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Abstract

Reinforcement learning (RL) has demonstrated its superior-
ity in solving sequential decision-making problems. How-
ever, heavy dependence on immediate reward feedback im-
pedes the wide application of RL. On the other hand, imi-
tation learning (IL) tackles RL without relying on environ-
mental supervision by leveraging external demonstrations. In
practice, however, collecting sufficient expert demonstrations
can be prohibitively expensive, yet the quality of demonstra-
tions typically limits the performance of the learning policy.
To address a practical scenario, in this work, we propose Self-
Adaptive Imitation Learning (SAIL), which, provided with a
few demonstrations from a sub-optimal teacher, can perform
well in RL tasks with extremely delayed rewards, where the
only reward feedback is trajectory-wise ranking. SAIL bridges
the advantages of IL and RL by interactively exploiting the
demonstrations to catch up with the teacher and exploring the
environment to yield demonstrations that surpass the teacher.
Extensive empirical results show that not only does SAIL sig-
nificantly improve the sample efficiency, but it also leads to
higher asymptotic performance across different continuous
control tasks, compared with the state-of-the-art.

Introduction
Reinforcement Learning (RL) is notably advantageous in
learning sequential decision-making problems in simulated
environments, such as game-playing (Mnih et al. 2015; Sil-
ver et al. 2017), where massive samples with dense rewards
can be accessed at a negligible cost. However, it is challeng-
ing to upscale RL to real-world scenarios due to its depen-
dence on immediate reward feedback. For practical applica-
tions where rewards are usually delayed in time and sparse in
value, RL agents may struggle with high sample complexity,
facing difficulties of connecting a long sequence of actions
to the feedback received in the far future.

In fact, the ability to learn from delayed feedback is cru-
cial for realizing advanced artificial intelligence (Christiano
et al. 2017; Reddy, Dragan, and Levine 2019). On the one
hand, reducing the frequency of reward sampling contributes
to a lower interaction complexity for practical applications,
such as autonomous-driving (Pham et al. 2018) and UAV
navigation (Kiran et al. 2020). On the other hand, learn-
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ing from coarse-grained supervision, such as human prefer-
ence (Kupcsik, Hsu, and Lee 2018), is rather useful when
it is easy to recognize the desired behavior but difficult
to explain its rationale by designing delicate reward func-
tions (Palan et al. 2019).

Recent advances of Imitation Learning (IL) can effec-
tively provide remedies when the environment feedbacks are
delayed or even unavailable, by referencing expert demon-
strations (Ho and Ermon 2016; Kostrikov et al. 2019;
Kostrikov, Nachum, and Tompson 2020) or policies (Ross,
Gordon, and Bagnell 2011; Sun et al. 2017). In spite of their
success, a major limitation of such IL approaches is that the
learned performance is bounded by the given expert. Conse-
quently, when the provided demonstrations are sub-optimal,
which is a practical yet more challenging scenario, the IL ap-
proaches will induce a sub-optimal policy. In the meantime,
some work has been proposed for learning from sub-optimal
guidance in delayed rewarded tasks (Kang, Jie, and Feng
2018; Sun, Bagnell, and Boots 2018; Wu et al. 2019; Zhang
et al. 2019; Gao et al. 2018). A shared rationale among
them is to augment the environment rewards with synthetic
rewards derived from the demonstrations, after which an
actor-critic algorithm can take over the policy learning. Al-
though technically effective, these approaches are inherent
with twofold limitations. First, the sub-optimality of teacher
demonstrations has not been fully resolved. Once the learn-
ing agent reaches a reasonable performance, the demonstra-
tions will become a bottleneck, leading to negative guidance
that contradicts environment feedbacks (Jing et al. 2020).
Second, the environment feedback is not well leveraged.
Learning a critic function relying on delayed environment
rewards can be sample costly, which may provide weak sig-
nals to compensate for the sub-optimal demonstrations.

In this paper, we formally consider a problem setting,
where an RL agent only has access to a limited number of
sub-optimal demonstrations in a task with highly delayed re-
wards. Our goal hence is to combine the merits of RL and IL,
by exploring the sub-optimal demonstrations that are easier
to access in practice, while preserving the chance to explore
for better policies guided by the coarse-grained environment
feedback.

