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Abstract

Mean Field Games (MFGs) can potentially scale multi-agent
systems to extremely large populations of agents. Yet, most
of the literature assumes a single initial distribution for the
agents, which limits the practical applications of MFGs. Ma-
chine Learning has the potential to solve a wider diversity of
MFG problems thanks to generalizations capacities. We study
how to leverage these generalization properties to learn poli-
cies enabling a typical agent to behave optimally against any
population distribution. In reference to the Master equation in
MFGs, we coin the term “Master policies” to describe them
and we prove that a single Master policy provides a Nash
equilibrium, whatever the initial distribution. We propose a
method to learn such Master policies. Our approach relies
on three ingredients: adding the current population distribu-
tion as part of the observation, approximating Master policies
with neural networks, and training via Reinforcement Learn-
ing and Fictitious Play. We illustrate on numerical examples
not only the efficiency of the learned Master policy but also
its generalization capabilities beyond the distributions used
for training.

Introduction
Although learning in games has a long history (Shannon
1959), most of recent breakthroughs remain limited to a
small number of players, e.g., for chess (Campbell, Hoane Jr,
and Hsu 2002), Go (Silver et al. 2016), poker (Brown and
Sandholm 2018; Moravčı́k et al. 2017) or even video games
such as Starcraft (Vinyals et al. 2019) with a large number
of agents but only a handful of competing players. Learning
in games involving a large number of players remains one of
the challenges of modern game theory. Recently, Mean Field
Games (MFGs), introduced concurrently by Lasry and Li-
ons (2007) and Huang et al. (2006), have been considered as
a promising approach to address this problem. They indeed
model games with an infinite number of players. Instead of
taking into account interactions between individuals, MFGs
model the interaction between a so-called representative
agent (sampled from the population distribution) and the full
population itself. As in many multi-player games, solving an
MFG boils down to finding a Nash equilibrium. Intuitively, it
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corresponds to a situation where no player can increase their
reward (or decrease their cost) by changing their strategy,
given that other players keep their current behavior. MFGs
are classically described with a forward-backward system of
partial differential equations (PDEs) or stochastic differen-
tial equations (SDEs) and can only be solved analytically in
some specific cases. When an analytical solution is not avail-
able, numerical methods such as finite differences can be
called to solve the PDE system. However, these techniques
do not scale well with the dimensions of the state and ac-
tion spaces. Another issue with PDE methods is that they
are very sensitive to initial conditions. Especially, the pol-
icy obtained is only valid for a single initial distribution µ0

for the population over the state space. This is a strong lim-
itation for practical applications. For example, in an evacu-
ation or traffic-flow scenario, the solution found by a PDE
solver could potentially lead to an unforeseen congestion if
the agents are not initially distributed as the model expected.
This could have dramatic consequences. On the other hand,
solving for every possible initial distribution is of course
infeasible. Following the traditional trend in the literature,
even solutions to MFGs that use most recent Machine Learn-
ing methods consider that the initial distribution is fixed and
thus compute policies that are agnostic to the current pop-
ulation. A sensible idea to alleviate the sensitivity issue is
to incorporate the population as part of the observation for
the representative agent, such that it can behave optimally
against the population, and not only w.r.t. its current state.
Yet, using such a modification of the observation cannot be
done seamlessly as the uniqueness of the initial distribution
is a core assumption of existing methods, including very re-
cent ones based on Machine Learning.

Here we do a first crucial step in this direction using Deep
Reinforcement Learning (Deep RL), which sounds particu-
larly well fitted to overcome the aforementioned difficulty.
Our core contribution is to propose the first Deep RL algo-
rithm that calculates an optimal policy independently of the
initial population distribution.

Main contributions. First, we extend the basic frame-
work of MFGs by introducing a class of population-
dependent policies enabling agents to react to any popula-
tion distribution. Within this class, we identify a Master pol-
icy and establish its connection with standard population-
agnostic policies arising in MFG Nash equilibria (Thm. 1).

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

9413



Second, we propose an algorithm, based on Fictitious Play
and Deep RL, to learn a Master policy. We analyze a contin-
uous time version of Fictitious Play and prove convergence
at a linear rate (Thm. 2). Last, we provide empirical evi-
dence that not only this method learns the Master policy on
a training set of distributions, but that the learned policy gen-
eralizes to unseen distributions. Our approach is the first to
tackle this question in the literature on MFGs.

