficiency and high accuracy for graph modeling.

In this paper, we tackle the aforementioned challenges
and propose Prototype Graph Neural Network (ProtGNN),
which provides a new perspective on the explanations of
GNNs. Specifically, various popular GNN architectures can
be employed as the graph encoder in ProtGNN. Predic-
tion on a new input graph is performed based on its sim-
ilarity to the prototypes in the prototype layer. Further-
more, we propose to employ the Monte Carlo tree search
algorithm (Silver et al. 2017) to efficiently explore dif-
ferent subgraphs for prototype projection and visualiza-
tion. In addition, in ProtGNN+, we design a conditional
subgraph sampling module to identify which part of the
input graph is most similar to each prototype for bet-
ter interpretability and efficiency. Finally, extensive exper-
iments on several real-world datasets show that ProtGN-
N/ProtGNN+ provides built-in interpretability while achiev-
ing comparable performance with the non-interpretable
counterparts. The implementation is publicly available at
https://github.com/zaixizhang/ProtGNN.

Related Work
Graph Neural Networks
Graph neural networks have demonstrated their effective-
ness on various graph tasks. Let G = (V,E) denotes a graph
with node attributes Xv for v ∈ V and a set of edges E.
GNNs leverage the graph connectivity as well as node and
edge features to learn a representation vector (i.e., embed-
ding) hv for each node v ∈ V or a vector hG for the en-
tire graph G. Generally, GNNs follows a message passing
paradigm, in which the representation of node v is iteratively
updated by aggregating the representations of v’s neighbor-
ing nodesN (v). Here we use Graph Convolutional Network
(GCN) (Kipf and Welling 2017) as an example to illustrate
such message passing procedures:

hk+1
v = σ

( ∑
u∈N (v)

(
W khk

uÃuv

))
, (1)

where hk
u is the representation vector of node u at the k-

th layer and Ã = D̂− 1
2 ÂD̂− 1

2 is the normalized adjacency
matrix. Â = A + I is the adjacency matrix of the graph G

with self connections added and D̂ is a diagonal matrix with
D̂ii =

∑
j Âij . σ(·) in Eq. (1) is the ReLU function and W k

is the trainable weight matrix of the k-th layer.

Explainability in Graph Neural Networks
As the application of GNNs grows, understanding why
GNNs make such predictions becomes increasingly critical.
Without understanding the mechanisms of making predic-
tions, GNNs can hardly be used in critical or sensitive ar-
eas (Zhang et al. 2021a,b). Recently, the study of the ex-
plainability in GNNs is experiencing rapid developments.

As Suggested by a recent survey (Yuan et al. 2020b), ex-
isting methods for explaining GNNs can be categorized into
several classes: gradients/features-based methods (Baldas-
sarre and Azizpour 2019; Pope et al. 2019), perturbation-
based methods (Ying et al. 2019; Luo et al. 2020; Yuan et al.
2021; Schlichtkrull, De Cao, and Titov 2020), decomposi-
tion methods (Schwarzenberg et al. 2019; Schnake et al.
2020), and surrogate methods (Vu and Thai 2020; Huang
et al. 2020).

Specifically, the gradients/features-based methods employ
the gradients or the feature values to indicate the importance
of different input features. These methods simply adapt ex-
isting explanation techniques in the image domain to the
graph domain without incorporating the properties of graph
data. Perturbation-based methods monitor the changes in the
predictions by perturbing different input features and iden-
tifies the most influential features. Decomposition methods
explain GNNs by decomposing the original model predic-
tions into several terms and associating these terms with
graph nodes or edges. Given an input example, surrogate
methods firstly sample a dataset from the neighborhood of
the given example and then fit a simple and interpretable
model, e.g., a decision tree to the sampled dataset. The sur-
rogate models are usually easier to interpret, shedding light
into the inner-workings of more complex models.