Noticing the challenges of the proposed problem and lim-
itations in prior arts, we propose Self-Adaptive Imitation
Learning (SAIL), an off-policy imitation learning approach
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that strikes a balance between exploitation and exploration
to reach high performance. More concretely, we formulate
our objective as exploration-driven IL. On the one hand,
our approach minimizes the discrepancy between the teacher
and the learning policy; on the other hand, it encourages the
learning policy to deviate from its previously learned prede-
cessors for better exploration. Specifically, we leverage the
delayed feedback from the environment to explore superior
self-generated trajectories that surpass the teacher’s perfor-
mance. Those self-generated trajectories are used to replace
the suboptimal teachers to construct a dynamic target distri-
bution that gradually converges to optimality. An overview
of our proposed approach is provided in Figure 1. Extensive
empirical studies have shown that SAIL achieves significant
improvement regarding both sample efficiency and asymp-
totic performance on various popular benchmarks.

Figure 1: Illustraion of SAIL: Navigations in red arrows fol-
low the exploration-driven IL objective, which approaches
to teacher’s density distribution while deviating from previ-
ous learned ones. It explores more efficiently to reach exper-
tise, compared with random explorations (green arrows).

Background
Markov Decision Process (MDP) is an ideal environment
to formulate RL, which can be defined by a tuple M =
(S,A, T , r, γ, µ0,S0), where S and A are the state and ac-
tion space, T (s′|s, a) denotes the probability of the envi-
ronment transitioning from state s to s′ upon action a is
taken, r(s, a) is the environment reward received by tak-
ing action a on state s, γ ∈ (0, 1]) is a discounted fac-
tor, µ0 is the initial state distribution, and S0 is the set of
terminal states or absorbing states. Any absorbing state al-
ways transits to itself and yields a reward of zero (Sutton
and Barto 2018). Given a trajectory τ = {(st, at)}∞t=0,
we define its return as R(τ) =

∑∞
k=0 γ

kr(sk, ak). For an
episodic task with a finite horizon, its return can be written
as R(τ) =

∑T
k=0 γ

kr(sk, ak), where T is the number of
steps to reach an absorbing state.

The objective of RL is to learn a policy π : S → A
that maximizes the expected return of its trajectories. Equiv-
alently, this objective can be rephrased as finding a distribu-
tion dπ(s, a):

maxπ η(π) := E(s,a)∼dπ(s,a)
[
r(s, a)

]
, (1)

in which dπ(s, a) is the normalized stationary state-action
distribution of π: dπ(s, a) = (1−γ)µπ(s, a), and µπ(s, a) is

the occupancy measure of a policy π, defined as: µπ(s, a) =∑∞
t=0 γ

tPr
(
st = s, at = a|s0 ∼ µ0, at ∼ π(st), st+1 ∼

T (st, at)
)

(Ho and Ermon 2016). Without ambiguity, we
use density and normalized stationary state-action distribu-
tion interchangeably to refer dπ(s, a) in this paper.
Adversarial Imitation Learning addresses IL from the per-
spective of distribution matching. A representative work
along this line is Generative Adversarial Imitation Learn-
ing (GAIL) (Ho and Ermon 2016). Given a set of demon-
strations from an unknown expert policy πE , GAIL aims to
learn a policy π that minimizes the Jensen-Shannon diver-
gence between dπ and dE :

minπ DJS[dπ(s, a)||dE(s, a)]− λH(π), (2)

where dπ and dE are the densities derived from the learning
policy π and the expert policy πE , and H(π) is an entropy
regularization term (Ziebart et al. 2008; Ziebart, Bagnell,
and Dey 2010).

GAIL applies a saddle-point optimization strategy: it
jointly trains a discriminator D and a policy π to optimize
the following minimax objective:

minπmaxD Edπ(s,a)[log(1−D(s, a))] +EdE(s,a)[log(D(s, a))].

In practice, a fixed set of demonstrations from expert den-
sities dE are given, while samples from dπ are obtained by
on-policy interactions with the environment.

Problem Setting
In this paper, we address the problem of learning in an MDP
with highly delayed feedback. More concretely, in this MDP,
an agent learns from the trajectory-wise reward re, which is
only non-zero upon reaching an absorbing (terminal) state:

re(st, at, st+1) 6= 0⇔ st /∈ S0, st+1 ∈ S0.