Background and Related Works
We consider a finite state space X and finite action space A.
The set of probability distributions on X and A are denoted
by ∆X and ∆A. Let p : X×A×∆X → ∆X be a transition
probability function and r : X ×A×∆X → R be a reward
function. Let γ ∈ (0, 1) be a discount parameter. In this
section, we introduce the key concepts needed to explain our
main contributions. Although there is no prior work tackling
explicitly the question of generalization in MFG, we review
along the way several related studies.

Mean Field Games
In the usual MFG setup (Lasry and Lions 2007; Huang et al.
2006), a stationary policy is a function π : X → ∆A and a
non-stationary policy π is an infinite sequence of stationary
policies. Let Π and Π = ΠN be the sets of stationary and
non-stationary policies respectively. Unless otherwise spec-
ified, by policy we mean a non-stationary policy. A mean-
field (MF) state is a µ ∈ ∆X . It represents the state of the
population at one time step. An MF flow µ is an infinite se-
quence of MF states. We denote byM = ∆X and M = MN

the sets of MF states and MF flows. For µ ∈M , π ∈ Π, let

φ(µ, π) : x 7→
∑
x′∈X

p(x|x′, π(x′), µ)µ(x′)

denote the next MF state. The MF flow starting from µ0 and
controlled by π ∈ Π is denoted by Φ(µ0,π) ∈M:

Φ(µ0,π)0 = µ0, Φ(µ0,π)n+1 = φ(Φ(µ0,π)n,πn), n ≥ 0.

Facing such a population behavior, an infinitesimal agent
seeks to solve the following Markov Decision Process
(MDP). Given an initial µ0 and a flow µ, maximize:

π 7→ J(µ0,π;µ) = E
[ +∞∑
n=0

γnr(xn, an,µn)
]
,

subject to: x0 ∼ µ0, xn+1 ∼ p(.|xn, an,µn), an ∼
πn(.|xn). Note that, at time n, the reward and transition
depend on the current MF state µn. So this MDP is non-
stationary but since the MF flow µ is fixed and given, it is an
MDP in the classical sense. In an MFG, we look for an equi-
librium situation, in which the population follows a policy
from which no individual player is interested in deviating.

Definition 1 (MFG Nash equilibrium). Given µ0 ∈ M ,
(π̂µ0 , µ̂µ0) ∈ Π ×M is an MFG Nash equilibrium (MFG-
NE) consistent with µ0 if: (1) π̂µ0 maximizes J(µ0, ·; µ̂µ0),
and (2) µ̂µ0 = Φ(µ0, π̂

µ0).

Being an MFG-NE amounts to say that the exploitability
E(µ0, π̂

µ0) is 0, where the exploitability of a policy π ∈ Π
given the initial MF state µ0 is defined as:

E(µ0,π) = max
π′

J(µ0,π
′; Φ(µ0,π))−J(µ0,π; Φ(µ0,π)).

It quantifies how much a representative player can be better
off by deciding to play another policy than π when the rest
of the population uses π and the initial distribution is µ0

for both the player and the population. Similar notions are
widely used in computational game theory (Zinkevich et al.
2007; Lanctot et al. 2009).

In general, π̂µ0 is not an MFG-NE policy consistent with
µ′0 6= µ0. Imagine for example a game in which the agents
need to spread uniformly throughout a one-dimensional do-
main (see the experimental section). Intuitively, the move-
ment of an agent at the center depends on where the bulk
of the population is. If µ0 is concentrated on the left (resp.
right) side, this agent should move towards the right (resp.
left). Hence the optimal policy depends on the whole popu-
lation distribution.