However, all the above methods are post-hoc explanation
methods. Compared with post-hoc explanation methods,
built-in interpretability (Chen et al. 2018; Ming et al. 2019)
is more desirable since post-hoc explanations usually do not
fit the original model precisely (Rudin 2018). Therefore, it is
necessary to build models with inherent interpretability and
high accuracy.

The Proposed ProtGNN
In this section, We introduce the architecture of ProtGN-
N/ProtGNN+, formulate the learning objective and describe
the training procedures.

ProtGNN Architecture
We let {xi, yi}ni=1 be a labeled training dataset, where xi

is the input attributed graph and yi ∈ {1, ..., C} is the la-
bel of the graph. We aim to learn representative prototypical
graph patterns that can be used for classification references
and analogical explanations. For a new input graph, its simi-
larities with each prototype are measured in the latent space.
Then, the prediction of the new instance can be derived and
explained by its similar prototype graph patterns.

In Figure 1, we show the overview of the architecture of
our proposed ProtGNN. The network consists of three key
components: a graph encoder f , a prototype layer gP , and a
fully connected layer c appended by softmax to output the
probabilities in multi-class classification tasks.

For a given input graph xi, the graph encoder f maps the
whole graph into a single graph embedding h with a fixed
length. The encoder could be any backbone GNN e.g., GCN,
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Figure 1: The architecture of our proposed ProtGNN/ProtGNN+. The model mainly consists of three parts: GNN encoder f ,
prototype layer gP , and the fully connected layer c appended by softmax to output probabilities in multi-class classification
tasks. ProtGNN calculates the similarity score (sim(pk, ·) in the illustration) between the graph embedding and the learned
prototypes in the prototype layer. For further interpretability, the conditional subgraph sampling module (in the dashed bounding
box) is incorporated in ProtGNN+ to output subgraphs most similar to each learned prototype.

GAT or GIN. The graph embedding h could be obtained by
taking a sum or max pooling of the last GNN layer.

In the prototype layer, we allocate a pre-determined number
of prototypes m for each class. In the final trained ProtGNN,
each class can be represented by a set of learned prototypes.
The prototypes should capture the most relevant graph pat-
terns for identifying graphs of each class. For each input
graph xi and its embedding h, the prototype layer computes
the similarity scores:

sim(pk, h) = log(
∥pk − h∥22 + 1

∥pk − h∥22 + ϵ
) (2)

where pk is the k-th prototype with the same dimension as
the graph embedding h. The similarity function is designed
to be monotonically decreasing to ∥pk − h∥2 and always
greater than zero. In experiments, ϵ is set to a small value
e.g., 1e-4. Finally, with the similarity scores, the fully con-
nected layer with softmax computes the output probabilities
for each class.

Learning Objective
Our goal is to learn a ProtGNN with both accuracy and in-
herent interpretability. For accuracy, we minimize the cross-
entropy loss on the training dataset: 1

n

∑n
i=1 CrsEnt(c◦gp ◦

f(xi), yi). For better interpretability, we consider several
constraints in constructing prototypes for the explanation.
Firstly, the cluster cost (Clst) encourages that each graph
embedding should at least be close to one prototype of its
own class. Secondly, the separation cost (Sep) encourages
that each graph embedding should stay far away from proto-
types not of its class. Finally, we found in experiments that
some learned prototypes are very close to each other in the
latent space. We encourage the diversity of the learned pro-
totypes by adding the diversity loss (Div) which penalizes
prototypes too close to each other.

To sum up, the objective function we aim to minimize is

1

n

n∑
i=1

CrsEnt(c◦gp◦f(xi), yi)+λ1Clst+λ2Sep+λ3Div,

(3)

Clst =
1

n

n∑
i=1

min
j:pj∈Pyi

∥f(xi)− pj∥22 (4)

Sep = − 1

n

n∑
i=1

min
j:pj /∈Pyi

∥f(xi)− pj∥22 (5)

Div =
C∑

k=1

∑
i̸=j

pi,pj∈Pk

max(0, cos(pi, pj)− smax) (6)

where λ1, λ2, and λ3 are hyper-parameters controlling the
weights of the losses. Pyi

is the set of prototypes belonging
to class yi. smax is the threshold of the cosine similarity
measured by cos(·, ·) in the diversity loss.

