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Abstract

Federated learning (FL) is a privacy-preserving distributed
machine learning paradigm that enables multiple clients to
collaboratively train statistical models without disclosing raw
training data. However, the inaccessible local training data
and uninspectable local training process make FL suscep-
tible to various Byzantine attacks (e.g., data poisoning and
model poisoning attacks), aiming to manipulate the FL model
training process and degrade the model performance. Most
of the existing Byzantine-robust FL schemes cannot effec-
tively defend against stealthy poisoning attacks that craft poi-
soned models statistically similar to benign models. Things
worsen when many clients are compromised or data among
clients are highly non-independent and identically distributed
(non-IID). In this work, to address these issues, we propose
FedInv, a novel Byzantine-robust FL framework by invers-
ing local model updates. Specifically, in each round of local
model aggregation in FedInv, the parameter server first in-
verses the local model updates submitted by each client to
generate a corresponding dummy dataset. Then, the server
identifies those dummy datasets with exceptional Wasserstein
distances from others and excludes the related local model
updates from model aggregation. We conduct an exhaustive
experimental evaluation of FedInv. The results demonstrate
that FedInv significantly outperforms the existing robust FL
schemes in defending against stealthy poisoning attacks un-
der highly non-IID data partitions.

Introduction
Federated learning (FL) (McMahan et al. 2017; Kairouz
et al. 2019) is a distributed machine learning framework
that enables multiple clients to collaboratively train statis-
tical models without raw data exchange under the orches-
tration of a parameter server. Thus, FL can significantly al-
leviate clients’ privacy concerns compared to the conven-
tional centralized machine learning paradigm. However, FL
is susceptible to Byzantine attacks (e.g., data/model poi-
soning attacks) (e.g., (Jagielski et al. 2018; Biggio, Nel-
son, and Laskov 2012; Chen et al. 2017; Fang et al. 2018;
Shafahi et al. 2018; Li et al. 2016; Fang et al. 2020; She-
jwalkar and Houmansadr 2021)) due to the inaccessibility of
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clients’ local training data and the uninspectable local train-
ing processes. Effective Byzantine-robust FL schemes (i.e.,
defense mechanisms) are highly desired to achieve satisfac-
tory model performance via FL model training.

Thus far, researchers have proposed many Byzantine-
robust FL schemes, which can be roughly grouped into two
categories. The first kind of scheme (e.g., (Blanchard et al.
2017; Yin et al. 2018; Mhamdi, Guerraoui, and Rouault
2018)) identifies and excludes poisoned local model updates
under the assumption that they are geometrically far away
from benign ones. The second kind of scheme (e.g., (Xie,
Koyejo, and Gupta 2019, 2020)) assumes the server main-
tains a public clean validation dataset. The server uses this
dataset to evaluate local model updates in terms of test ac-
curacy or loss. Those with poor performance are determined
as poisoned local models and then are excluded from local
model aggregation. Very recently, some works (e.g., (Cao
et al. 2020; Prakash and Avestimehr 2020)) combine the
above two and propose hybrid robust FL schemes.

However, most of the existing Byzantine-robust FL
schemes have the following limitations:

• First, as demonstrated in (Fang et al. 2020; Shejwalkar
and Houmansadr 2021), several advanced poisoning at-
tacks could craft poisoned local models that are geo-
metrically close to benign ones. Thus, the first kind of
scheme’s assumption (also the precondition) is violated,
leading to its ineffectiveness.

• Second, centralizing a public validation dataset and us-
ing it to evaluate local model updates in the second kind
of scheme cannot defend against advanced poisoning at-
tacks with dual optimization objectives, such as backdoor
attacks (Gu, Dolan-Gavitt, and Garg 2017; Bagdasaryan
et al. 2020). Moreover, the centralization of a public val-
idation dataset disobeys the principle of FL to some de-
gree and may not be realized in some real-world cases.

• Third, all of these defense mechanisms suffer from sig-
nificant performance degradation when a relatively large
proportion of clients are compromised, or data among
clients is highly non-independent and identically dis-
tributed (non-IID).

