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Abstract

Various neural network models have been proposed to
tackle combinatorial optimization problems such as the
travelling salesman problem (TSP). Existing learning-
based TSP methods adopt a simple setting that the
training and testing data are independent and identi-
cally distributed. However, the existing literature fails
to solve TSP instances when training and testing data
have different distributions. Concretely, we find that
different training and testing distribution will result in
more difficult TSP instances, i.e., the solution obtained
by the model has a large gap from the optimal solu-
tion. To tackle this problem, in this work, we study
learning-based TSP methods when training and test-
ing data have different distributions using adaptive-
hardness, i.e., how difficult a TSP instance can be for
a solver. This problem is challenging because it is non-
trivial to (1) define hardness measurement quantita-
tively; (2) efficiently and continuously generate suffi-
ciently hard TSP instances upon model training; (3)
fully utilize instances with different levels of hardness
to learn a more powerful TSP solver. To solve these
challenges, we first propose a principled hardness mea-
surement to quantify the hardness of TSP instances.
Then, we propose a hardness-adaptive generator to gen-
erate instances with different hardness. We further pro-
pose a curriculum learner fully utilizing these instances
to train the TSP solver. Experiments show that our
hardness-adaptive generator can generate instances ten
times harder than the existing methods, and our pro-
posed method achieves significant improvement over
state-of-the-art models in terms of the optimality gap.

Introduction
The travelling salesman problem (TSP), as one important
NP-hard problem, serves as a common benchmark for evalu-
ating combinatorial optimization (CO) algorithms that have
many practical real-world applications. As a trade-off be-
tween computational costs and solution qualities, a collec-
tion of approximate solvers and heuristics have been stud-
ied (Punnen, Margot, and Kabadi 2003; Helsgaun 2017). On
the other hand, there is a recent advent of using machine
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learning to facilitate solving the NP-hard travelling salesman
problem (TSP) in an end-to-end fashion (Vinyals, Fortunato,
and Jaitly 2015; Kool, van Hoof, and Welling 2019; Khalil
et al. 2017; Bello et al. 2017; Kwon et al. 2020; Deudon et al.
2018; Ma et al. 2019; Bresson and Laurent 2021). However,
the existing methods independently sample training and test-
ing data from the same distribution, i.e., the i.i.d. setting.
More concretely, most methods directly adopt a uniform
sampling within the unit square to generate TSP instances.
Therefore, though these existing methods show reasonably
good performance in such a setting, it is unclear whether
the solver trained under the existing i.i.d. setting can actu-
ally solve the TSP problem by modeling and capturing the
underlying relationships between instances and solutions or
simply memorizing training instances. If the latter, the exist-
ing TSP solver will fail to handle when training and testing
TSP have various distributions.

To answer this question, we first conduct some prelimi-
nary studies for the existing TSP solvers. Specifically, we
replace the uniform samples in the testing phase with Gaus-
sian mixture samples, which are significantly harder TSP in-
stances whose solutions obtained from a TSP solver have
a larger gap from the optimal solution (for more details,
please refer to Section ). The results are shown in Figure 1.
The figure shows that indeed as we speculate, the existing
TSP solvers fail to generalize to this more challenging set-
ting where training and testing data have different distribu-
tions. As the distribution changes, the model performance
degrades several times with respect to all metrics. The re-
sults clearly demonstrate that the existing TSP solvers have
serious deficiencies when training and testing data have dif-
ferent distributions, and these instances from different dis-
tributions are much more difficult.

To solve this problem, in this paper, we study learning-
based TSP methods when training and testing data have dif-
ferent distributions using adaptive-hardness. However, there
exist several challenges.

• Defining a quantitative hardness measurement is non-
trivial since obtaining the optimal ground-truth solution
of a TSP instance is NP-hard. Besides, as the TSP solver
learns continuously during training, the hardness mea-
surement must be updated adaptively.

• Even equipped with a hardness measurement, we need a
generative model to generate TSP instances with differ-
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Figure 1: The optimality gap of an existing TSP solver
trained on uniform samples and tested on Gaussian mixture
samples. The maximum optimality gap grows 8041% times
larger, showing the weakness of the existing models when
training and testing data have different distributions.

ent hardness levels. In particular, generating sufficiently
difficult samples is challenging.