Equilibria in MFG are traditionally characterized by a
forward-backward system of equations (Lasry and Lions
2007; Carmona and Delarue 2018). Indeed, the value func-
tion of an individual player facing an MF flow µ is:

Vn(x;µ) = sup
π∈Π

Ex,π
[ +∞∑
n′=n

γn
′−nr(xn′ , an′ ,µn′)

]
,

where xn = x and an′ ∼ πn′(·|xn′), n′ ≥ n. Dynamic
programming yields:

Vn(x;µ) = sup
π∈Π

Ex,π
[
r(xn, an,µn) + γVn+1(x′;µ)

]
,

where xn = x, an ∼ π(·|x) and x′ ∼ p(·|x, a,µn). Taking
the maximizer gives an optimal policy for a player facing µ.
To find an equilibrium policy, we replace µ by the equilib-
rium MF flow µ̂: V̂n(·) = Vn(·; µ̂). But µ̂ is found by using
the corresponding equilibrium policy. This induces a cou-
pling between the backward equation for the representative
player and the forward population dynamics.

The starting point of our Master policy approach is to
notice that Vn(·;µ) depends on n and µ only through
(µn′)n′≥n hence Vn depends on n only through (µn′)n′≥n:

Vn(x;µ) = V (x; (µn′)n′≥n)

where, for µ ∈M, x ∈ X ,

V (x;µ) = sup
π∈Π

Ex,π
[
r(x, a,µ0) + γV (x′; (µn)n≥1)

]
,

(1)
where a ∼ π(·|x) and x′ ∼ p(·|x, a,µ0).

From here, we will express the equilibrium policy π̂n as
a stationary policy (independent of n) which takes µ̂n as an
extra input. Replacing n by µ̂n increases the input size but it
opens new possibilities in terms of generalization in MFGs.

Learning in Mean Field Games
We focus on methods involving Reinforcement Learning, or
Dynamic Programming when the model is known. Learning
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in MFGs can also involve methods that approximate directly
the forward-backward system of equations with function ap-
proximations (such as neural networks), but we will not ad-
dress them here; see, e.g., (Al-Aradi et al. 2018; Carmona
and Laurière 2021).

In the literature, Learning in MFGs indistinctly refers to
the optimization algorithm (being most of the time the fixed
point or variations of Fictitious Play), or to the subroutines
involving learning that are used to compute the policy (Re-
inforcement Learning) or the distribution. We make here a
distinction between these notions for the sake of clarity.

Optimization algorithm. From a general point of view,
learning algorithms for MFGs approximate two types of
objects: (1) a policy for the representative agent, and (2)
a distribution of the population, resulting from everyone
applying the policy. This directly leads to a simple fixed-
point iteration approach, in which we alternatively update
the policy and the mean-field term. This approach has been
used, e.g., by Guo et al. (2019). However without strong
hypothesis of regularity and a strict contraction property,
this scheme does not converge to an MFG-NE. To stabi-
lize the learning process and to ensure convergence in more
general settings, recent papers have either added regulariza-
tion (Anahtarci, Kariksiz, and Saldi 2020; Guo, Xu, and Za-
riphopoulou 2020; Cui and Koeppl 2021) or used Fictitious
Play (Cardaliaguet and Hadikhanloo 2017; Cardaliaguet and
Lehalle 2018; Mguni, Jennings, and Munoz de Cote 2018;
Perrin et al. 2020; Delarue and Vasileiadis 2021), while
Hadikhanloo (2017) and Perolat et al. (2022) have intro-
duced and analyzed Online Mirror Descent.

Reinforcement learning subroutine. For a given popula-
tion distribution, to update the representative player’s pol-
icy or value function, we can rely on RL techniques. For
instance Guo et al. (2019); Anahtarci, Kariksiz, and Saldi
(2020) rely on Q-learning to approximate the Q-function
in a tabular setting, Fu et al. (2019) study an actor-critic
method in a linear-quadratic setting, and Elie et al. (2020);
Perrin et al. (2021) solve continuous spaces problems by
relying respectively on deep deterministic policy gradient
(Lillicrap et al. 2016) or soft actor-critic (Haarnoja et al.
2018). Two time-scales combined with policy gradient has
been studied by Subramanian and Mahajan (2019) for sta-
tionary MFGs. Policy iterations together with sequential de-
composition has been proposed by Mishra, Vasal, and Vish-
wanath (2020) while Guo et al. (2020) proposes a method
relying on Trust Region Policy Optimization (TRPO, Schul-
man et al. (2015)).