Without losing clarity, we use re(τ) to denote the trajectory-
wise reward obtained by a trajectory τ . For arbitrary two
trajectories τi, τj , their relative ranking of re should align
with the task objective:

Assumption 1 (Legitimacy of the Trajectory Rewards)
∀ τi, τj , re(τi) ≥ re(τj) =⇒ Pπ∗(τi) ≥ Pπ∗(τj), where

Pπ∗(τ) =

T∑
i=0

(γi log π∗(ai|si)|τ :=

{(s0, a0), (s1, a2), · · · , (sT , aT )})

is the extent to which an oracle policy π∗ agrees with a
trajectory τ .

Our problem setting provides a generalized framework
for a variety of prior arts, including preference-based
RL (Fürnkranz et al. 2012; Wirth et al. 2017) and learn-
ing from human feedbacks (Mnih et al. 2015). Prior work of
learning sparse-rewarded tasks with K-step feedbacks (Sun,
Bagnell, and Boots 2018; Kang, Jie, and Feng 2018; Večerı́k
et al. 2017; Jing et al. 2020) can also be reduced to our
problem setting, with the advantage that their reward signals
are finer-grained and more frequently provided. Compared
with an elaborate reward function, trajectory-wise rewards
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are easier to access and more intuitive to human perception
(Christiano et al. 2017; Fürnkranz et al. 2012), which, how-
ever, makes regular RL more challenging.

To alleviate the learning difficulty, we assume that an
agent learning a policy π is allowed to leverage exter-
nal demonstrations RT from an unknown teacher policy
πT , which are sub-optimal but more accessible than ex-
pert demonstrations. For the following of this paper, we use
dπ(s, a) and dT (s, a) to denote the density distribution de-
rived from policy π and πT , respectively. In practice, dT
is usually approximated from the demonstration data RT
(Ziebart et al. 2008; Fu, Luo, and Levine 2017; Ho and Er-
mon 2016). Moreover, the learning agent can also access
its self-generated transitions cached in a replay buffer RB,
whose density distribution is dB(s, a).

Methodology
Exploration-Driven Objective
We propose an exploration-driven IL objective to learn from
sub-optimal demonstrations, which is formulated as below:
Objective 1 (Exploration-Driven Imitation Learning)

max
π

J(π) :=

−DKL[dπ(s, a)||dT (s, a)]︸ ︷︷ ︸
Imitation

+DKL[dπ(s, a)||dB(s, a)]︸ ︷︷ ︸
Exploration

,

in which DKL denotes the KL-divergence between two
distributions: DKL[p||q] = Ep(x) log p(x)

q(x) . Objective (1)
can be interpreted as joint motivations for imitation
and exploration. The first term −DKL[dπ(s, a)||dT (s, a)]
encourages distribution matching between dπ(s, a) and
dT (s, a). The second term DKL[dπ(s, a)||dB(s, a)], though
counter-intuitive at first sight, serves as an objec-
tive for self-exploration. Since dB(s, a) is the den-
sity derived from previously-learned policies, maximizing
DKL[dπ(s, a)||dB(s, a)] is in favor of visiting state-actions
that are rarely seen by previously learned policies, which
acts as a repulsive force from dB(s, a).

Specifically, the proposed objective encourages explo-
ration, which is opposed to a conventional IL objective that
solely pursues distribution matching between dπ and dT :

maxπ JIL(π) := −DKL[dπ(s, a)||dT (s, a)]. (3)

An optimal solution to Eq (3) is a policy that exactly re-
covers the teacher’s density distribution, with dπ(s, a) =
dT (s, a) (Ziebart et al. 2008). Given this objective, π is re-
stricted from further exploring density distributions that de-
viate from dT , which impedes its potential of generating
more superior trajectories. We will verify by empirical stud-
ies that optimizing Objective (1) achieves more efficient ex-
ploration compared with a pure imitation-driven objective.

Adaptive Learning Target
Following Objective (1), the learning policy has obtained
the potential to yield trajectories with performance sur-
passing the teacher. To fully utilize this self-generated re-
source, SAIL adaptively adjusts the teacher’s buffer to re-
place teacher demonstrations with more superior trajecto-
ries sampled from the learning agent, by leveraging the

trajectory-wise feedback from the environment. This strat-
egy dynamically improves the lower bound of the teacher’s
performance. As a result, the density dT (s, a) of the teacher
buffer is approaching an oracle distribution:

Theorem 1 For a deterministic policy, rewards of its gen-
erated trajectories indicate the policy’ agreement with an
oracle:

∀πi, πj , Eτ∼πi [re(τ)] > Eτ∼πj [re(τ)] =⇒
DKL [πi(a|s)||π∗(a|s)] < DKL [πj(a|s)||π∗(a|s)] .