• After obtaining instances with desired hardness, we need
to fully utilize these instances to train more powerful
TSP solvers, especially for the ability of generalizing to
different hardness.

To tackle these challenges, we first propose a principled
hardness measurement to quantify the hardness of TSP in-
stances. Specifically, we calculate the hardness as greedy
self-improving potentials by comparing the current solver
cost with a surrogate model. In this way, we avoid using
the ground-truth optimal solution of TSP instances, calculat-
ing which is NP-hard and impractical. Besides, the hardness
measurement is adaptive as the model learns continuously.
Using the hardness measurement, we propose a hardness-
adaptive generator, which can generate TSP instances with
different hardness levels. Finally, we propose a curricu-
lum learner to fully utilize the hardness-adaptive TSP in-
stances generated by the generator. By learning instance
weights, our method can train the TSP solvers more effi-
ciently through curriculum learning.

We conduct extensive experiments to verify the designs
of our proposed method. Experimental results show that
our hardness-adaptive generator can produce instances 10x
harder than the existing methods, i.e., fixed uniform sam-
ples. Besides, our proposed curriculum learner, together
with the hardness-adaptive generator, can achieve signifi-
cant improvement over state-of-the-art models in terms of
the optimality gap when training and test data have different
distributions. The codes1 are publicly available.

In summary, we make the following contributions:

• We propose a principled hardness measurement using
greedy self-improving potentials and surrogate models,
avoiding the unbearable computational costs of calculat-
ing ground-truth optimal solution for TSP.

1https://github.com/wondergo2017/TSP-HAC.

• We design a hardness-adaptive generator to efficiently
and continuously generate instances with different levels
of hardness tailored for model training.

• We propose a curriculum learner to fully utilize hardness-
adaptive instances for more efficient model training with
better performance.

Related Work
Travelling Salesman Problem
Recently, some works propose to use neural network models
to facilitate solving TSP, including Pointer Networks (Bello
et al. 2017; Nazari et al. 2018; Vinyals, Fortunato, and Jaitly
2015), Network Embedding (Khalil et al. 2017), and Graph
Neural Networks (Joshi, Laurent, and Bresson 2019b; Kool,
van Hoof, and Welling 2019; Joshi, Laurent, and Bresson
2019a; Ma et al. 2019; Fu, Qiu, and Zha 2020; Joshi et al.
2020; Bresson and Laurent 2021). There are two paradigms
for training TSP models: supervised learning and reinforce-
ment learning(RL) (Joshi, Laurent, and Bresson 2019b). Su-
pervised methods adopt optimal routes as training labels,
and the goal is to predict whether an edge exists in the opti-
mal solution. Since ground-truth optimal solutions for TSP
have to be used for training, this paradigm is not scalable
for large-scale TSP instances. On the other hand, RL-based
methods do not need optimal solutions of TSP. These meth-
ods commonly use a neural network encoder to obtain em-
beddings for each node, then use an RL controller to de-
cide whether an edge is in the optimal solution step by step
according to the state in RL. Once the output is obtained,
the tour length acts as a negative reward for the RL con-
troller to update the policy. These models obtain impressive
performance when training and testing data have the same
distribution, e.g., Kool et al. (Kool, van Hoof, and Welling
2019) achieves near-perfect results for TSP instances with
50 nodes on uniformly sampled instances.

TSP Hardness and Size Generalization
Previous learning-based TSP methods generate training and
testing data from the same distribution, e.g., uniform sam-
ples from a unit square. In such a setting, it is unclear
whether the proposed method actually learns to solve TSP
instances or simply memorizes the training data.

Recent works (Joshi et al. 2020; Fu, Qiu, and Zha 2020)
post similar questions by showing that the learned TSP
solvers fail to generalize to different TSP sizes (i.e., the num-
ber of nodes in TSP) in training and testing. Our work takes
a step forward by showing that even for the same size, dif-
ferent distributions can lead to diverse difficulties and result
in poor generalization.

