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Abstract

Advantage Learning (AL) seeks to increase the action gap be-
tween the optimal action and its competitors, so as to improve
the robustness to estimation errors. However, the method be-
comes problematic when the optimal action induced by the
approximated value function does not agree with the true op-
timal action. In this paper, we present a novel method, named
clipped Advantage Learning (clipped AL), to address this is-
sue. The method is inspired by our observation that increasing
the action gap blindly for all given samples while not taking
their necessities into account could accumulate more errors
in the performance loss bound, leading to a slow value con-
vergence, and to avoid that, we should adjust the advantage
value adaptively. We show that our simple clipped AL opera-
tor not only enjoys fast convergence guarantee but also retains
proper action gaps, hence achieving a good balance between
the large action gap and the fast convergence. The feasibility
and effectiveness of the proposed method are verified empiri-
cally on several RL benchmarks with promising performance.

Introduction
Many recent studies have shown that (deep) reinforcement
learning (RL) algorithms can achieve great progress when
making use of regularization, though they may be derived
from different motivations, such as robust policy optimiza-
tion (Schulman et al. 2015, 2017) or efficient exploration
(Haarnoja et al. 2017, 2018a). According to the reformula-
tion in (Vieillard, Pietquin, and Geist 2020; Vieillard et al.
2020), Advantage Learning (AL) (Bellemare et al. 2016) can
also be viewed as a variant of the Bellman optimality op-
erator imposed by an implicit Kullback-Leibler (KL) reg-
ularization between two consecutive policies. And this KL
penalty can help to reduce the policy search space for stable
and efficient optimization.

Specifically, the AL operator adds a scaling advantage
value term to Bellman optimality operator. Besides trans-
formed into an implicit KL-regularized update, this operator
can directly increase the gap between the optimal and sub-
optimal actions, called action gap. (Bellemare et al. 2016)
shows that increasing this gap is beneficial, and especially a
large gap can mitigate the undesirable effects of estimation
errors from the approximation function.
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However, a potential problem less studied by previous re-
search is that the advantage term may become a burden if the
optimal action induced by the approximated value function
does not align with the true optimal action. This mismatch is
common when there exists under-exploration about the cur-
rent MDP and would lead to a negative advantage term for
the true optimal action at the next iteration. Consequently,
the AL operator could hinder the value improvement about
the true optimal and may lead to suboptimal policies. To
investigate this issue, we provide an in-depth analysis on
the relationship between advantage term and performance
loss bound for the AL operator. The theoretical result shows
that the advantage term could lead to more cumulative errors
in performance loss bound while increasing the action gap,
hence slowing down the value/policy update. We further il-
lustrate this problem by a classic chain-walk example.

To address the above issue, we present an improved AL
algorithm named clipped Advantage Learning (clipped AL).
Our key idea can be summarized as ”advantage term should
not be added without necessity” according to the principle
of Occam’s razor. Intuitively, assume that the optimal ac-
tion induced by the approximated value function were wrong
(which is highly likely at the early stage of the training),
the action gap term works just like a regularization imposed
on two randomly suboptimal actions and hence it makes no
sense to continuously enlarge their gap if it has already been
very large. Based on this observation, during AL training we
first determine whether the current action gap is too small
and only increase this gap if it is below some predefined
threshold. This can be easily implemented with a clipping
function, and hence we call the resulting method Clipped
AL. We show that, with this simple mechanism, we could
significantly improve the stability of the AL training by re-
ducing the potential adverse effects when the induced opti-
mal action is wrong. Besides, clipped AL adopts an adap-
tive clipping mechanism to adjust the advantage term more
reasonably for a robust action gap increasing. From the per-
spective of implicit regularization, clipped AL can also be
viewed as a relaxation on the KL constraints. We prove that
a theoretical balance between fast convergence and large ac-
tion gap can be achieved by clipped AL. Empirical perfor-
mance on popular RL benchmarks also verifies the feasibil-
ity and effectiveness of our clipped AL.
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Related Work
To better understand Advantage Learning, many researchers
have tried to analyze and explain the actual effects of
action-gap regularity adopted by the AL operator. Farah-
mand (Farahmand 2011) studied the action gap phenomenon
for two-action discounted MDPs and proved that smaller
performance loss could be achieved by the problem with
a favorable action-gap regularity. Vieillard et al. (Vieillard,
Pietquin, and Geist 2020) drew a connection between an im-
plicit KL regularization with action-gap regularity, which is
thought of as beneficial to stable learning. Besides, Seijen et
al. (van Seijen, Fatemi, and Tavakoli 2019) proposed a hy-
pothesis that a larger difference in the action-gap sizes across
the state-space would hurt the performance of approximate
RL, which was also supported by strong empirical evidence.