Distribution embedding. Another layer of complexity in
MFGs is to take into consideration population distributions
for large spaces or even continuous spaces. To compute
MFG solutions through a PDE approach, Al-Aradi et al.
(2018); Carmona and Laurière (2021) used deep neural net-
works to approximate the population density in high di-
mension. In the context of RL for MFGs, recently, Perrin
et al. (2021) have used Normalizing Flows (Rezende and
Mohamed 2015) to approximate probability measures over
continuous state space in complex environments.

Generalization in MFGs through Master Policies
So far, learning approaches for MFGs have considered only
two aspects: optimization algorithms (e.g., Fictitious Play or
Online Mirror Descent), or model-free learning of a repre-
sentative player’s best response based on samples (e.g., Q-
learning or actor-critic methods). Here, we build upon the
aforementioned notions and add to this picture another di-
mension of learning: generalization over population distri-
butions. We develop an approach to learn the representative
player’s best response as a function of any current popula-
tion distribution and not only the ones corresponding to a
fixed MFG-NE. This is tightly connected with the so-called
Master equation in MFGs (Lions 2006-2012; Bensoussan,
Frehse, and Yam 2015; Cardaliaguet et al. 2019). Introduced
in the continuous setting (continuous time, state and action),
this equation is a partial differential equation (PDE) which
corresponds to the limit of systems of Hamilton-Jacobi-
Bellman PDEs characterizing Nash equilibria in symmet-
ric N -player games. In our discrete context, we introduce
a notion of Master Bellman equation and associated Mas-
ter policy, which we then aim to compute with a new learn-
ing algorithm based on Fictitious Play. To the best of our
knowledge, the literature focuses Master equations on a fi-
nite horizon. Here, we consider infinite horizon discounted
problems, which allows us to look for stationary solutions.

Master Policies for MFGs
We introduce the notion of Master policy and connect it to
standard population-agnostic policies arising in MFG-NE.

Consider an MFG-NE (π̂µ0 , µ̂µ0) consistent with some
µ0. Let V̂ (·;µ0) = V (·; µ̂µ0), i.e.,

V̂ (x;µ0) = sup
π∈Π

Eπ
[
r(x, a, µ0) + γV (x′; (µ̂µ0

n )n≥1)
]
,

where a ∼ π(·|x, µ0) and x′ ∼ p(·|x, a, µ0). By definition,
π̂µ0

0 is a maximizer in the sup above. Moreover, in the right-
hand side,

V (x′; (µ̂µ0
n )n≥1) = V̂ (x′; µ̂µ0

1 ), µ̂µ0

1 = φ(µ0, π̂
µ0

0 ).

By induction, the equilibrium can be characterized as:
π̂µ0
n ∈ argmaxπ∈Π Eπ

[
r(x, a, µ̂µ0

n ) + γV̂ (x′; µ̂µ0

n+1)
]

V̂ (x; µ̂µ0
n ) = Eπ̂

µ0
n

[
r(x, a, µ̂µ0

n ) + γV̂ (x′; µ̂µ0

n+1)
]

µ̂µ0

n+1 = φ(µ̂µ0
n , π̂

µ0
n ).

Note that µ̂µ0

n+1 and π̂µ0
n depend on each other (and also on

µ0), which creates a forward-backward structure.
In the sequel, we will refer to this function V as the Mas-

ter value function. Computing the value function (x, µ) 7→
V̂ (x;µ) would allow us to know the value of any individ-
ual state x facing an MFG-NE starting from any MF state µ.
However, it would not allow to easily find the correspond-
ing equilibrium policy, which still depends implicitly on the
equilibrium MF flow. For this reason, we introduce the no-
tion of population-dependent policy. The set of population-
dependent policies π̃ : X ×∆X → ∆A is denoted by Π̃.
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Definition 2. A population-dependent π̃∗ ∈ Π̃ is a Mas-
ter policy if for every µ0, (πµ0,π̃

∗
,µµ0,π̃

∗
) is an MFG-NE,

where: µµ0,π̃
∗

0 = µ0 and for n ≥ 0,{
πµ0,π̃

∗

n (x) = π̃∗(x,µµ0,π̃
∗

n )

µµ0,π̃
∗

n+1 = φ(µµ0,π̃
∗

n ,πµ0,π̃
∗

n ).
(2)

A Master policy allows recovering the MFG-NE starting
from any initial MF state. A core question is the existence of
such a policy, which we prove in Theorem 1 below. Hence, if
there is a unique Nash equilibrium MF flow (e.g., thanks to
monotonicity), the MF flow µµ0,π̃

∗
obtained with the Mas-

ter policy π̃∗(a|x,µµ0,π̃
∗

n ) is the same as the one obtained
with a best response policy π̂µ0

n (a|x) starting from µ0.