There are few heuristic hardness measurements for TSP
instances. For example, Smith et al. (Smith-Miles, van
Hemert, and Lim 2010) define hardness-related instance
features, which is closely related to the searching cost of
heuristic solvers such as Lin–Kernighan (LK). Hemert (van
Hemert 2005) defines the number of switching edges in
LK as hardness. However, these measurements are based
on non-learning-based TSP heuristics and are not suitable
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for learning-based solvers. In this paper, we define a princi-
pled hardness measurement for learning-based TSP solvers,
which is also adaptive as the solver continuously learns.

Curriculum Learning
Curriculum learning (Portelas et al. 2020; Wang, Chen, and
Zhu 2021) studies how to improve training strategies by ma-
nipulating the data distribution according to the model train-
ing stage, aiming to help the model train efficiently and ob-
tain better performance (Bengio et al. 2009; Hacohen and
Weinshall 2019).

A family of classical methods trains the target model with
samples from easy to challenging (Bengio et al. 2009; Ku-
mar, Packer, and Koller 2010; Platanios et al. 2019; Guo
et al. 2018; Florensa et al. 2017), mimicking how humans
learn. To perform curriculum learning, one has to first mea-
sure the hardness of samples and then use a curriculum
scheduler to determine when and how to feed data into
the model. In many fields, hardness measurement is based
on domain knowledge (e.g., sentence length in machine
translation (Platanios et al. 2019), signal to noise ratio in
speech recognition (Ranjan and Hansen 2017), and oth-
ers (Tudor Ionescu et al. 2016; Soviany et al. 2020; Wei
et al. 2016)). For learning-based TSP, Lisicki et al. (Lisicki,
Afkanpour, and Taylor 2020) takes the size of TSP as an in-
dicator of hardness and train the model by gradually increas-
ing the TSP size. In this paper, we focus on TSP instances
of the same size but come from different distributions.

Problem Formulation and Preliminary Study
Notations and Problem Formulation
Following previous works, we focus on 2D-Eucliean TSP.
Given the coordinate of n nodes, X = {xi}ni=1, where
xi ∈ [0, 1]2 is the 2-D coordinate of node i and the distance
between node pairs D(xi,xj) = ∥xi − xj∥2 is Euclidean,
the objective is to find the shortest possible route that visits
each node exactly once. The solution output by a TSP solver
is a permutation of n nodes π = [π1, · · · , πn] that mini-
mizes the total tour length. Formally, the cost of solution π
is defined as

C (π,X) = ∥xπn
− xπ1

∥2+
∑n−1

i=1

∥∥xπi
− xπi+1

∥∥
2
. (1)

Each instance X has a minimal (i.e., optimal) solution cost
C∗ (X) = minπ C (π,X). Denote a TSP solver as M
and the cost of its solution as CM (X). Then C∗ (X) ≤
CM (X) , ∀M . Besides, no polynomial solver for TSP is
known to date, i.e., an exact solver guaranteed to obtain the
optimal solution for any TSP instance will evitably have an
exponential time complexity, which is unbearable in prac-
tice. Learning-based TSP solvers aim to give near-optimal
solutions while ensuring acceptable computational cost. We
adopt the optimality gap as an optimization metric defined
as:

GM (X) =
CM (X)− C∗ (X)

C∗ (X)
. (2)

Note that we do not directly adopt CM (X) or CM (X) −
C∗ (X) because the optimal solution π∗ remains the same

when the distance of the instance is scaled, e.g., for X′ =
aX, where a > 0 is a constant. But in those cases,
CM (X′) = aCM (X) and thus is not comparable among in-
stances with different scales. On the other hand, GM (X′) =
GM (X) and does not suffer from this problem.

For a dataset {Xi}Ki=1, where K is the number of in-
stances, the optimality gap is averaged for all the instances,
i.e., GM

(
{Xi}Ki=1

)
= 1

K

∑K
i=1 GM (Xi), unless stated oth-

erwise.

Preliminary Study
To investigate whether existing current learning-based TSP
solvers can generalize to different distributions, we first re-
port preliminary study results.

Gaussian Mixture Generator Following previous studies
of TSP (Smith-Miles, van Hemert, and Lim 2010), Gaussian
mixture generators can generate TSP instances with differ-
ent hardness levels than the simple uniform sampling. Next,
we introduce the Gaussian mixture generator in detail.