Recent work aims to improve advantage learning mainly
from two perspectives. One direction is to extend the idea of
AL to the other RL methods. For example, Ferret et al. (Fer-
ret, Pietquin, and Geist 2021) connected self-imitation learn-
ing (SIL) (Oh et al. 2018) with AL for an optimistic explo-
ration, while by incorporating the AL operator with Retrace
(Munos et al. 2016), Kozuno et al. (Kozuno, Han, and Doya
2019) proposed a multi-step version of the AL algorithm.
Another direction is to seek a more robust gap-increasing.
Conservative valuation iteration (CVI) (Kozuno, Uchibe,
and Doya 2019) achieved a soft gap-increasing by replac-
ing max operators in AL with softmax ones, which could
control the trade-off between error-tolerance and conver-
gence rate. Munchausen DQN (MDQN) (Vieillard, Pietquin,
and Geist 2020) also adopted a clipping function on its log-
policy term so as to avoid the numerical issue, when imple-
menting the soft gap-increasing.

Preliminaries
We also formulate the RL problem within the Markov De-
cision Processes (MDP) framework as commonly consid-
ered. Each specific MDP can be modeled as a unique tuple
M = 〈S,A, P, r, γ〉, where S and A denote the state and
action space, P is the Markov transition probability function
P : S × A × S → [0, 1], r represents the reward function
r : S×A → [Rmin, Rmax], and γ is the discount factor. The
RL agent interacts with the environment following a policy
π : S ×A → [0, 1]1

Bellman Operator
In common to estimate the quality of a policy, the ex-
pected discounted cumulative return, denoted by the state
value function V π(s) = Eπ [

∑∞
t=0 γ

tr(st, at)|s0 = s],
is chosen as the evaluation criterion, where Eπ
represents the expectation over all trajectories
(s0, a0, r0, · · · st, at, rt · · · ) sampled by π and P . And
similarly, the action-state value function is defined as
Qπ(s, a) = Eπ [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a]. What an
optimal policy aims at is to maximize the value function
V π(s) or Qπ(s, a) over the space of non-stationary and

1Note that we may slightly abuse some function notations as
the corresponding vector notations in the later, which depends on
the context.

randomized policies Π: V ∗(s) = supπ∈Π V
π(s), and

Q∗(s, a) = supπ∈ΠQ
π(s, a). And it has been shown that

there exists a stationary and deterministic π∗ that satisfies
V π
∗

= V ∗ and Qπ
∗

= Q∗ for eachM.
As we all know, the optimal state-action value function

Q∗ shared by all the optimal policies satisfies the Bellman
optimality equation:

Q∗(s, a) = r(s, a) + γEs′∼P (·|s,a)

[
max
a′

Q∗(s′, a′)
]

(1)

By rewriting Eq.(1) as the vector form, we can define the
Bellman optimality operator T : R|S||A| → R|S||A| as:

T Q , r + γPV (2)

where P ∈ R|S||A|×|S|, Q ∈ R|S||A|, V ∈ R|S| and
V (s) = maxaQ(s, a). T is a contraction operator whose
unique fixed point is the optimal action-state function Q∗.