Theorem 1. Assume that, for all µ0 ∈M , the MFG admits
an equilibrium consistent with µ0 and that the equilibrium
MF flow is unique. Then there exists a Master policy π̃∗.

Existence and uniqueness of the MFG-NE for a given
µ0 can be proved under a mild monotonicity condition, see
e.g. Perrin et al. (2020). Thm. 1 is proved by checking, step
by step, that the MF flow generated by π̃∗ and the associated
population-agnostic policy as defined in (2) form a MFG-
NE. The key idea is to use dynamic programming relying on
the Master value function V and the uniqueness of the asso-
ciated equilibrium MF flow. We omit the details for brevity.

Algorithm
We have demonstrated above that the Master policy is well-
defined and allows to recover Nash equilibria. We now pro-
pose a method to compute such a policy.

Fictitious Play
We introduce an adaptation of the Fictitious Play algo-
rithm to learn a Master policy. This extends to the case
of population-dependent policies the algorithm introduced
by Cardaliaguet and Hadikhanloo (2017). In the same fash-
ion, at every iteration k, it alternates three steps: (1) comput-
ing a best response policy π̃k against the current averaged
MF flows M̄k, (2) computing (µµ0,π̃k)µ0∈M, the MF flows
induced by π̃k, and (3) updating M̄k+1 with (µµ0,π̃k)µ0∈M.

We choose Fictitious Play rather than a simpler fixed-
point approach because it is generally easier to check that an
MFG model satisfies the assumptions used to prove conver-
gence (monotonicity condition rather than contraction prop-
erties, as e.g. in Huang et al. (2006); Guo et al. (2019)).

Ideally, we would like to train the population-dependent
policy on every possible distributions, but this is not feasi-
ble. Thus, we take a finite training set M of initial distri-
butions. Each training distribution is used at each iteration
of Fictitious Play. Another possibility would have been to
swap these two loops, but we chose not to do this because
of catastrophic forgetting (French 1999; Goodfellow et al.
2014), a well-know phenomenon in cognitive science that
also occurs in neural networks, describing the tendency to
forget previous information when learning new information.
Our proposed algorithm is summarized in Alg. 1 and we re-
fer to it as Master Fictitious Play.

Algorithm 1: Master Fictitious Play

input : Initial π̃0 ∈ Π̃, training set of initial
distributionsM, number of Fictitious Play
steps K

1 Let π̄ = π̃0; let µ̄µ0

0,n = µ0 for all µ0 ∈M , all n ≥ 0

2 Let M̄0 = (µ̄µ0

0 )µ0∈M
3 for k = 1, . . . ,K do
4 Train π̃k against M̄k = (µ̄µ0

k )µ0∈M, to
maximize Eq. (4)

5 for µ0 ∈M do
6 Compute µµ0

k , the MF flow starting from µ0

induced by π̃k against µ̄µ0

k

7 Let µ̄µ0

k = k
k+1 µ̄

µ0

k−1 + 1
k+1µ

µ0

k

8 Update π̃k = UNIFORM(π̃0, . . . , π̃k)

9 return π̃K = UNIFORM(π̃0, . . . , π̃K)

Alg. 1 returns π̃K , which is the uniform distribution over
past policies. We use it as follows. First, let: µµ0

k,0 = µ0,

k = 1, . . . ,K, µ̄µ0

K,0 = 1
K

∑K
k=1 µ

µ0

k,0, and then, for n ≥ 0,{
µµ0

k,n+1 = φ(µµ0

k,n, π̃k(·|·, µ̄µ0

K,n)), k = 1, . . . ,K

µ̄µ0

K,n+1 = 1
K

∑K
k=1 µ

µ0

k,n+1.

Note that π̃K is used in the same way for every µ0. We will
show numerically that this average distribution and the as-
sociated average reward are close to the equilibrium ones.