To tackle the issues mentioned above, in this work, we
propose FedInv, a novel Byzantine-robust FL scheme by in-
versing local model updates. FedInv could effectively de-
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fend against stealthy data and model poisoning attacks, even
when the number of Byzantine clients is large and data par-
titions among clients are highly non-IID, thus promising sat-
isfactory performance of FL model training.

The basic idea of FedInv is that before updating the global
model in each round of FL, the server first performs privacy-
respecting model inversion on each client’s local model up-
dates to synthesize a corresponding dummy dataset. Then,
the Wasserstein distances of each generated dummy dataset
to the remaining ones are calculated. Those clients asso-
ciated with huge distances are determined as Byzantine
clients, whose local model updates are excluded from local
model aggregation.

The major contributions of this work are as follows:

• To the best of our knowledge, FedInv is the first
Byzantine-robust FL framework that could thwart
stealthy poisoning attacks, even under a rigorous adver-
sarial setting with a great number of Byzantine clients
and highly non-IID data distribution. Besides, FedInv
eliminates the need for centralizing any data at the server.

• We propose to perform privacy-respecting model in-
version on each client’s local model update to synthe-
size a corresponding dummy dataset. By comparing the
distribution divergences among these dummy datasets,
we could always identify the benign clients and ag-
gregate their submitted local model updates to achieve
Byzantine-robust FL.

• We conduct an exhaustive experimental evaluation of
FedInv on various datasets, models, adversary settings,
attack methods. The results corroborate its superior per-
formance compared to the existing Byzantine-robust FL
schemes.

Background and Related Work
Background on Federated Learning
Federated learning (FL) enables multiple clients to collabo-
ratively train globally shared machine learning models with-
out disclosing their raw training data under the coordina-
tion of a parameter server. Consider an FL system involving
N clients. Each client n (n = 1, 2, . . . , N ) has a training
datasetDn consisting ofDn data samples (i.e., |Dn| = Dn).
Generally, FL model training involves many rounds of in-
teractions between clients and the server. In each round t
(t ∈ {1, 2, . . . , T}), the following steps are performed.

Step 1 : each client n downloads the latest global model
θt−1 from the server (note that θ0 at the very beginning (i.e.,
t = 1) is a random initialization).

Step 2 : each client n uses her training data to perform
local model update on θt−1 via mini-batch stochastic gradi-
ent descent (SGD), and submits the local model update θtn
to the server.

Step 3 : the server aggregates local model updates θtn
from all the clients n = 1, 2, . . . , N to produce the global
model update θt. Formally, θt = A(θtn, n = 1, 2, . . . , N),
where A represents the adopted aggregation rule.

A classic and widely-adopted aggregation rule is feder-
ated averaging (FedAvg), where the local model updates are
aggregated as θt =

∑N
n=1

Dn∑N
n=1 Dn

θtn.
Recent works (e.g., (Blanchard et al. 2017)) have demon-

strated that the global model generated by a simple local
model aggregation weighted by data size as in FedAvg can
be easily manipulated by Byzantine clients conducting poi-
soning attacks. Thus, Byzantine-robust FL schemes (i.e., ag-
gregation rules) are highly desired.

Byzantine-robust Federated Learning
One kind of Byzantine-robust FL scheme identifies and ex-
cludes poisoned local model updates under the assumption
that they are geometrically far from benign ones. For exam-
ple, Krum (Blanchard et al. 2017) always selects the local
model updates with the smallest Euclidean distances to the
remaining ones and aggregates them to update the global
model. Trimmed Mean and Median (Yin et al. 2018) re-
move the F biggest and smallest values and take the av-
erage and median of the remaining ones as the aggregated
value for each of the model parameters among all the lo-
cal model updates. However, some recently proposed ad-
vanced poisoning attacks (Fang et al. 2020; Shejwalkar and
Houmansadr 2021) can craft poisoned models geometrically
close to benign ones, which will break the assumption (also
precondition) of these schemes and circumvent the defenses.

