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Abstract

The hierarchical interaction between the actor and critic in
actor-critic based reinforcement learning algorithms naturally
lends itself to a game-theoretic interpretation. We adopt this
viewpoint and model the actor and critic interaction as a two-
player general-sum game with a leader-follower structure
known as a Stackelberg game. Given this abstraction, we pro-
pose a meta-framework for Stackelberg actor-critic algorithms
where the leader player follows the total derivative of its objec-
tive instead of the usual individual gradient. From a theoretical
standpoint, we develop a policy gradient theorem for the re-
fined update and provide a local convergence guarantee for
the Stackelberg actor-critic algorithms to a local Stackelberg
equilibrium. From an empirical standpoint, we demonstrate
via simple examples that the learning dynamics we study miti-
gate cycling and accelerate convergence compared to the usual
gradient dynamics given cost structures induced by actor-critic
formulations. Finally, experiments on OpenAI gym environ-
ments show that Stackelberg actor-critic algorithms always
perform at least as well and often significantly outperform the
standard actor-critic algorithm counterparts.

1 Introduction
The algorithmic techniques for reinforcement learning can
be classified into policy-based, value-based, and actor-critic
methods (Sutton and Barto 2018). Policy-based methods
directly optimize a parameterized policy to maximize the
expected return, while value-based methods estimate the
expected return and then infer an optimal policy from the
value-function by selecting the maximizing actions. Actor-
critic methods bridge policy-based and value-based methods
by learning the parameterized policy (actor) and the value-
function (critic) together. In particular, actor-critic methods
learn a critic that approximates the expected return of the
actor while concurrently learning an actor to optimize the
expected return based on the critic’s estimation.

In this paper, we adopt a game-theoretic perspective of
actor-critic reinforcement learning algorithms. To provide
some relevant background from game theory, recall that
Stackelberg games are a class of games that describe in-
teractions between a leader and a follower (Başar and Olsder
1998). In a Stackelberg game, the leader is distinguished
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by the ability to act before the follower. As a result of this
structure, the leader optimizes its objective accounting for
the anticipated response of the follower, while the follower
selects a best response to the leader’s action to optimize its
own objective. The interaction between the actor and critic
in reinforcement learning has an intrinsic hierarchical struc-
ture reminiscent of a Stackelberg game, which motivates our
work to contribute a novel game-theoretic modeling frame-
work along with theoretical and empirical results.

Modeling Contributions. We explicitly cast the interac-
tion between the actor and critic as a two-player general-
sum Stackelberg game toward solving reinforcement learn-
ing problems. Notably, this perspective deviates from the
majority of work on actor-critic reinforcement learning algo-
rithms, which implicitly neglect the interaction structure by
independently optimizing the actor and critic objectives us-
ing individual gradient dynamics. In order to solve the game
iteratively in a manner that reflects the interaction structure,
we study learning dynamics in which the player deemed the
leader updates its parameters using the total derivative of its
objective defined using the implicit function theorem and the
player deemed the follower updates using the typical indi-
vidual gradient dynamics. We refer to this gradient-based
learning method as the Stackelberg gradient dynamics. The
designations of leader and follower between the actor and
critic can result in distinct game-theoretic outcomes and we
explore both choices and explain how the proper roles depend
on the respective objective functions.

Theoretical Contributions. The Stackelberg gradient dy-
namics were previously studied in general nonconvex games
and enjoy a number of theoretical guarantees (Fiez, Chasnov,
and Ratliff 2020). In this paper we tailor the analysis of this
learning dynamic to the reinforcement learning problem. To
do this, we begin by developing a policy gradient theorem for
the total derivative update (Theorem 1). Then, building off
of this result, we develop a meta-framework of Stackelberg
actor-critic algorithms. Specifically, this framework adapts
the standard actor-critic, deep deterministic policy gradient,
and soft-actor critic algorithms to be optimized using the
Stackelberg gradient dynamics in place of the usual indi-
vidual gradient dynamics. For the Stackelberg actor-critic
algorithms this meta-framework admits, we prove local con-
vergence (Theorem 2) to local Stackelberg equilibrium.

Experimental Contributions. From an empirical stand-
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point, we begin by pointing out in Section 3 that the objective
functions in actor-critic algorithms commonly exhibit a type
of hidden structure in terms of the parameters. Given this ob-
servation, we develop simple, yet illustrative examples com-
paring the behavior of Stackelberg actor-critic algorithms
with standard actor-critic algorithms. In particular, we ob-
serve that the Stackelberg dynamics mitigate cycling in the
parameter space and accelerate convergence. We discover
from extensive experiments on OpenAI gym environments
that similar observations carry over to complex problems and
that our Stackelberg actor-critic algorithms always perform at
least as well and often significantly outperform the standard
actor-critic algorithm counterparts.