Therefore, when the teacher buffer is updated with more-
superior trajectories generated by a deterministic policy over
time, as in our case, the distribution derived by the teacher
buffer is approaching to optimality. Unlike prior art that bun-
dles their critic learning process with environment rewards,
we leverage this delayed and coarse-grained feedback to
construct a dynamic learning target with increasing superi-
ority, which relieves the bottleneck brought by sub-optimal
demonstrations.

Off-Policy Adversarial TD Learning
While our proposed approach is appealing in combining the
merits of exploitation and exploration, it is challenging to
directly optimize Objective (1). To make it more approach-
able, we draw a connection from Objective (1) to a conven-
tional RL problem:

Remark 1 () Objective (1) can be rephrased as the follow-
ing, which is equivalent to a max-return RL objective with
log dT (s,a)

dB(s,a) in place of the environment rewards:

max
π

J(π) := Edπ(s,a)

[
log

dT (s, a)

dB(s, a)

]
, (4)

One can consider the optimization of Equation (4) as a
process of policy selection: for the support of (s, a) where
the teacher has visited more frequently than the previously-
learned policies, π is encouraged to build positive densities
on those state-actions, leading to dπ(s, a) > 0 wherever
dT (s, a) > dB(s, a). Intuitively, this process implies that
the agent trusts the teacher more than the previously learned
policies.

Based on this insight, we can relate Objective (1) to
Temporal-Difference (TD) learning, and solve it under
an actor-critic framework. To obtain the reward function
log dT (s,a)

dB(s,a) , we build upon prior arts (Ho and Ermon 2016)
to learn a discriminator D that optimizes the following:

max
D:S×A→(0,1)

EdB(s,a)[log(1−D(s, a))] +EdT (s,a)[log(D(s, a))].

(5)

D aims to distinguish between the self-generated data
from dB and the teacher demonstrations from dT . A well-
learned discriminator shall satisfy the following (Goodfel-
low et al. 2014):

D∗(s, a) =
dT (s, a)

dT (s, a) + dB(s, a)
.
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The output of D with a constant shift, which we found to
be more empirically effective, is used to render synthetic re-
wards to the agent:

r′(s, a) = − log(1−D(s, a)) ≈ log( dT (s,a)dB(s,a) + 1).

In the initial training stage, a well-trained discrimina-
tor renders higher rewards to teacher demonstrations with
D(s, a) → 1, and lower rewards for self-generated samples
with D(s, a)→ 0. The learning policy is therefore designed
to confuse the discriminator by maximizing the shaped ac-
cumulated rewards.

To improve sample efficiency, we adopt an off-policy
learning framework. Our objective is accordingly rephrased
to maximize the expectation of Q-values over distributions
of a behavior policy β (Silver et al. 2014; Lillicrap et al.
2016):

maxθ Jβ(πθ) :=

∫
s

dβ(s)Q(s, πθ(s))ds = Edβ(s)[Q(s, πθ(s))],

(6)

where dβ(s) is the normalized stationary state distribu-
tion of β, analogous to the state-action distribution. The Q-
function is a fixed point solution to the Bellman operation
based on the shaped rewards:

Q(s, a) = r′(s, a) + γEs′∼T (s′|s,a),a′∼π(s′)[Q(s′, a′)].
(7)

Accordingly, the policy-gradient for the actor can be derived
as (Lillicrap et al. 2016):

∇θJβ(πθ) ≈ Es∼dβ [∇θπθ(s)∇aQ(s, a)|a=πθ(s)]. (8)

In the next section, we introduce an algorithm that realizes
our objective via the abovementioned off-policy TD learn-
ing. It adopts an even more effective sampling approach that
further accelerates the learning procedure.

Self-Adaptive Imitation Learning
Combing all the building blocks, we now introduce

our approach, dubbed as Self-Adaptive Imitation Learning
(SAIL), as described in Algorithm 1. SAIL maintains two
replay-buffers RT and RB, for caching teacher demonstra-
tions and self-generated transitions, respectively. It jointly
learns three components: a discriminator D that serves as a
reward provider, a critic Q that minimizes the Bellman er-
ror based on the shaped rewards, and an actor π that max-
imizes the shaped returns. During iterative training, high-
quality trajectories generated by the actor are selected to re-
fill the teacher demonstration buffer RT , while other trajec-
tories are cached in the self-replay buffer RB. We highlight
three key aspects of SAIL:

(1) Leveraging delayed environment feedback to update
teacher buffer RT : High-quality trajectories with reward re
above a threshold CdT are selected to update the teacher
buffer RT . In practice, we use a window Wk to track
the top K trajectory rewards of all trajectories added to
the teacher buffer (e.g. K=5). Then we update CdT =
min{re(τi)|re(τi) ∈ Wk}, which is adaptively increasing
to guarantee the improving quality of trajectories in the
teacher’s buffer.