Prototype Projection
The learned prototypes are embedding vectors that are not
directly interpretable. For better interpretation and visual-
ization, we design a projection procedure performed in the
training stage. Specifically, we project each prototype pj
(pj ∈ Pk) onto the nearest latent training subgraph from
the same class as that of pj (see Eq. (7)). In this way, we can
conceptually equate each prototype with a subgraph, which
is more intuitive and human-intelligible. To reduce the com-
putational cost, the projection step is only performed every
few training epochs:

pj ← arg min
h̃∈Hj

∥h̃− pj∥2,

Hj = {h̃ : f(x̃), x̃ ∈ Subgraph(xi) ∀i s.t. yi = k}.
(7)
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Figure 2: An illustration of graph prototype projection with
Monte Carlo Tree Search. The bottom shows one selected
path from the root to leaves in the search tree, which cor-
responds to one iteration of MCTS. Nodes that are not se-
lected are ignored for simplicity. For each node, its subgraph
is evaluated by computing the similarity score via GNN En-
coder and the similarity function. In this figure, we show the
computation of similarity score for the node N1 (shown in
blue dashed box). In the backward pass, the model updates
the statistics of each node.

Unlike grid-like data such as images, the combinatorial char-
acteristic of graph makes it unrealistic to find the nearest
subgraph by enumeration (Chen et al. 2018). In graph proto-
type projection, we employ the Monte Carlo tree search al-
gorithm (MCTS) (Silver et al. 2017) as the search algorithm
to guide our subgraph explorations (see Figure 2). We build
a search tree in which the root is associated with the input
graph and each of other nodes corresponds to an explored
subgraph. Formally, we define each node in the search tree
T as Ni and N0 denotes the root node. The edges in the
search tree represent the pruning actions. In the search tree,
the graph associated with a child node can be obtained by
performing node-pruning from the graph corresponding to
its parent node. To limit the search space, we have added two
additional constraints: Ni has to be a connected subgraph
and the size of the projected subgraph should be small.

During the search process, the MCTS algorithm records the
statistics of visiting counts and rewards to guide the explo-
ration and reduce the search space. Specifically, for the node
and pruning action pair (Ni, aj), we assume that the sub-
graph Nj is obtained by action aj from Ni. The MCTS al-
gorithm records four variables for (Ni, aj):

• C(Ni, aj) denotes the number of counts for selecting ac-
tion aj for node Ni.

• W(Ni, aj) is the total reward for all (Ni, aj) visits.

• Q(Ni, aj) is the averaged reward for multiple visits.

• R(Ni, aj) is the immediate reward for selecting aj onNi,
which is measured by the similarity between the proto-
type and the subgraph embedding in this paper. The sub-
graph embedding is obtained by encoding the subgraph
with the GNN encoder f .

Guided by these statistics, MCTS searches for the nearest

subgraphs in multiple iterations. Each iteration consists of
two phases. In the forward pass, MCTS selects a path start-
ing from the root N0 to a leaf node Nl. To keep subgraphs
connected, we select to prune peripheral nodes with mini-
mum degrees. The leaf node can be defined based on the
numbers of nodes in subgraphs such that |Nl| ≤ Nmin. The
action selection criteria at node Ni is:

a∗ = argmax
aj

Q(Ni, aj) + U(Ni, aj) (8)

U(Ni, aj) = λR(Ni, aj)

√∑
k C(Ni, ak)

1 + C(Ni, aj)
, (9)

where λ is a hyper-parameter to control the trade-off be-
tween exploration and exploitation. The strategy initially
prefers to select child nodes with low visit counts to explore
different pruning actions, but asympotically prefers actions
leading to higher similarity scores.