2 Related Work
Game-theoretic frameworks have been studied extensively
in reinforcement learning but mostly in multi-agent set-
ting (Yang and Wang 2020). In multi-agent reinforcement
learning, the decentralized learning scheme is mostly adopted
in practice (Zhang, Yang, and Başar 2021), where agents typ-
ically behave independently and optimize their own objective
with no explicit information exchange. A shortcoming of this
method is that agents fail to consider the learning process
of other agents and simply treat them as a static component
of the environment (Hernandez-Leal et al. 2017). To resolve
this, several works design learning algorithms that explicitly
account for the learning behavior of other agents (Zhang and
Lesser 2010; Foerster et al. 2018; Letcher et al. 2018), which
is shown to improve learning stability and induce cooperation.
In contrast, Prajapat et al. (2021) study a competitive policy
optimization method for multi-agent reinforcement learning
which performs recursive reasoning about the behavior of
opponents to exploit them in two-player zero-sum games.
Zhang et al. (2020) study multi-agent reinforcement learning
problems, where each agent is using a typical actor-critic
algorithm, with the twist that the follower’s policy takes the
leader’s action as an input, which is used to approximate the
potential best response. However, the procedure reduces to
the usual actor-critic algorithm when applied to a single-agent
reinforcement learning problem.

The past research taking a game-theoretic viewpoint of
single-agent reinforcement learning is limited despite the fact
that there is often implicitly multiple players in reinforce-
ment learning algorithms. Rajeswaran, Mordatch, and Kumar
(2020) propose a framework that casts model-based rein-
forcement learning as a two-player general-sum Stackelberg
game between a policy player and a model player. However,
they only consider optimizing the objective of each player
using the typical individual gradient dynamics with timescale
separation as an approximation to Stackelberg gradient dy-
namics. Concurrent with this work, Wen et al. (2021) show
that Stackelberg policy gradient recovers the standard policy
gradient under certain strong assumptions, including that the
critic is directly parameterized by theQ-value function. Hong
et al. (2020) analyze the Stackelberg gradient dynamics with
timescale separation for bilevel optimization with application
to reinforcement learning. For reinforcement learning, they
give a convergence guarantee for an actor-critic algorithm
under assumptions such as exact linear function approxima-

tion which result in the total derivative being equivalent to
the individual gradient. We provide a complimentary study
by developing a general framework for Stackelberg actor-
critic algorithms that we analyze without such assumptions
and also extensively evaluate empirically on reinforcement
learning tasks.

3 Motivation & Preliminaries
In this section, we begin by presenting background on Stack-
elberg games and the relevant equilibrium concept. Then, to
motivate and illustrate the utility of Stackelberg-based actor-
critic algorithms, we highlight a key hidden structure that
exists in actor-critic objective formulations and explore the
behavior of Stackelberg gradient dynamics in comparison to
individual gradient dynamics given this design. Finally, we
provide the necessary mathematical background and formal-
ism for actor-critic reinforcement learning algorithms.

3.1 Game-Theoretic Preliminaries
A Stackelberg game is a game between two agents where one
agent is deemed the leader and the other the follower. Each
agent has an objective they want to optimize that depends on
not only their own actions but also on the actions of the other
agent. Specifically, the leader optimizes its objective under
the assumption that the follower will play a best response.
Let f1(x1, x2) and f2(x1, x2) be the objective functions that
the leader and follower want to minimize, respectively, where
x1 ∈ X1 ⊆ Rd1 and x2 ∈ X2 ⊆ Rd2 are their decision
variables or strategies and x = (x1, x2) ∈ X1 × X2 is
their joint strategy. The leader and follower aim to solve the
following problems:

minx1∈X1
{f1(x1, x2)

∣∣ x2 ∈ argminy∈X2
f2(x1, y)}, (L)

minx2∈X2 f2(x1, x2). (F)

Since the leader assumes the follower chooses a best response
x∗2(x1) = argminy f2(x1, y),1 the follower’s decision vari-
ables are implicitly a function of the leader’s. In deriving
sufficient conditions for the optimization problem in (L), the
leader utilizes this information by the total derivative of its
cost function which is given by

∇f1(x1, x∗2(x1)) = ∇1f1(x) + (∇x∗2(x1))>∇2f1(x),

where ∇x∗2(x1) = −(∇2
2f2(x))

−1∇21f2(x). 2

Hence, a point x = (x1, x2) is a local solution to (L) if
∇f1(x1, x∗2(x1)) = 0 and ∇2f1(x1, x

∗
2(x1)) > 0. For the

follower’s problem, sufficient conditions for optimality are
∇2f2(x1, x2) = 0 and ∇2

2f2(x1, x2) > 0. This gives rise
to the following equilibrium concept which characterizes
sufficient conditions for a local Stackelberg equilibrium.