Advantage Learning
In complex tasks, the Q value function is usually approxi-
mated by a parameterized neural networkQθ(s, a), of which
one obvious challenge is its robustness to the estimation er-
rors. And to mitigate this issue, Advantage Learning (AL)
(Bellemare et al. 2016) is proposed to increase the action
gap , i.e., the difference between the optimal action value
and the suboptimal ones, and its operator can be defined as:

TALQ(s, a) , T Q(s, a)− α (V (s)−Q(s, a)) (3)

Where the scaling parameter α ∈ [0, 1). Compared to T ,
the only modification in the AL operator is the addition of
a scaling advantage function A(s, a) = Q(s, a) − V (s) for
each state-action pair and TAL is consistent with T when
α = 0. Ideally, TAL will decrease the value of suboptimal
actions (as A(s, a) < 0), and keep the consistent optimal
action value with T (as A(s, a∗) = 0). The AL operator
has also been proved (Theorem 1 in (Bellemare et al. 2016))
to obtain some critical properties: optimality-preserving and
gap-increasing, which defined as the following:

Definition 1 (optimality-preserving). An operator T ′ is
optimality-preserving if, for ∀ Q0 ∈ Q and s ∈ S , letting
Qk+1 = T ′Qk,

V̂ (s) , lim
k→∞

max
a∈A

Qk(s, a)

exists, is unique, V̂ (s) = V ∗(s), and for ∀a ∈ A,

Q∗(s, a) < V ∗(s)⇒ lim sup
k→∞

Qk(s, a) < V ∗(s)

According to the definition of optimality-preserving, it’s
suggested that, when using the AL operator, at least one op-
timal action remains optimal, and all suboptimal actions are
still suboptimal.

Definition 2 (gap-increasing). LetM be a MDP, an opera-
tor T ′ forM is gap-increasing if for ∀Q0 ∈ Q, s ∈ S, a ∈
A, letting Qk+1 , T ′Qk and Vk(s) , maxa′ Qk(s, a′),

lim inf
k→∞

[Vk(s)−Qk(s, a)] ≥ V ∗(s)−Q∗(s, a)
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Figure 1: The 11-state chain-walk example used in (Kozuno, Uchibe, and Doya 2017). The optimal policy is to take the left
movement regardless of the initial and current states, so that the agent can arrive and stay at the left end state s0 for larger
long-horizon rewards.

The property of gap-increasing implies that the AL op-
erator will enlarge the value difference between the opti-
mal and suboptimal actions than T does. In fact, Theorem
1 in (Kozuno, Uchibe, and Doya 2017) shows that the ac-
tion gaps obtained by TAL and T satisfy: limk→∞[Vk(s) −
Qk(s, a)] = 1

1−α [V ∗(s)−Q∗(s, a)].

Performance Loss Bound of AL
The additional scaling advantage term in the AL operator
contributes to increase the action gap, thereby achieving the
robust learning of the value function. However, the advan-
tage value term may also become a burden for the value it-
eration. In this section, we will analyze the relationship be-
tween the advantage term and the performance loss bound of
the AL operator, which leads to our motivation on improving
the AL operator.

Starting with an arbitrary initial action-state value func-
tion Q0 ∈ Q, we can obtain an action-state value func-
tion sequence {Qk}Kk=0 by iteratively applying the AL op-
erator TAL, i.e., Qk+1 = TALQk. And we get the cor-
responding state value function sequence {Vk}Kk=0 by fol-
lowing the definition: Vk(s) , maxaQk(s, a). Because
TAL is optimality-preserving, we know that the state value
function sequence will converge to the optimal one, i.e.,
limk→∞ Vk = V ∗. The greedy policy induced by the
k-th state value function Vk is defined as: πk+1(s) =
arg maxa

[
r(s, a) + γEs′|s,a [Vk(s′)]

]
, and then the `∞-

norm performance loss bound of state value function of the
induced policy satisfies the following result2: (proof in Ap-
pendix A.1)

Theorem 1. Assume the optimal policy π∗ and its state
value function V ∗, and ∀π ∈ Π, ‖V π‖∞ ≤ Vmax, let
∆π∗

k ∈ R|S| and each entry is defined as :∆π∗

k (s) =
Vk(s)−Qk(s, π∗(s)), then we have:

2we analyze the convergence error, because the sequence
{Vk}Kk=0 must converge to the optimal, while {Qk}Kk=0 may not,
according the definition of optimality-preserving.