In the backward pass, the statistics of all node and action
pairs selected in this path are updated:

C(Ni, aj) = C(Ni, aj) + 1 (10)

W (Ni, aj) = W (Ni, aj) + sim(pk, hNl
), (11)

where hNl
is the embedding of the subgraph associated to

the leaf nodeNl. In the end, we select the subgraph with the
highest similarity score from all the expanded nodes as the
new projected prototype.

Conditional Subgraph Sampling Module
We further propose ProtGNN+ with a novel conditional sub-
graph sampling module to provide better interpretation. In
ProtGNN+, we not only show the similarity scores to pro-
totypes, but also identify which part of the input graph is
most similar to each prototype as part of the reasoning pro-
cess. In Figure 1, the conditional subgraph sampling mod-
ule outputs different subgraph embeddings for each proto-
type. While this task can also be accomplished by MCTS,
the exponentially-growing time complexity to the graph size
and the difficulty of parallelization and generalization make
MCTS algorithm an undesirable choice. Instead, we adopt
a parameterized method for efficient similar subgraph selec-
tion conditioned on given prototypes.

Formally, we let eij ∈ {0, 1} be the binary variable indicat-
ing whether the edge between node i and j is selected. The
matrix of eij is denoted as E . The optimization objective of
the conditional subgraph sampling module is:

max
E

sim(pk, f(Gs)) s.t. |Gs| ≤ B, (12)

where Gs is the selected subgraph whose adjacency matrix
is E . B is the maximum size of the subgraph.

The combinatorial and discrete nature of graph makes the di-
rect optimization of the above objective function intractable.
We first consider a relaxation by assuming that the explana-
tory graph is a Gilbert random graph (Gilbert 1959) where
the state of each edge is independent to each other. Further-
more, for ease of gradient computation and update, we relax
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E ∈ {0, 1}N×N into convex space E ∈ [0, 1]N×N . N is
the number of nodes in the input graph. For efficiency and
generalizability, we adopt deep neural networks to learn eij :

eij = σ(MLPθ([zi; zj ; pk])), (13)

where σ(·) here is the Sigmoid function. MLP is a multi-
layer neural network parameterized with θ and [·; ·; ·] is the
concatenation operation. zi and zj are node embedding ob-
tained from the GNN Encoder, which encodes the feature
and structure information of the nodes’ neighborhood. Then
the objective in Eq. (12) becomes

max
θ

sim(pk, f(Gs))− λbRb

Rb = ReLU(
∑
eij∈E

eij −B), (14)

where λb is the weight for the budget regularization Rb. In
our experiments, we adopt stochastic gradient descent to op-
timize the objective function.

Comparison with MCTS: Our designed conditional sub-
graph sampling module is much more efficient than MCTS
and easier for parallel computation. The parameters of our
conditional subgraph sampling module are fixed and inde-
pendent of the graph size. To sample from a graph with |E|
edges, the time complexity of our method is O(|E|). One
limitation of the conditional subgraph sampling module is
that it requires additional training. Therefore, MCTS is still
used in the prototype projection step of ProtGNN+ for the
stability of optimization.

Theorem on Subgraph Sampling
To provide more understandable visualization, ProtGNN+
prunes the input graph to find the subgraphs most simi-
lar to prototypes and then calculates the similarity scores.
Compared with ProtGNN, the subgraph sampling procedure
may affect the classification accuracy. The following theo-
rem provides some theoretical understanding of how input
graph sampling affects classification accuracy.
Theorem 1: Let c ◦ gp ◦ f be a ProtoGNN. The embedding
of the input graph is h. We assume that the number of pro-
totypes is the same for each class, and is denoted as m. For
each class k, the weight connection in the last layer c be-
tween a class k prototype and the class k logit is 1, and that
between a non-class k prototype and the class k logit is 0. We
denote pkl as the l-th prototype for class k and hk

l the embed-
ding of the pruned subgraph. ProtGNN and ProtGNN+ has
the same graph encoder f . We make the following assump-
tions: there exists some δ with 0 < δ < 1,

• for the correct class, we have ∥h − hk
l ∥2 ≤ (

√
1 + δ −

1)∥h− pkl ∥2 and ∥h− pkl ∥2 ≤
√
1− δ;

• for the incorrect classes, ∥h−hk
l ∥2 ≤ θ∥h− pkl ∥2−

√
ϵ,

θ = min(
√
1 + δ − 1, 1− 1√

2−δ
).