1Under sufficient regularity conditions on the follower’s opti-
mization problem, the best response map is a singleton. This is a
generic condition in games (Ratliff, Burden, and Sastry 2014; Fiez,
Chasnov, and Ratliff 2020).

2The partial derivative of f(x1, x2) with respect to the xi is
denoted by ∇if(x1, x2) and the total derivative of f(x1, h(x1))
for some function h, is denoted ∇f where ∇f(x1, h(x1) =
∇1f(x1, h(x1)) + (∇h(x1))

>∇2f(x1, h(x1)).
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Figure 1: (a)–(b) Vector fields and trajectories of the actor and critic updates using individual gradient and Stackelberg gradient.
(c) Error ‖w − w∗‖2 + ‖θ − θ∗‖2 for individual gradient, Stackelberg gradient, and Stackelberg gradient with regularization,
where (θ∗, w∗) = (0, 0). (d)–(e) Individual gradient and Stackelberg gradient with entropic regularization in actor objective.

Definition 1 (Differential Stackelberg Equilibrium, Fiez,
Chasnov, and Ratliff 2020). The joint strategy x∗ =
(x∗1, x

∗
2) ∈ X1 × X2 is a differential Stackelberg equilib-

rium if ∇f1(x∗) = 0, ∇2f2(x
∗) = 0, ∇2f1(x

∗) > 0, and
∇2

2f2(x
∗) > 0.

The Stackelberg learning dynamics derive from the first-
order gradient-based sufficient conditions and are given by

x1,k+1 = x1,k − α1∇f1(x1,k, x2,k)
x2,k+1 = x2,k − α2∇2f2(x1,k, x2,k)

where αi, i = 1, 2 are the leader and follower learning rates.

3.2 Motivating Examples
In the next section we present several common actor-critic
formulations including the “vanilla” actor-critic, deep deter-
ministic policy gradient, and soft actor-critic. A common
theme among them is that the actor and critic objectives ex-
hibit a simple hidden structure in the parameters. In particular,
the actor objective typically has a hidden linear structure in
terms of the parameters θ which is abstractly of the form
Qw(θ) = w>µ(θ). Analogously, the critic objective usually
has a hidden quadratic structure in the parameters w which
is abstractly of the form or (R(θ) − Qw(θ))

2. The termi-
nology of hidden structure in this context refers to the fact
that the specified structure appears when the functions trans-
forming the parameters are removed.3 Interestingly, similar
observations have been made regarding generative adversar-
ial network formulations and exploited to gain insights into
gradient learning dynamics for optimizing them (Vlatakis-
Gkaragkounis, Flokas, and Piliouras 2019; Flokas, Vlatakis-
Gkaragkounis, and Piliouras 2021).

Based on this observation, we investigate simple, yet illus-
trative reinforcement learning problems with the aforemen-
tioned structure and compare and contrast the behavior of
the Stackelberg gradient dynamics with the usual individual
gradient dynamics. As we demonstrate later in Section 5, the
insights we uncover from this study generally carry over to
complex reinforcement learning problems.

3The actor and critic functions could be approximated by neural
nets in practice but we consider the simplest linear case, which
captures the hidden structure and gives insights for general cases.

Example. Consider a single step Markov decision pro-
cess where the reward function is given by R(θ) = − 1

5θ
2

and θ ∈ [−1, 1] is the decision variable of actor. Suppose
that the critic is designed using the most basic linear func-
tion approximation Qw(θ) = wθ with w ∈ [−1, 1]. The
actor seeks to find the action that maximizes the value indi-
cated by the critic and the critic approximates the rewards
of actions generated by the actor. Thus, the actor has objec-
tive J(θ, w) = Qw(θ) = wθ and the critic has objective
L(θ, w) = Eθ∼ρ[(R(θ) − Qw(θ))2]. For simplicity, we as-
sume the critic only minimizes the mean square error of the
sample action generated by current actor θ. The critic objec-
tive is then L(θ, w) = (R(θ)−Qw(θ))2 = (w · θ + 1

5θ
2)2.

Actor-Critic & Deep Deterministic Policy Gradient.
The structure of this example closely mirrors the hidden
structure of both the “vanilla” actor-critic and deep determin-
istic policy gradient formulations as described in the next
section. The typical way to optimize the objectives is by
performing individual gradient dynamics (gradient descent
on each cost) on the actor and critic parameters. Figure 1(a)
shows the gradient vector field and the parameter trajectories
under the individual gradient dynamics. We observe that al-
though the trajectory eventually converges to the equilibrium
point (θ∗, w∗) = (0, 0), it cycles significantly. Figure 1(b)
shows the vector field and parameter trajectories under the
Stackelberg gradient dynamics, the details of which will be
introduced in Section 4. We observe that the cycling behav-
ior is completely eliminated as a result of the consideration
given to the interaction structure. Figure 1(c) shows the error
to equilibrium ‖w − w∗‖2 + ‖θ − θ∗‖2 for the individual
gradient dynamics and the Stackelberg gradient dynamics
along with a regularized version introduced in Section 4.5.
This highlights that cycling is mitigated and convergence
accelerated by optimizing using the Stackelberg gradient.