Another kind of scheme needs to centralize a public clean
validation dataset and use it to evaluate local model updates
in terms of test accuracy or loss. Those with poor perfor-
mances are excluded from local model aggregation. For ex-
ample, the Error Rate based Rejection (ERR) (Fang et al.
2020) rejects local mode updates that have a large negative
impact on the global model’s accuracy. Zeno (Xie, Koyejo,
and Gupta 2019, 2020) and the Loss Function-based Re-
jection (LFR) (Fang et al. 2020) use the loss decrease on
the centralized validation dataset to rank the model’s cred-
ibility. However, poisoning attacks with dual optimization
objectives like backdoor attacks (e.g., (Gu, Dolan-Gavitt,
and Garg 2017)) may also have a good performance on the
validation dataset and can escape from exclusion. Besides,
these schemes violate the privacy-preserving principle (i.e.,
remaining data localized) of FL and may be difficult to im-
plement in practice.

Very recent studies combine the above two kinds of
schemes and propose hybrid defense mechanisms. For ex-
ample, FLTrust (Cao et al. 2020) trains a bootstrap-
ping model on a public dataset and uses cosine similar-
ities between local model updates and the trained boot-
strapping model to rank the model’s credibility. However,
FLTrustmay also inherit the limitations of the two kinds of
schemes mentioned above. Similarly, DiverseFL (Prakash
and Avestimehr 2020) trains a bootstrapping model for each
client using some of the client’s local data and compares
the trained model with her submitted local model update to
examine the local training process. However, DiverseFL
cannot deal with data poisoning attacks.

Moreover, existing Byzantine-robust FL schemes suffer
significant performance degradation (empirically validated
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Figure 1: Schematic diagram of FedInv.

in our experiments) when a relatively large number of clients
are compromised and the data distribution among clients is
highly non-IID. FedInv aims to address all these issues. The
detailed design is presented in the next section.

Detailed Design of FedInv
Adversary Setup
Before presenting the design details of FedInv, we first intro-
duce the adversary setup. Specifically, FedInv aims at a rig-
orous adversary setup, where up to F (F/N < 0.5) clients
can be compromised by the attacker, and Byzantine clients
can exchange the necessary information to collude to launch
poisoning attacks. Moreover, the local model updates from
benign clients and the aggregation rule employed by the
server are accessible by the attacker, enabling it to craft poi-
soned models similar to benign ones, making them difficult
to distinguish.

Overview of FedInv
The framework of FedInv is shown in Figure 1, and the
workflow in each round of FedInv is described as follows.

• Step 1 : Privacy-Respecting Model Inversion: Per-
forming privacy-respecting model inversion on each re-
ceived local model update to synthesize a corresponding
dummy dataset.

• Step 2 : Scoring Local Model Updates: Scoring each
local model update according to the Wasserstein dis-
tances of its corresponding dummy dataset to the major-
ity.

• Step 3 : Clustering Local Model Updates: Local
model updates are clustered into two groups based on
their derived scores. Those in the majority group are ag-
gregated to update the global model.

Privacy-Respecting Model Inversion
Model inversion (MI) under the white box setting refers
to reconstructing the training data from model parame-
ters. The recent work named Deep Leakage from Gradients

(DLG) (Zhu and Han 2020) studied model inversion in FL,
where the raw training data of clients are inferred from their
shared gradients. Specifically, DLG first randomly generates
a dummy dataset including inputs and corresponding labels.
Then, the resulting dummy gradients are calculated over the
current global model. DLG iteratively updates the dummy
data to make it close to the clients’ raw training data via
minimizing the difference between dummy gradients and the
shared actual gradients. Formally, to infer the training data
(x, y) used for local model update at client n in round t,
DLG solves the following optimization problem.

(x′∗, y′∗) = arg min
(x′,y′)

‖∂`((x
′, y′);θt−1)

∂θt−1 − gtn‖22, (1)

where (x′, y′) (x′ is the input, y′ is the corresponding label)
is the dummy data to be optimized, θt−1 is the current global
model, `(·) is the loss function, and gtn is the calculated gra-
dient over one single mini-batch of training data at client n
in round t. The optimal solution (x′∗, y′∗) to the problem (1)
can be very close to (x, y).