For one correctly classified input graph in ProtGNN, if
the output logits between the top-2 classes are at least
2mlog((1+δ)(2−δ)), then ProtGNN+ can classify the input
graph correctly as well.

Algorithm 1: Overview of ProtGNN/ProtGNN+ Training
Input: Training dataset {xi, yi}ni=1
Parameter: Training epochs T , Warm-up epoch Tw, Pro-
jection epoch Tp, Prototype projection period τ , Prot-
GNN+

1: Initialize model parameters.
2: for training epochs t = 1, 2, · · · , T do
3: Optimizing objective function in Eq. (3)
4: if t>Tp and t%τ = 0 then
5: Performing prototype projection with MCTS
6: end if
7: if ProtGNN+ enabled and t>Tw then
8: Optimizing the objective function in Eq. (14).
9: end if

10: end for
Output: Trained model, prototype visualization

The intuition behind Theorem 1 is that if the subgraph sam-
pling does not change the graph embedding too much, Prot-
GNN+ will have the same correct predictions as ProtGNN.
The proof is included in the appendix.

Training Procedures

Before training starts, we randomly initialize the model pa-
rameters. We let wc be the weight matrix of the fully con-
nected layer c and w

(k,j)
c be the weight connection between

the output of the j-th prototype and the logit of class k. In
particular, for a class k, we set w(k,j)

c = 1 for all j with
pj ∈ Pk and w

(k,j)
c = 0 for all j with pj /∈ Pk. Intuitively,

such initialization of wh encourages prototypes belonging to
class k to learn semantic concepts that are characteristic to
class k. After training begins, we employ gradient descents
to optimize the objective function in Eq. (3). If the train-
ing epoch is larger than the projection epoch Tp, we perform
the prototype projection step every few training epochs. Fur-
thermore, if we train ProtGNN+, the conditional subgraph
sampling module and ProtGNN are iteratively optimized af-
ter the warm-up epoch Tw when the optimization of GNN
encoder and prototypes are stabilized.

ProtGNN for Generic Graph Tasks

In the above sections and illustrations, we have described
ProtGNN/ProtGNN+ using graph classification as an exam-
ple. It is worth noting that ProtGNN/ProtGNN+ can be eas-
ily generalized to other graph tasks, such as node classifi-
cation and link prediction. For example, in the node clas-
sification task, the explanation target is to provide the rea-
soning process behind the prediction of node vi. Assuming
the GNN encoder has L layers, the prediction of node vi
only relies on its L-hop computation graph. Therefore, pro-
totype projection and conditional subgraph sampling are all
performed in the L-hop computation graph.
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(a)

Figure 3: The reasoning process of ProtGNN+ in deciding whether the molecular graph is mutagenic. The predictions are based
on the similarity between the latent input representations against the prototypes. The network tries to find evidence by looking
at which subgraph was mostly similar to the prototypes. The selected subgraphs are highlighted. Due to space constraint, we
only show several prototypes with the largest weights for each class.