Soft Actor-Critic. The soft actor-critic algorithm also ex-
hibits a similar structure, but with entropic regularization in-
cluded in the actor objective. We show the vector fields along
with the parameter trajectories for the individual gradient dy-
namics and the Stackelberg gradient dynamics in Figure 1(d)
and Figure 1(e), respectively. Given the entropic regulariza-
tion, both learning algorithms behave similarly. This perhaps
indicates that the individual gradient dynamics are more well-
suited to optimize this form of objectives and highlights the
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importance of considering how game dynamics perform on
types of hidden structures when optimizing actor-critic algo-
rithms in reinforcement learning.

Further details on the examples in this section are provided
in Appendix A. Importantly, regardless of the objective func-
tion structure, the Stackelberg gradient dynamics tend to con-
verge rather directly to the equilibrium and for some hidden
structures they significantly mitigate oscillations and stabilize
training. It is well-known that this is a desirable property of
the reinforcement learning algorithms owing to the implica-
tions for both evaluation and real-world applications (Chan
et al. 2019). Together, this motivating section suggests that
introducing the Stackelberg dynamics as a “meta-algorithm”
on existing actor-critic methods is likely to lead to more favor-
able convergence properties. We demonstrate this empirically
in Section 5, while now we introduce actor-critic algorithms.

3.3 Actor-Critic Algorithms
We consider discrete-time Markov decision processes
(MDPs) with continuous state space S and continuous action
space A. We denote the state and action at time step t by st
and at, respectively. The initial state s0 is determined by the
initial state density s0 ∼ ρ(s). At time step t, the agent in
state st takes an action at according to a policy at ∼ π(·|st)
and obtains a reward rt = r(st, at). The agent then tran-
sitions to state st+1 determined by the transition function
st+1 ∼ P (s′|st, at). A trajectory τ = (s0, a0, . . . , sT , aT )
gives the cumulative rewards or return defined as R(τ) =∑T
t=0 γ

tr(st, at), where the discount factor 0 < γ ≤ 1 as-
signs weights to rewards received at different time steps. The
expected return of π after executing at in state st can be
expressed by the Q function

Qπ(st, at) = Eτ∼π
[∑T

t′=t γ
t′−tr(st′ , at′)|st, at

]
.

Correspondingly, the expected return of π in state st can be
expressed by the value function V defined as

V π(st) = Eτ∼π
[∑T

t′=t γ
t′−tr(st′ , at′)|st

]
.

The goal of reinforcement learning is to find an optimal policy
that maximizes the expected return which is given by

J(π) = Eτ∼π
[∑T

t=0 γ
tr(st, at)

]
=
∫
τ
p(τ |π)R(τ)dτ

= Es∼ρ,a∼π(·|s)
[
Qπ(s, a)

]
,

where p(τ |π) = ρ(s0)
∏T
t=0 π(at|st)P (st+1|st, at).

The policy-based approach (Williams 1992) parameter-
izes the policy π by the parameter θ and finds the optimal
parameter choice θ∗ by maximizing the expected return

J(θ) = Es∼ρ,a∼πθ(·|s)
[
Qπ(s, a)

]
. (1)

This optimization problem can be solved by gradient ascent.
By the policy gradient theorem (Sutton et al. 2000),

∇θJ(θ) = Es∼ρ,a∼πθ(·|s) [∇θ log πθ(a|s)Q
π(s, a)] ,

where∇θ denotes the derivative with respect to θ. A common
method to approximate Qπ(s, a) in the policy gradient is by
sampling trajectories and averaging returns, which is known
as REINFORCE (Williams 1992).

“Vanilla” Actor-Critic (AC). The actor-critic method
(Konda and Tsitsiklis 2000; Grondman et al. 2012) relies
on a critic function Qw(s, a) parameterized by w to approxi-
mate Qπ(s, a). By replacing Qw(s, a) with Qπ(s, a) in (1),
the actor which is parameterized by θ has the objective

J(θ, w) = Es∼ρ,a∼πθ(·|s)
[
Qw(s, a)

]
. (2)

The objective is optimized using gradient ascent where
∇θJ(θ, w) = Es∼ρ,a∼πθ(·|s)[∇θ log πθ(a|s)Qw(s, a)]. (3)
The critic which is parameterized by w has the objective to
minimize the mean square error between the Q-functions
L(θ, w) = Es∼ρ,a∼πθ(·|s)[(Qw(s, a)−Qπ(s, a))2], (4)

where the function Qπ(s, a) is approximated by Monte Carlo
estimation or bootstrapping (Sutton and Barto 2018).