Algorithm 1: Self-Adaptive Imitation Learning

Input: teacher replay bufferRT with demonstrations,
self-replay-bufferRB with random transitions.
policy πθ, discriminator Dw, critic Qφ, batch size

N > 0, coefficient α > 0, top-K trajectory window Wk

for n = 1, . . . do
sample trajectory τ ∼ πθ
if re(τ) > CdT then
RT ← RT ∪ τ ; α← 0
CdT ← min{re(τi)|re(τi) ∈Wk}

else
RB ← RB ∪ τ

end if
if n mod discriminator-update = 0 then{

(si, ai, · · · )
}N
i=1
∼ RB,

{
(sTi , a

T
i , · · · )

}N
i=1
∼ RT

update Dw by ascending gradient :
Ow 1

N

∑N
i=1

[
logD

(
sTi , a

T
i

)
+log

(
1−D

(
si, ai

))]
end if
if n mod Q-update = 0 then
{si, ai, s′i}Ni=1 ∼ RB, {sTi , aTi , s

′T
i }Ni=1 ∼ RT

yi ← − log(1−D(si, ai)) + γQ̄(s′i, π(s′i))

y
′T
i ← − log(1−D(sTi , a

T
i )) + γQ̄(s

′T
i , π(s

′T
i ))

update Qφ by minimizing critic loss:
J(Qφ) = 1−α

N

∑
i[(Qφ(si, ai)− yi)2]

+ α
N

∑
i[(Qφ(sTi , a

T
i )− y′Ti )2]

end if
if n mod policy-update = 0 then{

(si, ., ., ., .)
}N
i=1
∼ RB,

{
(sTi , ., ., ., .)

}N
i=1
∼ RT

update π by sampled policy gradient:
OθJ(πθ) ≈ 1−α

N

∑
i[Oθπθ(si)OaQ(si, ai)|ai=πθ(si)]

+ α
N

∑
i[Oθπθ(s

T
i )OaQ(sTi , a

T
i )|aTi =πθ(sTi )]

end if
end for

(2) Realizing exploration-driven IL with an off-policy dis-
criminator: Prior art such as GAIL relies on on-policy train-
ing of a discriminator to estimate the ratio of dT (s,a)dπ(s,a)

. On the
contrary, we learn an off-policy discriminator D that aligns
with our proposed objective and encourages efficient explo-
ration, whose effectiveness will be elaborated in the Experi-
ment section.

(3) Sampling from teacher demonstrations for boosted
learning efficiency: In the initial learning step, we sample
from both the teacher dataset RT and the self-generated
dataset RB to construct a mixed density distribution, which
plays the role of dβ in Eq (8). More concretely, we derive a
mixture distribution: dmix = αdT+(1−α)dB ,where α is the
ratio of samples from teacher demonstrations. In practice,
we initialize α = 0.5. Once the learning policy generates
trajectories with performance comparable to the teacher, we
anneal the value of α to zero.

Reasoning of sampling from a mixture of distributions:
Sampling from teacher demonstrations has been studied by
other prior arts (Večerı́k et al. 2017; Reddy, Dragan, and
Levine 2019). Along with the same spirit, the mixture sam-
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pling distribution in our case accelerates the IL process by
a behavior-cloning strategy. To see the rationale, one can
rephrase the objective in Equation 6 as the following:

maxθ Jβ(πθ)

:= αEdT (s)[Q(s, πθ(s))]︸ ︷︷ ︸
Behavior Cloning

+(1− α)EdB(s) [Q(s, πθ(s))] .