First, we sample the number of clusters nc from a discrete
uniform distribution

nc ∼ U{cmin, · · · , cmax}, (3)

where cmin and cmax are hyper-parameters. In our experi-
ments, we set cmin = 3 and cmax = 7. Denote the cluster
that node i belongs to as ci. Nodes have an equal probability
of joining each cluster, i.e.,

ci ∼ U{1, · · · , nc}. (4)

Each cluster i, 1 ≤ i ≤ nc, has a center vector µi =
(µi1, µi2). The center vector is uniformly sampled in a
square with length cDIST, i.e.,

µi ∼ U [0, cDIST]
2
. (5)

The coordinate of node i, xi, is sampled from a Gaussian
distribution xi ∼ N (µci , I). In this way, nodes belonging
to the same cluster are close to each other. To normalize the
ranges of TSP instances, we follow previous works and scale
the node coordinates X = {xi}Ki=1 into a unit square by
using a min-max projection function ϕ (xi;X) where ϕ(·) is
defined as:

ϕ (xi;X) =
xi −min(X)

max(X)−min(X)
, (6)

where min and max are calculated dimension-wise.

Empirical Results
Next, we present our experimental results. Specifically, fol-
lowing previous works, the TSP solver is trained using uni-
form sampling (more details of the solver can be found in
Section ). Then, we test the solver using the Gaussian mix-
ture generator.

The results when fixing the adjustable parameter cDIST as
100 are shown in Figure 1. Though the existing solvers show
reasonably good results when the testing distribution is iden-
tical to training (i.e., uniform sampling), the performance
drops significantly when using Gaussian mixture as the test-
ing distribution. In fact, the maximum optimality gap even
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cDIST 10 20 30
Optimality Gap(%) 3.5± 0.2 7.2± 0.4 10.1± 0.6

cDIST 50 70 100
Optimality Gap(%) 14.0± 1.0 17.1± 1.5 20.0± 1.6

Table 1: The experimental results when varying cDIST for the
Gaussian mixture generator.

scales by more than 80 times. These results clearly demon-
strate the shortcoming of the existing models when training
and testing data have different distributions.

Next, we show the results of varying cDIST in Table 1. Em-
pirically, we find that for the current learning-based TSP
solvers, the optimality gap increases with cDIST, i.e., in-
stances with larger cDIST are more difficult. Since uniform
sampling does not divide nodes into clusters, it is equiva-
lent to cDIST = 0 before projection function. Therefore, as
cDIST grows larger, the training and testing distribution be-
come more diverse, and the weakness of the existing meth-
ods becomes more apparent.

Method
In this section, we introduce our proposed method. First, we
introduce how to measure the hardness of TSP instances.
Then, we propose a hardness-adaptive generator to sample
hardness-diverse TSP instances. Lastly, we introduce a cur-
riculum learning model to fully utilize these samples and
better train the solver. The overall framework of our method
is shown in Figure 2.

Hardness Measurement
To enable TSP solvers to handle various distributions, we
need instances with different hardness levels. Therefore, we
need a quantitative hardness measurement. Denote the hard-
ness of instance X to solver M as H(X,M). Notice that the
hardness is solver-specific since the hardness can change as
the solver is trained.

Some previous work (Lisicki, Afkanpour, and Taylor
2020) takes the TSP size n as an indicator of hardness since
large-size instances are usually more complex and difficult
to solve. In this paper, we take an orthogonal direction by
considering the hardness of instances with the same size but
having different distributions.

A straightforward idea is to use the optimality gap GM (X)
as the hardness since it naturally measures the quality of the
solver compared to the optimal solution. However, it is im-
practical to obtain the optimal solution cost C∗ (X) since
itself is another NP-hard problem, i.e., the TSP decision
problem. Therefore, we need to directly calculate H(X,M)
without calculating C∗ (X).