The actor-critic method optimizes the objectives with in-
dividual gradient dynamics (Peters and Schaal 2008; Mnih
et al. 2016) which gives rise to the updates

θ ← θ + αθ∇θJ(θ, w), (5)
w ← w − αw∇wL(θ, w), (6)

where αθ and αw are the learning rates of actor and critic.
Clearly, even in this basic actor-critic method, the actor and
critic are coupled since J and L depend on both θ and w,
which naturally lends to a game-theoretic interpretation.

Deep Deterministic Policy Gradient (DDPG). The DDPG
algorithm (Lillicrap et al. 2016) is an off-policy method with
subtly different objective functions for the actor and critic. In
particular, the formulation has a deterministic actor µθ(s) :
S → A with the objective

J(θ, w) = Eξ∼D [Qw(s, µθ(s))] . (7)
The critic objective is the mean square Bellman error

L(θ, w) = E
ξ∼D

[(Qw(s, a)− (r + γQ0(s
′, µθ(s

′))))
2
], (8)

where ξ = (s, a, r, s′),D is a replay buffer, andQ0 is a target
Q network.4

Soft Actor-Critic (SAC). The SAC algorithm (Haarnoja
et al. 2018) exploits the double Q-learning trick (Van Hasselt,
Guez, and Silver 2016) and employs entropic regularization
to encourage exploration. The actor’s objective J(θ, w) is

Eξ∼D
[
min
i=1,2

Qwi(s, aθ(s))− η log(πθ(aθ(s)|s))
]
, (9)

where aθ(s) is a sample from πθ(·|s) and η is entropy regu-
larization coefficient. The parameter of the critic is the union
of both Q networks parameters w = {w1, w2} and the critic
objective is defined correspondingly by

L(θ, w) = Eξ∼D
[∑

i=1,2 (Qwi(s, a)− y(r, s′))
2 ]
, (10)

where
y(r, s′)= r+γ(min

i=1,2
Q0,i(s

′, aθ(s
′))−η log(πθ(aθ(s′)|s′))).

The target networks in DDPG and SAC are updated by taking
the Polyak average of the network parameters over the course
of training, and the actor and critic networks are updated by
individual gradient dynamics identical to (5)–(6).

4In the DDPG algorithm, the next-state actions used in the target
network come from the target policy instead of the current policy.
To be consistent with SAC, we use the current policy.
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Algorithm 1: Stackelberg Actor-Critic Framework
Input: actor-critic algorithm ALG, player designations,

and learning rate sequences αθ,k, αw,k.
if actor is leader, update actor and critic in ALG with:

θk+1 = θk + αθ,k∇J(θk, wk) (11)
wk+1 = wk − αw,k∇wL(θk, wk) (12)

if critic is leader, update actor and critic in ALG with:

θk+1 = θk + αθ,k∇θJ(θk, wk) (13)
wk+1 = wk − αw,k∇L(θk, wk) (14)

4 Stackelberg Framework
In this section, we begin by formulating the actor-critic in-
teraction as two-player general-sum Stackelberg game and
introduce a Stackelberg framework for actor-critic algorithms,
under which we develop novel Stackelberg versions of exist-
ing algorithms: Stackelberg actor-critic (STAC), Stackelberg
deep deterministic policy gradient (STDDPG), and Stackelberg
soft actor-critic (STSAC). Following this, we give a local con-
vergence guarantee for the algorithms to a local Stackelberg
equilibrium. Finally, a regularization method for practical
usage of the algorithms is discussed.

4.1 Meta-Algorithm
Given an actor-critic formulation, in particular, the objectives
of the actor and critic defined by J(θ, w) and L(θ, w), we
can interpret the problem as a two-player general-sum Stack-
elberg game. If we view the actor as the leader and the critic
as a follower, then the players aim to solve the following
optimization problems, respectively:

maxθ{J(θ, w∗(θ))
∣∣ w∗(θ) = argminw′ L(θ, w′)} (AL)

minw L(θ, w). (CF)

On the other hand, if we view the critic as the leader and
the actor as the follower, then the players aim to solve the
following optimization problems, respectively:

minw{L(θ∗(w), w)
∣∣ θ∗(w) = argmaxθ′ J(θ

′, w)} (CL)

maxθ J(θ, w). (AF)

As described in Section 3.1, we propose to optimize the
objectives using a learning algorithm that accounts for the
structure of the problems. Specifically, since the leader as-
sumes the follower selects a best response, it is natural to
optimize the leader objective by following the total derivative
given that the follower’s decision is implicitly a function of
the leader’s. The meta-framework we adopt for Stackelberg
refinements of actor-critic methods is in Algorithm 1. The dis-
tinction compared to the usual actor-critic methods is that in
the updates we replace the individual gradient for the leader
by the implicitly defined total derivative which accounts for
the interaction structure whereas the rest of the actor-critic
method remains identical.