In the early training stage, the discriminator will favor
teacher trajectories by assigning them with highest rewards:

EdT (s)[max
a

Q(s, a)] = EdT (s,a) [Q(s, a)] ≡ EdT (s) [Q(s, πT (s))] ,

which encourages the learning policy to imitate πT on
teacher-visted states dT (s). We will verify by ablation study
that sampling from teacher demonstrations accelerates the
process of IL. Given a problem-setting with sub-optimal
demonstrations, once the learning agent reaches the teacher-
level performance, we relieve this behavior-cloning regular-
ization by annealing α to zero, in order to reinforce the ef-
fects of exploration as proposed in our objective.

Related Work
Our work is closely related to the following topics:

Imitation Learning (IL) aims to learn from expert
demonstrations without accessing environment feedbacks,
among which representative examples include GAIL (Ho
and Ermon 2016) and its on-policy extensions (Kang, Jie,
and Feng 2018; Wu et al. 2019; Fu, Luo, and Levine 2017).
Later IL favors off-policy RL frameworks (Sasaki, Yohira,
and Kawaguchi 2019; Kostrikov, Nachum, and Tompson
2020; Zhu et al. 2020). Especially, DAC learns a discrimina-
tor by off-policy learning and corrects the distribution shifts
by importance sampling (Kostrikov et al. 2019). In contrast
to our approach, the above prior arts are motivated to exactly
recover the teacher policy.

Our work also draws a subtle connection to Self-Imitation
Learning (SIL) (Oh et al. 2018; Guo et al. 2018), in that
they both utilize self-generated trajectories to build a learn-
ing target. However, SIL requires timely feedbacks from the
environment to learn a delicate critic, which is in essence
on-policy RL, while SAIL addresses a different setting by
performing exploration-driven IL in an off-policy manner.

Learning from Demonstrations (LfD) facilitates RL by
augmenting environment feedbacks with external demon-
strations. Prior work relies on demonstrations that are suf-
ficient and optimal (Hester et al. 2018; Večerı́k et al. 2017).
Especially, DDPGfD leverages a DDPG framework (Lill-
icrap et al. 2016) to enable off-policy LfD in continuous
spaces (Večerı́k et al. 2017). Later approaches, such as POfD
(Kang, Jie, and Feng 2018), learn from sub-optimal demon-
strations and trust the environment rewards to learn a critic,
whereas demonstrations are only used as auxiliary guid-
ance (Sun, Bagnell, and Boots 2018; Zhang et al. 2019; Gao
et al. 2018). In contrast, our approach learns a critic with-
out using environmental rewards, which is more robust es-
pecially when environmental feedbacks are highly delayed.
Some leverage the suboptimal guidance to enforce a policy
regularization term, whose effects are gradually decayed to
tackle the imperfect guidance (Jing et al. 2020). The above

problem settings can be considered as relaxed versions of
ours with finer-grained feedbacks.

Preference-based RL is a problem setting where the
agent learns from the preference of an expert, which
saves the necessity of designing elaborated numeric re-
wards (Weng 2011; Wirth et al. 2017). The preference rela-
tions can be over state-actions pairs (Fürnkranz et al. 2012)
or over a pair of trajectories τi � τj (Brown, Goo, and
Niekum 2020), while the former provides more supervi-
sion information than the later. Few prior arts address IL in
preference-based RL, except for (Brown, Goo, and Niekum
2020; Brown et al. 2020), which tackle IL in an MDP pro-
vided with only trajectory-ranked demonstrations but no en-
vironment feedbacks. Focusing on a different problem set-
ting, SAIL utilizes the self-generated trajectories to build
an increasing teacher distribution, which therefore requires
fewer teacher demonstrations.

Exploration itself is an independent topic in RL. Classi-
cal exploration approaches work by involving randomness
into its learning loop (Fortunato et al. 2017; Sutton 1990;
Haarnoja et al. 2018). More recent approaches propose to
use intrinsic rewards for exploration (Bellemare et al. 2016;
Pathak et al. 2017). Especially, (Pathak et al. 2017) proposed
curiosity-driven exploration, a model-based approach that
leverages the prediction loss of a transition model as a re-
ward bonus to encourage surprising behavior. Another ex-
ploration approach pursues a maximized information gain
about the agent’s belief of the environment (Houthooft et al.
2016). Readers are referred to (McFarlane 2018) for a com-
prehensive discussion on the exploration techniques in RL.

Experiments
In this section, we study how SAIL achieves the objec-
tive of imitation learning and exploration in an environment
with delayed rewards. Extensive experiments have been con-
ducted to answer the following key questions:
1. Is SAIL sample-efficient?
2. Can SAIL surpass the demonstration performance via off-

policy exploration?
3. Which components in SAIL contribute to the exploration

or sample efficiency?
4. Is SAIL robust against different sub-optimal teachers?