As demonstrated in (Zhu and Han 2020), directly sharing
gtn leads to potential privacy leakage for client n. To alle-
viate clients’ privacy concerns, FedInv allows each client
n to perform E epochs of local model update via mini-
batch SGD with a size of B. In this case, client n per-
forms EDn/B steps of local SGD. Then, FedInv requires
each client n to submit her local model update θtn in round
t along with her adopted number of local epochs E and
mini-batch size B. At the server side, different from (Zhu
and Han 2020), FedInv performs model inversion by match-
ing the dummy gradient with the equivalent gradient (θtn −
θt−1)/(EDn/B).

The equivalent gradient starts to cancel out, i.e., (θtn −
θt−1)/(EDn/B)→ 0, as the global model converges (Bag-
dasaryan et al. 2020). To enlarge the differences among the
equivalent gradients of different clients such that the differ-
ences among clients’ underlying data distributions can be
clearly identified via model inversion, we introduce a scal-
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ing factor s(t) (i.e., s to the power of t) for each round t,
and s is a hyperparameter to be tuned. Specifically, we turn
to matching the dummy gradients with the scaled equivalent
gradients s(t)(θtn − θ

t−1)/(EDn/B). Besides, instead of
optimizing both x′ and y′ of each dummy data sample, Fed-
Inv only optimizes x′, while y′ is sampled uniformly at ran-
dom from all possible labels of the dataset and fixed. Then,
the optimization problem (1) is reformulated as

x′∗ = arg min
x′

‖∂`((x
′, y′); θt−1)

∂θt−1 − s(t)(θtn − θ
t−1)

EDn/B
‖22.

(2)
Furthermore, to clearly show the differences among the

dummy data of different clients, we respectively subtract the
random initialization of the dummy data from the optimal
dummy data x′∗ and obtain a final dummy data for each
client.

Scoring and Clustering Local Model Updates
For each client, we employ the Wasserstein distance met-
ric (Weng 2019) to calculate the distribution divergences of
her dummy dataset from the remaining ones. In particular,
the distribution divergenceW(x′i, x

′
j) between two dummy

datasets (x′i, y
′
i) and (x′j , y

′
j) is computed as

W(x′i, x
′
j) =

l∑
c=1

m∑
d=1

Wass(x′,c,di , x′,c,dj ), (3)

where x′,c,di and x′,c,dj respectively represents the vector
composed of the d-th features of all samples with label c
in (x′i, y

′
i) at client i and (x′j , y

′
j) at client j, l and m are

respectively the total number of labels and features of the
synthesized dummy datasets. Note that W(x′i, x

′
j) can (to

some degree) reflect the divergence between the underlying
training data distributions of clients i and j.

Intuitively, since in our adversary setup, the majority of
clients are benign (recall F/N < 50%), the dummy datasets
derived from poisoned local model updates have larger dis-
tribution divergences from the remaining ones. However,
this may not be the case when the data distribution among
clients is highly non-IID. Thus, instead of simply rejecting
the local model updates from which the generated dummy
datasets have larger distribution divergences, we consider
clustering the local model updates from which the generated
dummy datasets have moderate (not too large or too small)
distribution divergences.

Specifically, when scoring local model update θti from
client i, FedInv determines S = {W(x′i, x

′
j)|j =

1, . . . , N}, and extracts the majority group M from S via
2-Median clustering. If |M| > N −F , then |M|− (N −F )
elements inM with the largest distances to the median will
be filtered out fromM. Then, the score of θti, denoted as qi,
is the summation of all elements inM. Then, FedInv deter-
mines the score for each client, i.e.,Q = {qi|i = 1, . . . , N},
and extracts the majority group ofQ via the same 2-Median
clustering technique. The clients remained in the majority
group are determined as benign clients, whose local model
updates are aggregated to update the global model.

We summarize the procedures of FedInv in Algorithm 1.