Another challenge is that the solver M can vary greatly
during training. For example, as the solver learns, instances
considered hard in previous stages may not be hard anymore
in the current stage, and it is crucial for the hardness mea-
surement to capture such a drift. To solve this problem, we
propose a hardness measurement using self-improving po-

tentials

H(X,M) =
CM (X)− CM ′(X)

CM ′(X)
, (7)

where M ′ is a greedily updated surrogate model, e.g., when
M is differentiable, we can conduct several steps of gradi-
ent descends to obtain M ′. Intuitively, instead of compar-
ing with the optimal solution, we compare M with a poten-
tial solution as the surrogate, i.e., if we can find M ′ with a
much smaller cost than M , it means X is still “hard” for M .
From another perspective, the hardness measurement is also
a lower bound of the ground-truth optimality gap

H(X,M) =
CM (X)− CM ′(X)

CM ′(X)

≤ CM (X)− C∗ (X)

C∗ (X)
= GM (X) .

(8)

The equality holds when our surrogate model M ′ produces
the optimal solution for X.

Notice that if solver M outputs routes with probabili-
ties rather than being deterministic, we define cost func-
tion as an expectation, i.e.,CM (X) = EpM (π|X) [C(π,X)],
where pM (π|X) is the probability of solver M outputing
route π for instance X. We do not adopt minimum, i.e.,
CM (X) = minπ [C(π,X),π ∈ M ] because such measure-
ment is difficult to be optimized due to differentiability prob-
lems. Therefore, the hardness measurement is also defined
as an expectation. As enumerating all possible routes is in-
tractable, we sample routes to obtain an unbiased estimator.

Hardness-Adaptive Generator
As shown in Section , naive i.i.d. sampling can not produce
sufficiently difficult TSP instances. Next, we introduce a
hardness-adaptive generator to sample hardness-diverse TSP
instances using the hardness measurement H(X,M).

The main difficulty of designing a hardness-adaptive gen-
erator is to generate sufficiently difficult samples. To solve
that challenge, inspired by energy-based models (Song and
Kingma 2021), we adopt an energy function as the genera-
tive model. Specifically, we define the energy function using
hardness as E(X|M) = −H (X,M). Then, the probability
distribution is defined as

p (X|M) =
exp (−E(X)|M)´

X′ exp (−E(X′)|M) dX′

=
exp(H (X,M))´

X′ exp (H (X′,M)) dX′ .

(9)

In other words, instances with larger H (X,M) are more
likely to be sampled. When generating the samples, we first
randomly generate an instance X(0), e.g., using uniform
sampling. Then, inspired by Langevin Dynamics (Song and
Ermon 2019), we further optimize the sample to increase the
hardness by doing gradient ascend

X(t)′ = X(t) + η∇X(t) log p(X(t))

= X(t) + η∇X(t)H(X(t),M),

X(t+1) = ϕ(X(t)′),

(10)
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(a) Generators (b) Our proposed hardness-adaptive curriculum learner

Figure 2: (a) A comparison between the fixed uniform generator and our proposed hardness-adaptive generator. (b) The curricu-
lum learner framework: Solver M takes the generated samples and adopts an encoder and RL to calculate the cost. Information
from the generator, samples, and the model is fed into the curriculum learner to exploit the current training stage, reweight
samples, and update model parameters. The generator continues to generate hardness-adaptive samples for the current model
to keep improving model performance.(Best viewed in color)

where t denotes the number of optimization steps, ϕ(·) is
the projection function in Eq. (6) to ensure the validity of
the generated samples, and η is the gradient step size. In the
generator, we can adjust t and η to generate instances with
different hardness.

For methods outputting solutions with probabilities, di-
rectly calculating the gradient in Eq. (10) also needs to enu-
merate all possible solutions π, which is intractable. Using
policy gradient, we have

∇XH(X,M)

= EpM(π|X)

[
CM (X)

CM′(X)
∇X log pM (π | X) +

∇XCM (X)

CM′(X)

]
.

(11)
In deriving the above equation, we assume CM ′(X) to be

a constant. Then, we can sample routes from pM (π|X) to
obtain unbiased estimators of Eq. (11).

Hardness-Adaptive Curriculum Learner
To learn a more powerful TSP solver, we explore hardness-
adaptive samples through curriculum learning. In this paper,
we adopt a simple reweighting-based curriculum strategy,
but our method can be straightforwardly generalized to more
advanced curriculum learning methods.