The dynamics with the actor as the leader are given by (11)–
(12) where the actor’s total derivative J(θ, w) is

∇θJ(θ, w)−∇>wθL(θ, w)(∇2
wL(θ, w))

−1∇wJ(θ, w). (15)

When the critic is the leader the dynamics are given by (13)–
(14) where the critic’s total derivative∇L(θ, w) is

∇wL(θ, w)−∇>θwJ(θ, w)(∇2
θJ(θ, w))

−1∇θL(θ, w). (16)
We now consider instantiations of this framework and ex-

plain how the total derivative can be obtained from sampling
along with natural choices of leader and follower.

4.2 Stackelberg “Vanilla” Actor-Critic
We start by instantiating the Stackelberg meta-algorithm
for the “vanilla” actor-critic (AC) algorithm for which the
actor and critic objectives are given in (2) and (4), respec-
tively.5 In this on-policy formulation, the critic assists the
actor in learning the optimal policy by approximating the
value function of the current policy. To give an accurate ap-
proximation, the critic aims to be selecting a best response
w∗(θ) = argminw′ L(θ, w′). Thus, the actor naturally plays
the role of leader and the critic the follower.

However, estimating the total derivative ∇J(θ, w) as de-
fined in (15) is not straightforward and we analyze each com-
ponent individually. The individual gradient ∇θJ(θ, w) can
be computed by policy gradient theorem as given in (3). More-
over,∇wJ(θ, w) = Es∼ρ,a∼πθ(·|s)[∇wQw(s, a)], which fol-
lows by direct computation, and similarly
∇2
wL(θ, w) = Es∼ρ,a∼πθ(·|s)

[
2∇wQw(s, a)∇>wQw(s, a)

+2(Qw(s, a)−Qπ(s, a))∇2
wQw(s, a)

]
.

To compute ∇wθL(θ, w) in (15), we begin by obtaining
∇θL(θ, w) with the following policy gradient theorem. The
proof of Theorem 1 is in Appendix B.
Theorem 1. Given an MDP and actor-critic parameters
(θ, w), the gradient of L(θ, w) with respect to θ is given by

∇θL(θ, w) = Eτ∼πθ [∇θ log πθ(a0|s0)

(Qw(s0, a0)−Qπ(s0, a0))2 +
∑T
t=1 γ

t∇θ log πθ(at|st)

(Qπ(s0, a0)−Qw(s0, a0))Qπ(st, at)].
Theorem 1 allows us to compute ∇θwL(θ, w) directly by

∇w(∇θL(θ, w)) since the distribution of ∇θL(θ, w) does
not depend on w and ∇w can be moved into the expectation.

The critic in AC is often designed to approximate the
state value function V π(s) which has computational advan-
tages, and the policy gradient can be computed by advan-
tage estimation (Schulman et al. 2015b). In this formula-
tion, J(θ, w) = Eτ∼πθ

[
r(s0, a0) + Vw(s1)

]
and L(θ, w) =

Es∼ρ[(Vw(s)−V π(s))2]. Then∇θL(θ, w) can be computed
by the next proposition that is derived in Appendix C.
Proposition 1. Given an MDP and actor-critic parameters
(θ, w), if the critic has the objective function L(θ, w) =
Es∼ρ[(Vw(s)− V π(s))2], then∇θL(θ, w) is given by

E
τ∼πθ

[2
T∑
t=0
γt∇θ log πθ(at|st)(V π(s0)− Vw(s0))Qπ(st, at)].

Given these derivations, terms in (15) can be estimated by
sampled trajectories, and STAC updates using (11)–(12).

5We only demonstrate the “vanilla” actor-critic algorithm and its
Stackelberg version here and in our experiments, but the framework
could be generalized to more on-policy actor-critic algorithms (e.g.,
A2C, A3C, Mnih et al. 2016).
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4.3 Stackelberg DDPG and SAC
In comparison to on-policy methods where the critic is de-
signed to evaluate the actor using sampled trajectories gen-
erated by the current policy, in off-policy methods the critic
minimizes the Bellman error using samples from a replay
buffer. Thus, the leader and follower designation between the
actor and critic in off-policy methods is not as clear. To this
end, we propose variants of STDDPG and STSAC where the
leader and follower order can be switched. Given the actor
as the leader (AL), the algorithms are similar to policy-based
methods, where the critic plays an approximate best response
to evaluate the current actor. On the other hand, given the
critic as the leader (CL), the actor plays an approximate best
response to the critic value, resulting in behavior closely
resembling that of the value-based methods.

As shown in (7)–(8) for DDPG and (9)–(10) for SAC, the
objective functions of off-policy methods are defined in ex-
pectation over an arbitrary distribution from a replay buffer
instead of the distribution induced by the current policy. Thus,
each terms in the total derivatives updates in (15) and (16)
can be computed directly and estimated by samples. Then,
STDDPG and STSAC update using (11)–(12) or (13)–(14) de-
pending on the choices of leader and follower.