Algorithm 1: FedInv
Input: Total number of clients N , total number of

communication rounds T , total number of
local epochs E, mini-batch size B, maximum
possible number of Byzantine clients F ,
scaling factor s

Output: Global model θT

1 Server executes:
2 initialize θ0

3 for t ∈ {1, 2, . . . , T} do
4 for n ∈ {1, 2, 3, . . . , N} in parallel do
5 θtn ← ClientUpdate(n,θt−1)
6 end
7 initialize x′
8 for n ∈ {1, 2, 3, . . . , N} do
9 x′∗n ← Solving Equation (2)

10 x′n ← x′∗n − x′
11 end
12 Q ← ∅
13 for i ∈ {1, 2, 3, . . . , N} do
14 S ← ∅
15 for j ∈ {1, 2, 3, . . . , N} \ i do
16 S ← S ∪W(x′i, x

′
j)

17 end
18 M← 2-Median(S)
19 if |M| > N − F then
20 remove the |M|− (N −F ) elements with

the largest distances to the median inM
21 end
22 qi ← Sum(M)
23 Q ← Q∪ qi
24 end
25 M← 2-Median(Q)
26 if |M| > N − F then
27 remove the |M| − (N − F ) elements with

the largest distances to the median inM
28 end
29 Γ← {i|qi ∈M}
30 θt ←

∑
n∈Γ

Dn∑
n∈Γ Dn

θtn
31 end
32 ClientUpdate(n,θ): // run on client n
33 Dn ← (split Dn into batches of size B)
34 θn ← θ
35 for e ∈ {1, 2, 3, . . . , E} do
36 for batch b ∈ Dn do
37 θn ← θn − α∂`(b;θn)

∂θn

38 end
39 end
40 return θn to server

Experiments
Experimental Setup
Datasets We use multiple datasets from different do-
mains in our experiments, including two image classification
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datasets and one human activity recognition (HAR) dataset.

• MNIST (LeCun, Cortes, and Burges 1998): 10-class
handwritten digit image classification dataset consisting
of 60000 training samples and 10000 testing samples.

• Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017): 10-
class fashion image classification dataset consisting of
60000 training samples and 10000 testing samples.

• HAR (Anguita et al. 2013): 6-class human activity recog-
nition dataset collected via sensors embedded in 30
users’ smartphones (21 users’ datasets used for training
and 9 for testing, and each has around 300 data samples).

We consider an FL system consisting of 20 clients. To
simulate (different degrees of) non-IID data distribution
among these clients, we adopt the same method as in (Cao
et al. 2020). Specifically, for datasets with M classes, we
divide the 20 clients evenly into M groups. For example,
in this work, MNIST and Fashion-MNIST have 10 classes,
i.e., M = 10. For HAR, we select 20 out of the 21 clients
whose datasets are used for training and consider the data
from one specific user as one class, i.e., M = 20. Then, we
assign a data sample with class c (c = 1, . . . ,M ) to group
c with probability p > 0 and to any other group with prob-
ability (1 − p)/(M − 1). Within the same group, data are
uniformly distributed to each client. The value of p indicates
the non-IID degree of the data distribution among clients. In
particular, data are IID if p = 1/M and non-IID otherwise.
A larger value of p implies a higher degree of non-IID.

Models We train various global models on the above
three datasets to show the generality of FedInv. Specifi-
cally, for MNIST and Fashion-MNIST, we train a convo-
lutional neural network (CNN) (Conv2d(1*6*3) → Soft-
plus → MaxPool2d(2*2) → Conv2d(6*25*3) → Softplus
→ MaxPool2d(2*2) → Linear(1225*50) → Softplus →
Linear(50*10) → Softplus) and a logistic regression (LR)
classifier as the global models; for HAR, we train a fully-
connected neural network (FCN) (Linear(561*150)→ Soft-
plus → Linear(150*6) → Softplus) and an LR classifier as
the global models.

Parameter Settings of FL Model Training We train the
global models for 20 communication rounds. In each round,
each client performs E = 10 epochs of local model up-
dates via mini-batch SGD with a batch size of B = 100 for
MNIST and Fashion-MNIST and B = 10 for HAR. Other
hyperparameters during model training are inherited from
the default settings of Adam (Kingma and Ba 2014).