Consider a mixed dataset {Xi}Ki=1 with both hard and
easy samples, e.g., generated by our hardness-adaptive gen-
erator and the fixed uniform generator. Intuitively, we should
focus more on hard samples during training since they re-
flect the shortcomings of the current solver. Therefore, we

Algorithm 1: Hardness-adaptive Curriculum Learner

Require: Hardness-adaptive and uniform generator, TSP
solver M , batch size B, training epochs L

1: Initialize and warm up M using uniform sampling
2: for l = 1, . . . , L do
3: Randomly generate dataset D by uniform samples

and hard samples using Eq. (10)
4: for b = 1, . . . , |D|/B do
5: Get batch data {X}Bi=1 from D
6: Calculate hardness H(X,M) for {X}Bi=1 using

Eq. (7)
7: Calculate sample weights wi using Eq. (12)
8: Calculate gradients for each instance using

Eq. (15)
9: Update model parameters using weighted gradients

∇Lθ

(
{Xi}Bi=1

)
=

∑
i wi∇Lθ(Xi)

10: end for
11: Increase the curriculum learner temperature T
12: end for

propose to reweight TSP instance Xi using the hardness as
follows,

wi =
exp(F(H(Xi,M))/T )∑
j exp(F(H(Xj ,M))/T )

, (12)

where F(·) is a transformation function and T is a tempera-
ture to control the stage of the curriculum. When the temper-
ature is high, all the samples are treated roughly equally. As
the temperature T goes down, the weight distribution shifts
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Testing Distribution Model Cost Optimal Cost Optimality Gap (%)

Uniform Generator 5.80± 0.01 5.70± 0.01 1.70± 0.05
Hardness-adaptive Generator(η=5) 4.86± 0.05 4.35± 0.04 12.36± 1.21

Table 2: The results of different generators using a TSP solver pre-trained on uniform sampling

(a) Samples generated by uniform generator (b) Samples generated by our hardness-adaptive
generator (η = 5).

Figure 3: The results of comparing the optimality gap of TSP instances generated by a uniform generator and our proposed
hardness-adaptive generator. Our proposed generator can continuously generate instances with more diverse hardness levels.
(Best viewed in color)

and harder samples are assigned larger weights than easy
samples. For a data batch {Xi}Bi=1, the reweighted loss is
calculated as follows

Lθ

(
{Xi}Bi=1

)
=

∑
i
wiLθ(Xi), (13)

where θ denotes the learnable parameters of the TSP solver.
Following previous works (Kool, van Hoof, and Welling
2019), we use reinforcement learning to optimize the TSP
solver. The loss function is defined as

Lθ(X) = EpMθ
(π|X) [C (π|X)] . (14)

Then we can use policy gradient and REIN-
FORCE (Williams 1992) algorithm to minimize the
loss
∇Lθ(X) = EpMθ

(π|X) [(C(π|X)− Cb(X))∇ log pMθ (π | X)] ,

(15)
where Cb(X) is the cost of a baseline to reduce gradient

variances. Following (Kool, van Hoof, and Welling 2019),
we set Cb(X) as a deterministic greedy rollout of the best
model so far. The pseudo code is shown in Algorithm 1.

Experiments
In this section, we conduct experiments to answer the fol-
lowing questions:

• Q1: Can our hardness-adaptive generator continuously
generate samples with diverse hardness levels than uni-
form sampling?

• Q2: Can our curriculum learning model train more pow-
erful TSP solvers that are better generalizable to different
distributions?

Experimental Setup
In our experiments, we focus on TSP-50, i.e., instances
with 50 nodes. Throughout our experiments, we adopt
GAT (Kool, van Hoof, and Welling 2019) as the encoder in
our TSP solver with all hyperparameters are kept the same
as in the original paper. Besides, we adopt Gurobi 2, a ded-
icated non-learning-based TSP solver, to obtain the optimal
cost C∗ as ground-truths.