‖V ∗ − V πK+1‖∞

≤ 2γ

1− γ

[
2γKVmax + α

k=K−1∑
k=0

γK−k−1‖∆π∗

k ‖∞

]

Comparing the result in Theorem 1 with the similar one
of Bellman optimality operator (Farahmand, Szepesvári, and
Munos 2010), we can see that TAL would accumulate an
extra discounted error into the performance loss bound in
the case that a non-zero ∆π∗

k occurs at any update step. And
the additional cumulative errors will further lead to a slower
convergence to the optimal value function.

Recall the definition ∆π∗

k (s) = Vk(s)−Qk (s, π∗(s)), we
know it’s a non-negative vector (∆π∗

k ≥ 0) and −∆π∗

k (s)
represents the estimated advantage value of the true opti-
mal action at state s. When the optimal action induced by
the iterative value function does not agree with the true op-
timal action, i.e., π∗(s) 6= arg maxa∈AQk(s, a) at some
timesteps, a positive discounted error γK−k−1‖∆π∗

k ‖∞ > 0
will be accumulated in the performance loss bound. In other
words, unless the induced greedy policy keeps consistent
with the optimal policy over all the iterations, i.e., π1 =
· · · = πK+1 = π∗, TAL would cause larger performance
loss bound than T does. However, it’s impossible to guaran-
tee this ideal condition in practice, especially because of the
under-exploration in complex tasks and the estimation error
that existed in the function approximator. So the AL oper-
ator also suffers from slower value convergence (i.e., larger
performance loss ) while obtaining larger action gaps.

In summary, we show that increasing the action gap by the
advantage term is not always a beneficial choice, especially
when the induced optimal action is not consistent with the
true optimal one. Because the advantage term in this case
may also introduce more errors into the state value function,
leading to the slow convergence.

11-State Chain-Walk. We further illustrate this adverse
effect with the chain-walk example shown in Figure 1. The
agent can move either left or right at each state and would be
transitioned to the state in the intended direction with prob-
ability 0.7, while to the state in the opposite direction with

9147



0 25 50 75 100 125 150 175 200
iteration K

0

5

10

15

20

25

30

35
‖V

*
−
V
π K

+
1
‖ ∞



AL

clipAL

(a)

0 2 4 6 8 10
5.0

7.5

10.0

12.5

15.0

Q
 v

al
ue

 at iter. 500#
Q(s, L)
Q(s,R)

0 2 4 6 8 10

−20

−10

0

10

Q
 v

al
ue

AL at iter. 500#

Q(s, L)
Q(s,R)

0 2 4 6 8 10

State No#

0

5

10

15

Q
 v

al
ue

clipAL at iter. 500#

Q(s, L)
Q(s,R)

(b)

0 2 4 6 8 10
110

115

120

125

130

Q
 v

al
ue

 at iter. 500#
Q(s, L)
Q(s,R)

0 2 4 6 8 10
−300

−200

−100

0

100

Q
 v

al
ue

AL at iter. 500#

Q(s, L)
Q(s,R)

0 2 4 6 8 10

State No#
90

100

110

120

130

Q
 v

al
ue

clipAL at iter. 500#

Q(s, L)
Q(s,R)

(c)

Figure 2: Numerical experiments on 11-state chain-walk. (a): Performance loss bound. The induced policies by T , TAL and
TclipAL reach the optimal one after 78, 138 and 113 iterations respectively; (b-c): Q value at 10-th and 500-th iteration. The
solid lines depict the Q value of both actions at each state. The dashed lines show the averaged Q value of both actions over
all states and the distance between them represents the mean action gap. (a) and (c) indicate that our TclipAL can speed up the
policy convergence than TAL (though slower than T ), and still maintain a larger mean action gap (15.71) than T (1.65), so as
to achieve the balance between convergence speed and action gap.

probability 0.3. At both ends of the chain, attempted move-
ment to outside of the chain results in staying at the ends.
The agent gets 0 reward once reaching the middle state (s5).
If the agent moves to the right side of the chain (s6-s10), it
can get 1 reward, otherwise get−1 reward on the left side of
this chain (s1-s4) except 3 reward on the left end (s0).