Datasets GCN GIN GAT

Original ProtGNN ProtGNN+ Original ProtGNN ProtGNN+ Original ProtGNN ProtGNN+

MUTAG 73.3±5.8 76.7±6.4 73.3±2.9 93.3±2.9 90.7±3.2 91.7±2.9 75.0±5.0 78.3±4.2 81.7±2.9
BBBP 84.6±3.4 89.4±4.1 88.0±4.6 86.2±1.1 86.5±1.6 85.9±4.0 83.0±2.6 85.9±2.5 85.5±0.8

Graph-SST2 89.7±0.5 89.9±2.4 89.0±3.0 92.2±0.3 92.0±0.2 92.3±0.4 88.1±0.8 89.1±1.2 88.7±0.9
Graph-Twitter 67.5±1.9 68.9±5.9 66.1±6.5 66.2±1.3 75.2±2.8 76.5 ±3.4 69.6±6.5 64.8±4.0 66.4±3.3

BA-Shape 91.9±1.7 95.7±1.4 94.3±3.7 92.9±0.5 95.2±1.3 95.5 ±2.4 92.9±1.2 93.4±3.4 93.2±2.0

Table 1: The classification accuracies and standard deviations (%) of ProtGNN, ProtGNN+, and the original GNNs.

Experimental Evaluation
Datasets and Experimental Settings
Datasets: We conduct extensive experiments on different
datasets and GNN models to demonstrate the effectiveness
of our proposed model. These datasets are listed as below:

• MUTAG (Debnath et al. 1991) and BBBP (Wu et al.
2018) are molecule datasets for graph classification. In
these datasets, nodes represent atoms and edges denote
chemical bonds. The labels of molecular graphs are de-
termined by the molecular compositions.

• Graph-SST2 (Socher et al. 2013) and Graph-Twitter
(Dong et al. 2014) are sentiment graph datasets for graph
classification. They convert sentences to graphs with Bi-
affine parser (Gardner et al. 2018) that nodes denote
words and edges represent the relationships between
words. The node embeddings are initialized with Bert
word embeddings (Devlin et al. 2018). The labels are de-
termined by the sentiment of text sentences.

• BA-Shape is a synthetic node classification dataset. Each
graph contains a base graph obtained from the Barabási-
Albert (BA) mode (Albert and Barabási 2002) and a
house-like five-node motif attached to the base graph.
Each node is labeled based on whether it belongs to the
base graph or the different spatial locations of the motif.

Methods GCN ProtGNN ProtGNN+ ProtGNN+*

Time 177.9 s 506.3 s 632.7 s > 2 hrs

Table 2: Efficiency studies of different methods on BBBP

Experimental Settings: In our evaluation, we use three
variants of GNNs, i.e. GCN, GAT, and GIN. The split for
train/validation/test sets is 80% : 10% : 10%. All models are
trained for 500 epochs with an early stopping strategy based
on accuracy on the validation set. We adopt the ADAM op-
timizer with a learning rate of 0.005. In Eq.(3), the hyper-
parameters λ1, λ2, and λ3 are set to 0.10, 0.05, and 0.01
respectively. smax is set to 0.3 in Eq. (6). The number of
prototypes per class m is set to 5. In MCTS for prototype
projection, we set λ in Eq. (9) to 5 and the number of itera-
tions to 20. Each node in the Monte Carlo Tree can expand
up to 10 child nodes and Nmin is set to 5. The prototype pro-
jection period τ is set to 50 and the projection epoch Tp is
set to 100. In the training of ProtGNN+, the warm-up epoch
Tw is set to 200. We employ a three-layer neural network to
learn edge weights. In Eq. (14), λb is set to 0.01 and B is set
to 10. We select hyper-parameters based on related works
or grid search, an analysis on hyper-parameters is included
in the appendix. Generally, we find our method is robust to
various hyperparameters. All our experiments are conducted
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with one Tesla V100 GPU.

Evaluations on ProtGNN/ProtGNN+
Comparison with Post-hoc Methods
Furthermore, even though ProtGNN+ and post-hoc methods
fall into different categories (built-in and post-hoc), we try
to provide comparisons here. Specifically, we use the sam-
pled subgraph provided by the conditional subgraph sam-
pling module as the explanation. We compare ProtGNN+
with two post-hoc methods: PGExplainer (Luo et al. 2020)
and GNNExplainer (Ying et al. 2019). In Figure 5, we show
that the explanation provided by post-hoc methods may be
inaccurate or incomplete while ProtGNN+ can capture the
NO2 functional group and the house-like motif well.