Experimental Details
For our experimental settings and model training, we largely
follow (Kool, van Hoof, and Welling 2019) except that the
TSP instances are generated using different methods. For
experiments in Section 5.3, we sample 100,000 TSP in-
stances for each training epoch from the uniform generator
or our hardness-adaptive generator (η = 5). Then, we sam-
ple 100 randomly selected instances as the testing set and
calculate the average optimality gap and standard deviation.
For experiments in Section 5.4, we sample 10,000 instances
for each training epoch. The testing dataset is composed of
10,000 instances generated by the Gaussian mixture gener-
ator. For the TSP solver, the GAT has three encoding layers
with the embedding dimensionality 128 and the number of
attention heads 8. Training methods such as batch normal-
ization, tanh clipping of action logits and clipping of gra-
dient norms are kept unchanged as in the original paper to
stabilize the training process. We use Adam optimizer with
the learning rate of 0.0001, the weight decay of 1.0, and the

2https://www.gurobi.com
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η 0.1 0.5 1 5 10

Optimality Gap (%) 0.7± 0.1 1.5± 0.2 2.9± 0.4 12.4± 1.2 14.7± 1.4

Table 3: Relationship between the optimality gap and η for our hardness-adaptive generator.

batch size of 512. The significance threshold used to update
the RL baseline is α = 0.05.
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Figure 4: The experimental results when the training dis-
tribution is uniform and the testing distribution is Gaussian
mixture (unknown to the model). Our proposed hardness-
adaptive generator and curriculum learner significantly re-
duces the optimality gap and converges faster.

Generating Hardness-Adaptive Instances
To answer Q1, we compare the hardness distribution of in-
stances sampled by different generators. The TSP solver is
pre-trained on samples from the uniform distribution.

First, we use a uniform generator and our proposed
hardness-adaptive generator to generate instances and test
the pre-trained solver. The results are shown in Table 2.
Our proposed hardness-adaptive generator can generate
more difficult TSP instances, demonstrating its effective-
ness. These instances can be utilized to further improve our
TSP solver.

Next, to test whether the generators can continuously gen-
erate hardness-adaptive samples as the solver learns, we
fine-tune the solver using these generators, i.e., further op-
timize the solver using generators to generate training in-
stances. Figure 3 shows the optimality gap (i.e., ground-
truth hardness) distribution with different training epochs.
As the epoch increases, samples generated by both gener-
ators tend to have a smaller optimality gap, but our pro-
posed hardness-adaptive generator continuously generates
instances with more diverse hardness levels.

Lastly, to verify the design of our hardness-adaptive gen-
erator that using a larger step size η can generate more dif-
ficult samples, we report the results of varying η in Table 3.
As η grows larger, the optimality gap increases, indicating
that the generated instance is more difficult. The results are
consistent with our design.

Results when Training and Testing Distributions
are Different
To answer Q2, we conduct experiments when training
and testing TSP instances are from different distributions.
Specifically, we consider two data generators for the training
data as Section , i.e., a uniform generator and our hardness-
adaptive generator. For hardness-adaptive generator, we set
η = 5. Besides, we also compare two training paradigms:
one using our proposed curriculum learner in Section and
another not using curriculum learning, i.e., all TSP instances
have the same weights. For the testing data, we generate TSP
instances using the Gaussian mixture generator introduced
in Section . Notice that in all the scenarios, the testing distri-
bution is unknown to the model. We repeat the experiments
15 times and calculate the average optimality gap evaluated
on the testing dataset as the final results.

As shown in Figure 4, models trained using our hardness-
adaptive generator significantly reduce the optimality gap,
which demonstrates that our generated hardness-adaptive
samples can greatly improve the TSP solver when training
and testing data come from different distributions. Besides,
the figure also shows that our proposed curriculum learner
helps reduce variance and makes the training process faster.

Conclusion
In this paper, we explore whether the learning-based TSP
solvers can generalize to different distributions. We propose
a quantitative hardness measurement for TSP, a hardness-
adaptive generator to generate instances with different hard-
ness levels, and a curriculum learner to train the TSP solver.
Experiments demonstrate the effectiveness of our proposed
method in generating hardness-adaptive TSP instances and
training more powerful TSP solvers when training and
testing data have different distributions. For the future, it
will deserve further investigations to extend our proposed
hardness-adaptive curriculum learner to other combinatorial
problems beyond the travelling salesman problem. We will
also consider different hardness approximation methods, ex-
tention for non-differentiable solvers and the setting of con-
tinual learning in future works.
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