Setup: we built SAIL on a TD3 framework (Fujimoto,
Van Hoof, and Meger 2018) based on stable-baselines1 im-
plementations. It is tested on 4 popular MuJoCo2 tasks:
Walker2d-v2, Hopper-v2, HalfCheetah-v2, and Swimmer-
v2. For each task, we generate teacher demonstrations from
a deterministic policy that was pre-trained to be sub-optimal.
All experiments are conducted using one imperfect demon-
stration trajectory on five random seeds, with each trajectory
containing no more than 1000 transitions. Models are eval-
uated after training using 106 interaction samples. We defer
more details and additional experimental results to the Sup-
plementary.

1https://stable-baselines.readthedocs.io/en/master/
2https://github.com/openai/mujoco-py
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Figure 2: Learning curves of SAIL and other baselines using 1 suboptimal demonstration trajectory.
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Figure 3: Comparing SAIL with its on-policy variant using 1 suboptimal demonstration trajectory.

Benchmark HalfCheetah Swimmer Hopper Walker
SAIL 10660.59±105.53 309.47±3.0 3302.06±14.22 5868.53±108.82

Curiosity Exploration 9043.07± 165.97 30.87± 6.52 3075.46± 15.61 5361.78± 58.24
Entropy Exploration 8839.32 + 280.47 65.04± 7.66 3079.29± 53.25 2792.76± 830.20

Teacher Demonstration 5646.71 121.16 1480.69 1675.01

Table 1: Off-policy exploration (SAIL) achieves higher performance than other exploration approaches.

The original benchmarks are all in dense-reward settings.
To construct the delayed rewarded environment as proposed
in our paper, we omit the original rewards such that only
episodic feedback is provided upon the completion of a tra-
jectory. To align with Assumption 1, we cache the original
return of each trajectory R(τ) =

∑
i r(si, ai), and down-

scale it to get a coarser grained supervision, with re(τ) =
b0.1 ∗R(τ)c.

We compare SAIL with 5 popular baselines that are mostly
applicable to our problem setting: DAC, GAIL, POfD,
DDPGfD, and BC, as discussed in the Related Work. For
baselines that utilize environment rewards, such as POfD
and DDPGfD, we provide them with modified rewards
re(s, a) upon the completion of each trajectory, instead of
the original dense reward r(s, a).

Performance on Continuous Action-Space Tasks
Sample efficiency: As the results are shown in Figure 2,
SAIL is the only method that performs consistently better
w.r.t both sample efficiency and asymptotic performance. At
the initial stage of the learning, SAIL can quickly exploit the
suboptimal demonstrations and approach to the demonstra-
tion’s performance with significantly fewer samples.

Exploration ability: Besides sample efficiency, another
advantage of SAIL is that it can effectively explore the en-
vironment to achieve expert-level performance, even with
highly sparse rewards. We observe that prior solutions of
learning from environment rewards for exploration, such
as POfD and DDPGfD, cannot effectively address our pro-

posed problem setting, as it is sample-costly to learn a mean-
ingful critic from the delayed feedback. Unlike other imi-
tation learning baselines whose performance is limited by
the demonstrations, SAIL can rapidly surpass the imperfect
teacher via constructing a better demonstration buffer.

Effects of Off-Policy Exploration in SAIL
Comparison with IL without Exploration: In order to illus-
trate the benefits of maximizing Objective (1) over a con-
ventional IL objective, such as DKL[dπ(s, a)||dT (s, a)], we
conducted a comparison study where we trained the dis-
criminator using teacher demonstrations τT and on-policy
self-generated samples τπ , instead of off-policy samples.
This on-policy training scheme is the same as proposed in
GAIL (Ho and Ermon 2016). In this way, the discrimina-
tor can get approximations of log(dTdπ ) instead of log( dTdB ).
We use the output of this on-policy discriminator to shape
rewards, whereas Q and π are still updated in the same off-
policy fashion as our proposed approach.