Adversary Parameters We construct a rigorous adver-
sary scenario by configuring 3 parameters, i.e., Byzan-
tine percentage (the ratio of Byzantine clients over all the
clients), backdoor sample percentage (the ratio of backdoor
samples in a mini-batch, note that this parameter is used for
targeted attacks only), and non-IID degree (the probability
p for data samples assignment). Unless otherwise specified,
our experiments are performed under the settings of 40%
Byzantine clients, 8% backdoor samples, and p = 0.8.

Environment of Experiments We conduct experiments
using PyTorch 1.5.1 on a machine with a TITAN RTX GPU,
two 12-core 2.5GHz CPUs, and 148GB virtual RAM.

Evaluated Poisoning Attacks
We implement both untargeted poisoning attacks and tar-
geted (backdoor) poisoning attacks. The former includes:
• Label Flipping Attack: For each sample, we flip its orig-

inal label c to c+ 1 mod M , where M is the total num-
ber of labels, and c ∈ {1, 2, . . . ,M}.

• Gaussian Attack: Byzantine clients submit poisoned lo-
cal model updates generated through the unit-variance
Gaussian distribution.

• Back-gradient Attack (Muñoz-González et al. 2017):
Byzantine clients craft a poisoned dataset, on which the
trained local model has a maximized loss on the benign
dataset.

• Krum Attack (Fang et al. 2020): Byzantine clients craft
poisoned local model updates opposite from benign ones,
and enable them to circumvent the defense of Krum.

Targeted poisoning attacks include:
• Badnet (Gu, Dolan-Gavitt, and Garg 2017): Byzan-

tine clients inject label-flipped data samples with spe-
cific backdoor triggers into the training datasets. Models
trained on such poisoned datasets can be evoked targeted
misclassification by samples with the same triggers. In
FL, to avoid forgetting the backdoor, the poisoned local
model updates are submitted in each round.

• Backdoor FL (Bagdasaryan et al. 2020): Byzantine
clients generate backdoored local model updates and
scale them to ensure that they could replace the benign
global model when it is about to converge. This attack is
only launched in the last round of FL.

Baseline Aggregation Rules
We employ the following aggregation rules as baselines.
FedAvg (McMahan et al. 2017): performing data size

weighted local model aggregation of all clients.
MultiKrum (Blanchard et al. 2017): selecting N − F

local model updates with the smallest Euclidean distances to
the majority, and averaging them to update the global model.
Loss Function-based Rejection

(LFR) (Fang et al. 2020): selecting N − F local model
updates with the largest loss decrease on the centralized
clean validation dataset, and averaging them to update the
global model.
FLTrust (Cao et al. 2020): calculating a trust score for

each local model update based on its deviation from the
server model update trained on a clean small training dataset
(called root dataset), and computing the average of local
model updates weighted by their trust scores to update the
global model.

Performance Metrics
• Accuracy: To evaluate the performance in defending

against untargeted poisoning attacks, we employ the
global model’s test accuracy on benign testing data.
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• Attack Success Rate (ASR): To evaluate the perfor-
mance in defending against targeted attacks, besides the
accuracy metric, we also test the global model’s accuracy
on testing data with backdoor triggers. The lower ASR,
the better performance of the global model.

Convergence Performance of FedInv
We first consider an ideal case where all 20 clients are be-
nign. Setting the parameter of non-IID degree as p = 0.8,
we show the test accuracies of the global models trained via
FedInv and FedAvg in Figure 2. Obviously, we can see that
the global models trained via FedInv converge as nicely as
FedAvg when no Byzantine attacks happen.

Privacy-Respecting Property of FedInv
We now show the desirable privacy-respecting property of
FedInv. In a specific round of FedInv, we conduct privacy-
preserving model inversion on a particular client’s local
model update (the mini-batch size is 10), which involves 700
steps of gradient descent on the randomly initialized dummy
dataset for CNN and LR. We show the finally generated
dummy data (images) in Figure 3. Compared to the origi-
nal images, we cannot infer any private information from the
synthesized images, which validates the privacy-respecting
property of the model inversion in FedInv. We would like to
note that this property applies to each round of FedInv.