4.4 Convergence Guarantee
Consider, without loss of generality, the actor is designated
as the leader and the critic the follower. Then, the actor and
critic updates with the Stackelberg gradient dynamics and
learning rates sequences {αθ,k}, {αw,k} are of the form

θk+1 = θk + αθ,k(∇J(θ, w) + εθ,k+1), (17)
wk+1 = wk − αw,k(∇wL(θ, w) + εw,k+1), (18)

where {εθ,k+1}, {εw,k+1} are stochastic processes. The re-
sults in this section assume the following.
Assumption 1. The maps∇J : Rm → Rmθ ,∇wL : Rm →
Rmw are Lipschitz, and ‖∇J‖ < ∞. The learning rate se-
quences are such that αθ,k = o(αw,k) and

∑
k αi,k = ∞,∑

k α
2
i,k < ∞ for i ∈ I = {θ, w}. The noise processes

{εi,k} are zero mean, martingale difference sequences: given
the filtration Fk = σ(θs, ws, εθ,s, εw,s, s ≤ k), {εi,k}i∈I
are conditionally independent, E[εi,k+1| Fk] = 0 a.s., and
E[‖εi,k+1‖| Fk] ≤ ci(1+‖(θk, wk)‖) a.s. for some constants
ci ≥ 0 and i ∈ I.

The following result gives a local convergence guarantee
to a local Stackelberg equilibrium under the assumptions
and the proof is in Appendix D. For this result, recall that
for a continuous-time dynamical system of the form ż =
−g(z), a stationary point z∗ of the system is said to be locally
asymptotically stable or simply stable if the spectrum of the
Jacobian denoted by −Dg(z) is in the open left half plane.
Theorem 2. Consider an MDP and actor-critic parame-
ters (θ, w). Given a locally asymptotically stable differen-
tial Stackleberg equilibrium (θ∗, w∗) of the continuous-time
limiting system (θ̇, ẇ) = (∇J(θ, w),−∇wL(θ, w)), under
Assumption 1 there exists a neighborhood U for which
the iterates (θk, wk) of the discrete-time system in (17)–
(18) converge asymptotically almost surely to (θ∗, w∗) for
(θ0, w0) ∈ U .

This result is effectively giving the guarantee that the
discrete-time dynamics locally converge to a stable, game
theoretically meaningful equilibrium of the continuous-time
system using stochastic approximation methods given proper
learning rates and unbiased gradient estimates (Borkar 2009).

4.5 Implicit Map Regularization
The total derivative in the Stackelberg gradient dynamics
requires computing the inverse of follower Hessian∇2

2f2(x).
Since critic networks in practical reinforcement learning prob-
lems may be highly non-convex, (∇2

2f2(x))
−1 can be ill-

conditioned. Thus, instead of computing this term directly in
the Stackelberg actor-critic algorithms, we compute a regu-
larized variant of the form (∇2

2f2(x) + λI)−1. This regular-
ization method can be interpreted as the leader viewing the
follower as optimizing a regularized cost f2(x) + λ

2 ‖x2‖
2,

while the follower actually optimizes f2(x). The regulariza-
tion λ can interpolate between the Stackelberg and individual
gradient updates for the leader as we now formalize.
Proposition 2. Consider a Stackelberg game where
the leader updates using the regularized total deriva-
tive ∇λf1(x) = ∇1f1(x) − ∇>21f2(x)(∇2

2f2(x) +
λI)−1∇2f1(x). As λ → 0 then ∇λf1(x) → ∇f1(x) and
when λ→∞ then∇λf1(x)→ ∇1f1(x).

5 Experiments
We now show the results of extensive experiments compar-
ing the Stackelberg actor-critic algorithms with the compa-
rable actor-critic algorithms. We find that the actor-critic
algorithms with the Stackelberg gradient dynamics always
perform at least as well and often significantly outperform
the standard gradient dynamics. Moreover, we provide game-
theoretic interpretations of the results.

We run experiments on the OpenAI gym platform (Brock-
man et al. 2016) with the Mujoco Physics simulator (Todorov,
Erez, and Tassa 2012). The performance of each algorithm is
evaluated by the average episode return versus the number of
time steps (state transitions after taking an action according
to the policy). For a fair comparison, the hyper-parameters for
the actor and critic including the neural network architectures
are set equal when comparing the Stackelberg actor-critic
algorithms with the stand normal actor-critic algorithms. The
implementation details are in Appendix E, and importantly,
the Stackelberg actor-critic algorithms are not significantly
more computationally expensive than the normal algorithms.