Assume every episode will start from state s5, according
to the definition, we know that the optimal policy is to im-
plement the ’left’ action at all states. We denote the Q value
of ’left’(’right’) action as Q(s, L) (Q(s,R)) and initiate a
Q-table in which Q(s,R) = Q(s, L) = 0 for all states.
Then with a perfect environment model, the Q-table will be
updated using T and TAL respectively.

Figure 2(a) shows the performance loss of state value
function of the induced policy. We can see that it spends
more time for TAL (iteration 138) to achieve the optimal
state value function than T does (iteration 78). This is be-
cause a suboptimal policy would be learned at the early up-
date iterations. As shown in Figure 2(b), at the beginning
of iterations (iteration 10), the induced greedy policy will
take the suboptimal (’right’) action at state s4-s10 due to
the larger immediate reward at the right side of the chain.
And according to our analysis in Theorem 1, this suboptimal
policy would accumulate more errors in ‖V ∗ − V πK+1‖∞,
leading to a slower convergence. Even though a larger mean
action gap can be achieved by TAL (163.33) than T (1.65)
after converging to the optimal policy as illustrated in Figure
2(c). More experimental details and results about this chain-
walk example can be found in Appendix B.1.

Clipped Advantage Learning
Based on the observation in Sec., we present a novel AL-
based method (named clipped AL) in this section, which
adds the advantage term more reasonably through a clipping

mechanism and also prove its some critical properties.

Methods
Besides the robustness benefited from the larger action gap,
the AL operator can also cause a slower convergence due to
the blind action gap increasing by the advantage term. To
mitigate this issue, one intuitive method is to add the advan-
tage term conditionally based on the necessity of increasing
the action gap, rather than doing this for all state-action pairs
like AL does. So we propose the Clipped Advantage Learn-
ing (clipped AL) operator as following:

TclipALQ(s, a)

, T Q(s, a)− α(V (s)−Q(s, a)) · I
[
Q(s, a)−Ql
V (s)−Ql

≥ c
]

(4)

where I [·] is the indicator function that equals to 1 if the
condition is satisfied, otherwise returns 0. And c ∈ (0, 1)
denotes the clipping ratio coefficient. Ql is a lower bound of
Q value such that Q(s,a)−Ql

V (s)−Ql
≥ 0. This operator can also be

rewritten as a more direct form:

TclipAL =

{
TAL, if Q(s, a)−Ql ≥ c(V (s)−Ql)
T , otherwise

(5)

The motivation behind the clipped AL can be summarized
as ”advantage term should not be added without necessity”.
According to the definition in Eq.(5), the clipped AL is de-
signed to increase the action gap by implementing TAL if
and only if the Q value of suboptimal actions exceeds a cer-
tain threshold and gets close to the corresponding V value,
or otherwise, it will keep consistent with the Bellman opti-
mality operator T . On the one hand, TclipAL can still main-
tain an enough action gaps by the additional advantage term

9148



when suboptimal state-action values approach to the optimal
one. On the other hand, if an appropriate gap has already ex-
isted, it can achieve a larger value improvement without the
advantage term in the next iteration. And eventually, TclipAL

is expected to reach a balance between large action gaps and
fast convergence.