Defense against Untargeted Attacks
We show the accuracies of various global models (e.g.,
CNN, FCN, LR) trained on different datasets using different
FL schemes in Table ??. The results demonstrate that our
proposed FedInv consistently achieves better performance
(i.e., higher accuracies of trained global models) compared
to the baseline schemes.
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Figure 4: ASR versus Byzantine percentage.
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Defense against Targeted Attacks
We present the accuracies and ASR of various global mod-
els trained on different datasets using different FL schemes
in Table ??. The results show that our proposed FedInv con-
sistently achieves higher accuracies of trained global models
on benign testing data and at the same time maintains lower
ASR on testing data with backdoor triggers, compared to the
baseline methods.

Impact of Adversary Parameters
To further investigate the performance of FedInv under var-
ious adversary parameters, we take the Badnet attack as an
example, and present the comparison between FedInv and
the baseline methods under different Byzantine percentages,
backdoor sample percentages, and non-IID degrees. Note
that in this set of experiments, the default settings of the
adversary parameters are 40% Byzantine clients, 24% back-
door samples, and 0.4 non-IID degree.

ASR versus Byzantine Percentage We show the ASR of
the five FL schemes in Figure 4, where the value of Byzan-
tine percentage varies from 0% to 40%. As shown in Fig-
ure 4, the ASR of the baseline FL schemes shows a clear up-
ward trend, which reveals their ineffectiveness in identifying
and excluding a relatively large number of Byzantine clients.
In contrast, FedInv remains a low ASR even when 40% of
clients are compromised, demonstrating its superior perfor-
mance in rigorous adversarial settings in terms of many ma-
licious clients.

ASR versus Backdoor Sample Percentage We show the
ASR of the five FL schemes in Figure 5, where the back-
door sample percentage at Byzantine clients ranges from
40% to 8%. We can conclude that when the backdoor sam-
ple percentage decreases, the resulting poisoned local model
updates are more challenging to detect for the baseline
schemes, which is validated by their increasing ASR. Fed-
Inv keeps the ASR at a low level even though the backdoored
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CNN FC LR CNN FC LR
MNIST HAR MNIST HAR MNIST HAR MNIST HAR

FLTrust 93.47% 83.03% 77.58% 79.23% FLTrust 92.34% 81.43% 77.23% 77.84%
MultiKrum 94.00% 88.53% 79.28% 81.94% MultiKrum 93.65% 19.20% 66.75% 46.42%

LFR 94.12% 88.49% 79.41% 82.99% LFR 93.78% 89.61% 77.85% 82.18%
FedAvg 0.00% 12.28% 41.31% 23.37% FedAvg 83.2% 78.00% 76.67% 73.97%G

au
ss

ia
n

FedInv 94.11% 89.63% 79.24% 82.14% B
ac

kg
ra

di
en

t

FedInv 94.21% 89.74% 79.17% 82.14%
FLTrust 90.34% 83.50% 77.32% 79.43% FLTrust 93.00% 80.11% 76.80% 72.65%

MultiKrum 68.00% 87.78% 29.15% 14.86% MultiKrum 0.09% 0.00% 9.39% 0.00%
LFR 94.42% 88.49% 79.47% 82.96% LFR 93.07% 90.90% 79.38% 82.96%