Performance. Figures 2(a)–2(d) show the performance of
STAC and AC on several tasks. We also experiment with the
common heuristic of “unrolling” the critic m steps between
actor steps. For each task, STAC with multiple critic unrolling
steps performs the best. This is due to the fact when the
critic is closer to the best response, then the real response of
the critic is closer to what is anticipated by the Stackelberg
gradient for the actor. Interestingly, in CartPole, STAC with
m = 1 performs even better than AC with m = 80.

Figures 2(e)–2(h) show the performance of STDDPG-AL
and STDDPG-CL in comparison to DDPG. We observe that
on each task, STDDPG-AL outperforms DDPG by a clear mar-
gin, whereas STDDPG-CL has overall better performance than
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Figure 2: Comparison of AC, DDPG, SAC with their Stackelberg versions on OpenAI gym (Average Return v.s. Time Steps).

DDPG except on Walker2d. Figures 2(i)–2(l) show the per-
formance of STSAC-AL and STSAC-CL in comparison to SAC.

In all experiments, when the actor is the leader, the Stack-
elberg versions either outperform or are comparable to the
existing actor-critic algorithms, offering compelling evidence
that the Stackelberg framework has an empirical advantage
in many tasks and settings. We now provide game-theoretic
interpretations of the experimental results and connect back
to the examples and observations from Section 3.2.

Game-Theoretic Interpretations. SAC is considered the
state-of-the-art model-free reinforcement learning algorithm
and we observe it significantly outperforms DDPG (e.g., on
Hopper and Walker2d). The common interpretation of its
advantage is that SAC encourages exploration by penalizing
low entropy policies. Here we provide another viewpoint.

From a game-theoretic perspective, the objective functions
of AC and DDPG take on hidden linear and hidden quadratic
structures for the actor and critic. This structure can result in
cyclic behavior for individual gradient dynamics as shown
in Section 3.2. SAC constructs a more well-conditioned game
structure by regularizing the actor objective, which leads
to the learning dynamics converging more directly to the
equilibrium as seen in Section 3.2. This also explains why we
observe improved performance with STAC and STDDPG-AL
compared to AC and DDPG, but the performance gap between

STSAC-AL and SAC is not as significant.
Comparing AL with CL, the actor as the leader always

outperforms the critic as the leader in our experiments. As
described in Section 3.2, the critic objective is typically a
quadratic mean square error objective, which results in a
hidden quadratic structure, whereas the actor’s objective typ-
ically has a hidden linear structure due to parameterization
of the Q network and policy. Thus, the critic cost structure
is more well-suited for computing an approximate local best
response since it is more likely to be well-conditioned, and so
the critic as the follower is the more natural hierarchical game
structure. Unrolling the critic for multiple steps to approxi-
mate this structure and has been shown to perform well em-
pirically (Schulman et al. 2015a). Algorithm 2 (Appendix E)
describes this method for the Stackelberg framework.

6 Conclusion
We revisit the standard actor-critic algorithms from a game-
theoretic perspective to capture the hierarchical interaction
structure and introduce a Stackelberg framework for actor-
critic algorithms. In this framework, we introduce novel
Stackelberg versions of existing actor-critic algorithms. In
experiments on a number of environments, we show that the
Stackelberg actor-critic algorithms always outperform the
existing counterparts when the actor plays the leader.

9223



References
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Whiteson, S. 2018. Stable Opponent Shaping in Differen-
tiable Games. In International Conference on Learning Rep-
resentations.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous
control with deep reinforcement learning. In International
Conference on Learning Representation.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In Inter-
national Conference on Machine Learning, 1928–1937.

Peters, J.; and Schaal, S. 2008. Natural actor-critic. Neuro-
computing, 71(7-9): 1180–1190.
Prajapat, M.; Azizzadenesheli, K.; Liniger, A.; Yue, Y.; and
Anandkumar, A. 2021. Competitive Policy Optimization. In
Conference on Uncertainty in Artificial Intelligence.
Rajeswaran, A.; Mordatch, I.; and Kumar, V. 2020. A Game
Theoretic Framework for Model Based Reinforcement Learn-
ing. In International Conference on Machine Learning.
Ratliff, L. J.; Burden, S. A.; and Sastry, S. S. 2014. Genericity
and structural stability of non-degenerate differential Nash
equilibria. In American Control Conference, 3990–3995.
IEEE.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015a. Trust region policy optimization. In International
Conference on Machine Learning, 1889–1897.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and Abbeel,
P. 2015b. High-dimensional continuous control using general-
ized advantage estimation. arXiv preprint arXiv:1506.02438.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning:
An introduction. MIT press.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 2000. Policy gradient methods for reinforcement learn-
ing with function approximation. In Advances in Neural
Information Processing Systems, 1057–1063.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 5026–5033.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In AAAI Confer-
ence on Artificial Intelligence.
Vlatakis-Gkaragkounis, E.-V.; Flokas, L.; and Piliouras, G.
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