Corollary 1. The clipped AL operator TclipAL satisfies the
both conditions in Theorem 1 in (Bellemare et al. 2016) and
then is both optimality-preserving and gap-increasing,

The above Corollary implies that TclipAL can still keep
both optimality-preserving and gap-increasing like TAL. and
will eventually yield an optimal greedy policy when the Q
value can be represented exactly. This clipping mechanism
is beneficial in the case that the estimated value of the true
optimal action Qk(s, π∗(s)) is much less than the estimated
optimal value Vk(s), because it would omit the negative ad-
vantage valueQk(s, π∗(s))−Vk(s) so as to achieve a larger
improvement on Qk+1(s, π∗(s)) in the next iteration, and
then help the induced optimal action to align with the true
optimal action faster. Note that instead of a fixed Q value
threshold, we choose a fixed Q value ratio c as the clipping
threshold to adjust the advantage value term adaptively ac-
cording to the varying scale of action value.

Balance between Large Action Gap and Fast
Convergence
Recall the 11-state chain-walk example in Figure 1. We
know that, despite increasing the action gap, TAL may also
lead to a slow convergence to the optimal value function be-
cause of the mismatch between induced and true optimal
action. We also implement TclipAL on chain-walk example
with the same settings and show the results in Figure 2. We
can see that, comparing with TAL, our TclipAL can obtain a
faster achievement to the optimal policy (iteration 113), i.e.,
V πK+1 = V ∗ (shown in Figure 2(a)). This result is intuitive
because TclipAL would clip the unnecessary advantage term
−∆π∗

k , reducing the cumulative errors in performance loss
bound. Meanwhile, TclipAL can also maintain a larger action
gap (15.71) than T (1.65) as shown in Figure 2(c), which
keeps its robustness.

Specifically, for ∀(s, a) ∈ S ×A, we define its action gap
as following:

G(s, a) = lim inf
k→∞

[Vk(s)−Qk(s, a)] (6)

where {Qk}∞k=0 and {Vk}∞k=0 are the corresponding value
functions w.r.t any operator and Vk(s) = maxa∈AQk(s, a).
And the action gap obtained by the above three operators
satisfies the conclusion in Theorem2.

Theorem 2. For ∀s ∈ S, a ∈ A, we define its action
gap from T , TAL, and TclipAL by G∗(s, a), GAL(s, a), and
GclipAL(s, a). Let Q∗ and V ∗ represent the optimal state
(action) value functions, then G∗(s, a) = V ∗(s)−Q∗(s, a)
and these action gaps satisfy:

G∗(s, a) ≤ GclipAL(s, a) ≤ GAL(s, a)

And when Ql ≤ mins,a
Q∗−αV ∗

1−α , GclipAL(s, a) =

GAL(s, a) if the clipping ratio satisfies:

c ≤ min
s,a

Q∗ − αV ∗ − (1− α)Ql
(1− α)(V ∗ −Ql)

This theorem implies that the action gap of TclipAL is
somewhere between the action gaps of both T and TAL and
finally depends on the clipping ratio c. So these results and
conclusions support the goal of our clipped AL: achieve a
balance between the large action gaps and fast convergence.

Experiment
To further verify the feasibility and effectiveness of the pro-
posed clipping mechanism applied in the family of Advan-
tage Learning algorithms, we evaluate and compare the per-
formance of our method on several popular RL benchmarks,
such as the MinAtar (Young and Tian 2019), PLE (Tasfi
2016) and Atari (Bellemare et al. 2013) .

Experimental Setup
Implementation. We conduct the MinAtar and PLE ex-
periments mainly based on the Explorer framework (Lan
2019), and the Atari experiments based on APE-X frame-
work (Horgan et al. 2018). And due to the paper space limit,
the results on Atari tasks will be provided in Appendix B.3.
All the implementations are run on a computer with an Intel
Xeon(R) CPU, 64GB of memory and a GeForce RTX 2080
Ti GPU.