As illustrated in Figure 3, compared to GAIL (green)
which is an on-policy baseline, SAIL-OnPolicy (orange) still
enjoys the benefits of an off-policy learning scheme in gen-
eral. However, it is less effective compared with our pro-
posed approach. Even when π and Q are learned off-policy,
SAIL-OnPolicy is slower to surpass the teacher demonstra-
tion (dashed gray line), due to its pure imitation-driven ob-
jective. SAIL enjoys fast improvement in performance not
only because of an adaptive teacher demonstration buffer but
also because it realizes the exploration-driven optimization.
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Figure 4: Ablation study by removing different algorithmic components from SAIL, given one teacher trajectory.

Benchmark Evaluated Performance / Demonstration Performance
HalfCheetah 10660.59± 105.53 / 5646.71 10217.00± 104.08 / 3598.90 9264.1± 163.45 / 875.39

Swimmer 309.47± 3.0 / 121.16 367.02± 1.11 / 46.82 361.17± 1.37 / 33.61
Hopper 3302.06± 14.22 / 1480.69 3814.07± 10.32 / 665.16 3589.92± 12.24 / 282.91
Walker 5868.53± 108.82 / 1675.01 4819.20± 1240.84 / 484.96 4574.61± 71.22 / 255.73

Table 2: Using 106 interaction samples, SAIL is robust regardless of the quality of sub-optimal teacher demonstrations.

Comparison with Other Exploration Approaches: We
also compared SAIL with its two variants to evaluate the
effects of different exploration approaches. In particular,
we integrated SAIL with a soft-actor-critic (Haarnoja et al.
2018) RL framework to enable an entropy-based explo-
ration. For the other variant, we adopted the idea of random-
distillation (Burda et al. 2019) to create a curiosity reward
in addition to the reward provided by the discriminator.
For both variant versions, we train the discriminator with
on-policy samples in order to remove the effects of off-
policy exploration. Comparison results in Table 1 indicate
that, adopting an off-policy exploration approach (SAIL) is
more effective given a fixed number of environment inter-
actions. Entropy-based exploration is prone to high vari-
ance, while curiosity-based exploration, on the other hand,
requires learning a forward transition model, and achieves
lower final performance.

Ablation Study
We further evaluate SAIL by ablation and sensitivity studies
to analyze the following aspects:

• Effects of learning from expert demonstrations: As
shown in Figure 4, we observed that sampling from a
mixture of teacher data and self-generated data acceler-
ates the learning performance in early training stages.
Specifically, the SAIL-Dynamic (blue) refers our pro-
posed approach, and SAIL-without-LfD (orange) only
uses self-generated data to learn policy by setting α = 0
constantly. We see that the SAIL is superior to SAIL-
without-LfD in terms of initial performance, which is
ascribed to a learning strategy resemblant to behavior-
cloning when sampling from teacher demonstrations.

• Effects of updating teacher demonstration buffers:
As shown in Figure 4, SAIL-without-Expert-Adaptation
(green) refers to a variant of SAIL which never updates
the teacher’s replay buffer, even when a better trajectory
is collected . Consequently, its asymptotic performance
is bounded by the teacher’s demonstration, which reveals

the limitation of most existing IL approaches. One key
insight from these results is that, instead of learning crit-
ics based on sparse rewards, leveraging the sparse guid-
ance to improve the quality of the teacher can be much
more effective in improving the ultimate performance.

• Robustness of SAIL on different teacher qualities: To
evaluate the robustness of SAIL against different teacher
performance, we pre-trained a group of teacher policies
with varying qualities, ranging from near-randomness to
sub-optimality, then used their generated trajectories as
demonstrations. For each experiment, we only used one
teacher trajectory as a demonstration. Results in Table 2
show that SAIL can achieve robust performance no matter
how sub-optimal the teacher behaves. Powered by both
an exploration-driven objective and a self-adaptive learn-
ing strategy, SAIL can constantly explore with more su-
perior trajectories to improve its learning target, which
results in improving learning performance.

Conclusion
In this paper, we address the problem of reinforcement
learning in environments with highly delayed rewards given
sub-optimal demonstrations. To address this challenging
problem, we propose a novel objective that encourages
exploration-based imitation learning. Towards this objec-
tive, we propose Self Adaptive Imitation Learning (SAIL),
which is validated to (i) address sample efficiency by off-
policy imitation learning, (ii) accelerate the IL learning pro-
cess by fully utilizing teacher demonstration, and (iii) sur-
pass the imperfect teacher with a large margin by iteratively
performing imitation and exploration. Experimental results
on challenging locomotion tasks indicate that SAIL signif-
icantly surpasses state-of-the-arts in terms of both sample
efficiency and asymptotic performance.
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