Comparison with Baselines In Table 1, we compare the
classification accuracy of ProtGNN/ProtGNN+ with the
original GNNs. We apply 3 independent runs on random
data splitting and report the means and standard devia-
tions. In the following sections, we use GCN as the default
backbone model. As we can see, ProtGNN and ProtGNN+
achieve comparable classification performance with the cor-
responding original GNN models, which also empirically
verifies Theorem 1.

Reasoning Process of Our Network In Figure 3, we per-
form case studies on MUTAG to qualitatively evaluate the
performance of our proposed method. We visualize the pro-
totypes and show the reasoning process of our ProtGNN+ in
reaching a classification decision on input graphs. In particu-
lar, given an input graph x, the network finds the likelihood
to be in each class by comparing it with prototypes from
each class. The conditional subgraph sampling module finds
the most similar subgraphs in x. These similarity scores are
calculated, weighted, and summed together to give a final
score for x belonging to each class. For example, Figure
3 shows the reasoning process of ProtGNN+ in deciding
whether the input molecular graph is mutagenic. Based on
chemical domain knowledge (Debnath et al. 1991), carbon
rings and NO2 groups tend to be mutagenic. In the Proto-
type column of the mutagenic class, we can observe that the
prototypes can capture the structures of NO2 and carbon
rings well. Moreover, in the column of Similar Subgraphs,
the conditional subgraph sampling module can effectively
identify the most similar subgraphs. For instance, in the first
row of the mutagenic class, the NO2 group and part of the
carbon ring can be identified, which is quite similar to the
prototype on the right.

Overall, our method provides interpretable evidence to sup-
port classifications. Such explanations participate in the ac-
tual model computation and is always faithful to the classi-
fication decisions. More examples and case studies are re-
ported in appendix.

t-SNE Visualization of Prototypes In Figure 5 we show
the visualization on BBBP dataset of the graph and proto-
type embeddings using t-SNE method. We can observe that
the prototypes can occupy the centers of graph embeddings,
which verifies the effectiveness of prototype learning.

ProtGNN+ PGExplainer GNNExplainer

Dataset: MUTAG
Label: mutagenic
Correct prediction

Dataset: BA-Shape
Target: large green node
Correct prediction

Figure 4: Explanation provided by ProtGNN+ and baselines.
ProtGNN+ can capture the NO2 functional group and the
house-like motif well while the baselines fail.
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Figure 5: Visualization on BBBP dataset of the graph (dots)
and prototype (stars) embeddings using the t-SNE method.
Different colors indicate different classes.

Efficiency Studies Finally, we study the efficiency of our
proposed methods. In Table 2, we show the time required
to finish training for each model. Here ProtGNN+* denotes
using MCTS for subgraph sampling in the training of Prot-
GNN+. The time complexity of ProtGNN+* is extremely
high due to the complexity of MCTS. The proposed condi-
tional subgraph sampling module can effectively reduce the
time cost of ProtGNN+. Although ProtGNN and ProtGNN+
have a larger time cost compared to GCN (largely due to
prototype projection with MCTS), the time cost is still ac-
ceptable considering the provided built-in interpretability.

Conclusion
While extensive efforts have been made to explain GNNs
from different angles, none of existing methods can provide
built-in explanations for GNNs. In this paper, we propose
ProtGNN/ProtGNN+ which provides a new perspective on
the explanations of GNNs. The prediction of ProtGNN is ob-
tained by comparing the inputs to a few learned prototypes
in the prototype layer. For better interpretability and higher
efficiency, a novel conditional subgraph sampling module is
proposed to indicate the subgraphs most similar to proto-
types. Extensive experimental results show that our method
can provide a human-intelligible reasoning process with ac-
ceptable classification accuracy and time-complexity.
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