When implementing our clipped AL, instead of an
enough lower bound Ql, we choose a proper value: Ql =
1−γH

1−γ Rmin, where Rmin is the minimum reward for each
step. This choice is the least discounted sum of rewards for a
H-length trajectory. Although Q(s,a)−Ql

V (s)−Ql
< 0 may still hap-

pen during the training process due to approximation error
at certain timesteps, it equals to implement T in this case.
And we know that the fixed point of T must be greater than
or equal to 1−γH

1−γ Rmin, so the ratio will still be non-negative
after some iterations. Except the clipping ratio c, we select
the same hyperparameter used in AL method and more de-
tails about the settings can be found in Appendix B.2.

Baselines. To verify our method sufficiently, we compare
the clipped AL with several popular baselines as following:
• AL: the original Advantage Learning algorithm (Belle-

mare et al. 2016), which is the basic method we modify.
And we adopt the recommended α = 0.9;

• DQN: the vanilla DQN (Mnih et al. 2015), a famous
baseline commonly used in discrete-action environment;

• MDQN: the Munchausen DQN (Vieillard, Pietquin, and
Geist 2020), which is a state-of-the-art non-distRL al-
gorithm. And we follow its hyperparameter suggestions:
α = 0.9 (Munchausen scaling term), τ = 0.03 (entropy
temperature), and l0 = −1 (clipping value);

• Soft-DQN(τ ): the vanilla DQN with maximum entropy
regularization, i.e., the discrete-action version of Soft
Actor-Critic (SAC) (Haarnoja et al. 2018b), we set the
same temperature parameter τ = 0.03 with MDQN;
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Figure 3: Evaluation episode reward comparison between our clipped AL algorithm and the chosen baselines on six benchmark
tasks. All the results are averaged over five random seeds, with the shade area corresponding to one standard error.

Evaluation. As for the evaluation scenarios, we select five
MinAtar tasks (Asterix, Breakout, Freeway, Space-invaders,
and Seaquest) and one PLE task (Pixelcopter). We separate
the evaluation from the training process, and conduct pol-
icy evaluation per 5000 timesteps. Specifically, we measure
the policy performance by the mean reward of 10 evaluation
episodes, and all the performance results are averaged over
5 random seeds.

To further quantify the performance improvement, we
adopt the ”baseline-normalized” score as the metric. At each
evaluation, the score is the undiscounted sum of rewards, av-
eraged over the last 5 evaluations. The normalized score is
then a−r

|b−r| , with a the score of the compared algorithm, b the
score of the baseline, and r the score of a random policy.

Effectiveness of Clipping Mechanism
Performance Improvement. We firstly validate the ef-
fectiveness of our clipped AL. Figure 3 shows the perfor-
mance comparison between our method and the baselines
mentioned above. We can see that our clipped AL performs
better significantly than the AL operator over 5 tasks ex-
cept Freeway task. Though both methods have a similar fi-
nal performance on Freeway task, our clipped AL still has a
higher sample efficiency before the final convergence. Even
comparing with MDQN and Soft-DQN(τ ), our method is
also competitive and achieve the best performance on Break-
out, Space invaders and Pixelcopter tasks. We compute the
’DQN-normalized’ score for the other 4 methods and Table
1 depicts the quantitative results. We can see from it that
our clipped AL achieves around 45.73 % averaged perfor-

Algorithm Soft-DQN MDQN AL clipAL

Asterix 36.59 12.46 -1.60 6.90
(0.20) (0.16) (0.14) (0.17)

Breakout 5.28 63.06 -4.94 92.34
(0.17) (0.29) (0.17) (0.27)

Freeway -3.96 2.03 2.52 2.10
(0.02) (0.01) (0.01) (0.02)

Space Invaders -0.89 20.88 23.02 27.88
(0.11) (0.22) (0.16) (0.18)

Seaquest 74.56 136.89 62.75 100.39
(0.25) (0.41) (0.64) (0.36)

Pixelcopter 19.52 31.22 39.77 44.79
(0.20) (0.21) (0.17) (0.10)

mean 21.85 44.42 20.25 45.73

Table 1: DQN-normalized score comparison, which repre-
sents the percentage (%) of performance improvement than
the DQN baseline. All the results are averaged over 5 seeds,
and one standard deviation included in the parenthesis.

mance improvement, which is better than the rest baselines
and more than double times than the original AL method es-
pecially. All the results can verify our clipping mechanism
does improve the original AL algorithm.