FedAvg 16.34% 49.94% 38.41% 29.58% FedAvg 0.00% 0.01% 11.39% 0.00%L
ab

el
Fl

ip

FedInv 93.47% 89.52% 79.31% 82.05%

K
ru

m

FedInv 94.00% 90.67% 79.21% 82.77%

Table 1: Accuracies under Untargeted Attacks

MNIST Fashion
FLTrust 94.25%/87.17% 76.05%/55.34%

MultiKrum 93.37%/99.84% 78.74%/1.34%
LFR 94.06%/93.23% 80.13%/88.64%

FedAvg 95.08%/94.94% 76.02%/85.53%B
ad

ne
t

FedInv 96.02%/0.07% 80.88%/0.92%
FLTrust 90.68%/1.67% 75.87%/3.13%

MultiKrum 53.50%/47.25% 78.84%/0.94%
LFR 94.39%/0.06% 78.23%/0.65%

FedAvg 93.37%/91.14% 78.12%/78.31%

B
ac

kd
oo

rF
L

FedInv 94.97%/0.04% 79.02%/0.62%

Table 2: Accuracies/ASR under Targeted Attacks
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Figure 6: ASR versus non-IID degree.

samples constitute a minor proportion. Note that when train-
ing the CNN on Fashion-MNIST (i.e., right of Figure 5), a
universe decrease of ASR is witnessed for all schemes. This
is because the number of backdoored samples, in this case,
is too small, leading to an unsuccessful backdoor attack.

ASR versus Non-IID Degree We show the relationship
between the ASR of the five FL schemes and the non-IID
degree (indicated by the probability value p) in Figure 6.
The results demonstrate that for the baseline methods, the
ASR rises with a higher degree of non-IID. The reason is
that non-IID data distribution could increase the divergences
between benign local model updates. Thus, it becomes more
difficult to distinguish whether the outlying local model up-
dates are caused by Byzantine attacks or non-IID data dis-
tribution. Surprisingly, the ASR under FedInv remains low,
even under p = 0.8-non-IID. In all cases, our proposed Fed-
Inv consistently achieves a lower ASR than the baselines.
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Figure 7: Accuracies and ASR of FedInv under colluding
attacks.

Defense against Colluding Attacks
We finally examine whether FedInv could resist the collu-
sion of Byzantine clients. We design a colluding attack that
aims to ensure some poisoned local model updates can sur-
vive (i.e., enabling them to sneak into the majority group of
FedInv and be aggregated via Badnet attack with 8% back-
door sample percentage), by sacrificing the remaining (i.e.,
making them easy to be identified and excluded via Gaussian
attack). We present the accuracies and ASR of FedInv ver-
sus the Byzantine percentage in Figure 7, which shows that
FedInv behaves well even when Byzantine clients collude to
launch poisoning attacks.

Conclusion
This paper presented FedInv, a novel Byzantine-robust FL
framework via privacy-respecting inversion on clients’ local
model updates. Specifically, FedInv first performs privacy-
respecting model inversion on each client’s local model up-
dates to synthesize a corresponding dummy dataset before
updating the global model in each round. Then, the Wasser-
stein distances of each dummy dataset to the remaining
ones are calculated. The clients associated with exceptional
Wasserstein distances are determined as Byzantine clients,
whose local model updates are excluded from local model
aggregation. We conduct an exhaustive experimental evalua-
tion of FedInv. The results demonstrate that FedInv achieves
superior performance in defending against various poisoning
attacks than the existing robust FL schemes, especially when
a relatively large proportion of clients are compromised and
the data distribution among clients is highly non-IID.
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Muñoz-González, L.; Biggio, B.; Demontis, A.; Paudice, A.;
Wongrassamee, V.; Lupu, E. C.; and Roli, F. 2017. Towards
poisoning of deep learning algorithms with back-gradient
optimization. In Proceedings of the 10th ACM Workshop
on Artificial Intelligence and Security, 27–38.
Prakash, S.; and Avestimehr, A. S. 2020. Mitigating
byzantine attacks in federated learning. arXiv preprint
arXiv:2010.07541.
Shafahi, A.; Huang, W. R.; Najibi, M.; Suciu, O.; Studer, C.;
Dumitras, T.; and Goldstein, T. 2018. Poison Frogs! Tar-
geted Clean-Label Poisoning Attacks on Neural Networks.
In Bengio, S.; Wallach, H. M.; Larochelle, H.; Grauman, K.;
Cesa-Bianchi, N.; and Garnett, R., eds., Advances in Neu-
ral Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, 6106–6116.
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