Naturally, our method can be easily extended to the fam-
ily of AL-based algorithms, so we also apply our clipping
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(a) (b)

Figure 4: Comparison about the action gap and the V value
estimations on Seaquest and Space-invaders tasks during
the training process. Top subfigures represent the results on
Seaquest task and the bottom ones are on Space invaders
task. a): action gap estimations; b): V value estimations.

mechanism to two variants of AL-based algorithms, and all
the results and analysis are provided in Appendix B.2.2.

Property Analysis. As mentioned before, our clipped AL
aims to achieve a balance between large action gaps and fast
convergence of value function, which is thought of as the
main incentive of superior performance. So in this section,
we mainly verify whether our clipped AL can achieve this
goal. We estimate the both variables for T , TAL, and TclipAL

during the training process. Specifically, we denote the V
value by Vθ(s) = maxaQθ(s, a), and the empirical action
gap by the difference of estimated values between the best
and second best actions:Qθ(s, a∗)−maxa∈A\{a∗}Qθ(s, a)
with a∗ = arg maxa∈AQθ(s, a) (Vieillard, Pietquin, and
Geist 2020).

The results in Figure 4 include the V value and action
gap estimations of DQN, AL, and clipped AL on Seaquest
and Space-invaders tasks. Figure 4(a) shows the estimations
of action gaps, in which the action gap of our clipped AL
lies between the ones of DQN and AL for the both tasks.
These results correspond to our theoretical analysis on the
relationship of action gaps in Theorem 2. And Figure 4(b)
shows the V value estimations of the three algorithms, we
can see that the V value of our clipped AL converges faster
than AL, in spite of slower than DQN. Combining with the
comparisons of both variables, our clipped AL does achieve
such a balance between fast convergence and large action
gaps, which verifies the feasibility and effectiveness of our
motivations.

Ablation Study
According to Theorem 1, we know that the trade-off be-
tween convergence speed and action gap can be achieved by
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Figure 5: Ablation study on scaling parameter α and clip-
ping ratio c in clipped AL. Comparison about the action gap
with different hyperparameter combinations.

tuning the scaling parameter α and clipping ratio c. In this
section, we do an ablation study on both critical parameters.
We mainly compare the action gap obtained by all the com-
binations from the candidate set: α = c = {0.9, 0.8, 0.7}.

Figure 5 shows the action gap comparison about differ-
ent parameter combinations on Space invaders and Seaquest
tasks. We can see that, when fixing α, the action gap will de-
crease with the increase of clipping ratio c; this is intuitive
because a larger c means the less probability to add the ad-
vantage term, leading to a smaller action gap. While a larger
α with a fixed c can lead to more action gaps because α de-
termines the scaling of advantage term, i.e., gap-increasing.
In other words, α controls the overall action gaps of all state-
action pairs, and our clipping ratio c can further adjust the
individual action gap for each state-action pair selectively
so as to achieve the finer balance.

Conclusion

Advantage Learning (AL) is considered to be more robust
due to its regularization on the action gap. However, our
analysis reveals that AL may cause worse performance loss
bound, leading to a slower value convergence if increasing
the action gap blindly. In this paper, we propose the clipped
AL to adjust the advantage term adaptively so as to increase
the action gap more reasonably. This simple modification
can obtain better performance with faster convergence while
maintaining a proper action gap to keep its robustness and
be extended to the family of gap-increasing operators easily.
The theoretical and empirical results also confirm the ratio-
nality and effectiveness of our proposed methods.

An interesting future study is to design an adaptive clip-
ping ratio c for the training process. Because the clipping
mechanism may be more necessary for the robust gap-
increasing at the early training stage. While when the in-
duced optimal actions align with the true optimal ones at
the late training stage, increasing the action gap for all state-
action pairs is more important.
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