Define the average exploitability as:

ĒM(π̃K) = Eµ0∼UNIFORM(M)

[
Ē(µ0, π̃K)

]
, (3)

where

Ē(µ0, π̃K) = max
π′

J(µ0,π
′; µ̄µ0

K )− 1

K

K∑
k=1

J(µ0, π̃k; µ̄µ0

K ).

We expect Ē(µ0, π̃K) → 0 as K → +∞. We show that
this indeed holds under suitable conditions in the ideal-
ized setting with continuous time updates, where π̃k, k =
0, 1, 2, . . . , is replaced by π̃t, t ∈ [0,+∞).

Theorem 2. Assume the reward is separable and mono-
tone, i.e., r(x, a, µ) = rA(x, a) + rM (x, µ) and∑
x∈X(rM (x, µ) − rM (x, µ′))(µ − µ′)(x) < 0 for every

µ 6= µ′. Assume the transition depends only on x and a:
p(·|x, a, µ) = p(·|x, a). Then ĒM(π̃t) = O(1/t), where π̃t
is the average policy at time t in the continuous time version
of Master Fictitious Play.

The proof follows the lines of (Perrin et al. 2020) adapted
to our setting and is omitted for the sake of brevity. Studying
continuous time updates instead of discrete ones enables us
to use calculus, which leads to a simple proof. To the best of
our knowledge, there is no rate of convergence for discrete
time Fictitious Play in the context of MFG except for po-
tential or linear-quadratic structures, see (Geist et al. 2022)
and (Delarue and Vasileiadis 2021).
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Deep RL to Learn a Population-dependent Policy
In Alg. 1, a crucial step is to learn a population-dependent
best response against the current averaged MF flows M̄k =
(µ̄µ0

k )µ0∈M, i.e., π̃∗k maximizing

π̃ 7→ 1
|M|

∑
µ0∈M J(µ0, π̃; µ̄µ0

k ). (4)

Solving the optimization problem (4) can be reduced to
solving a standard but non-stationary MDP. Since we aim
at optimizing over population-dependent policies, the cor-
responding Q-function is a function of not only an agent’s
state-action pair (x, a) but also of the population distribu-
tion: Q̃(x, µ, a). Adding the current mean field state µ to the
Q-function allows us to recover a stationary MDP. As we
know that the optimal policy is stationary, we now have a
classical RL problem with state (x, µ) (instead of x only),
and we can use Deep RL methods such as DQN (Mnih et al.
2013) to compute Q̃k. The policy π̃k can then be recovered
easily by applying the argmax operator to the Q-function.

Various algorithms could be used, but we choose DQN
to solve our problem because it is sample-efficient. For the
numerical results presented below, we used the default im-
plementation of RLlib (Liang et al. 2017).

The neural network representing the Q-function takes as
inputs the state x of the representative player and the current
distribution µ of the population, which can simply be repre-
sented as a histogram (the proportion of agents in each state).
In practice, µ is a mean-field state coming from one of the
averaged MF flows µ̄µ0

k and is computed in steps 7 and 8 of
Alg. 1 with a Monte-Carlo method, i.e. by sampling a large
number of agents that follow the last population-dependent
best response π̃k and averaging it with µ̄µ0

k−1. Then, the Q-
function can be approximated by a feedforward fully con-
nected neural network with these inputs. In the examples
considered below, the finite state space comes from the dis-
cretization of a continuous state space in dimension 1 or 2.
The aforementioned simple approximation gives good re-
sults in 1D. However, in 2D, the neural network did not
manage to learn a good population-dependent policy. This
is probably because passing a histogram as a flat vector ig-
nores the geometric structure of the problem. We thus re-
sort to a more sophisticated representation. We first create an
embedding of the distribution by passing the histogram to a
convolutional neural network (ConvNet). The output of this
embedding network is then passed to a fully connected net-
work which outputs probabilities for each action (see Fig.1).
The use of a ConvNet is motivated by the fact that the state
space in our examples has a clear geometric interpretation
and that the population can be represented as an image.

On the Theoretical vs. Experimental Settings
Theoretically, we expect the algorithm Alg. 1 to converge
perfectly to a Master policy. This intuition is supported by
Thm. 2 and comes from the fact that Fictitious Play has
been proved to converge to population-agnostic equilibrium
policies when the initial distribution is fixed (Cardaliaguet
and Hadikhanloo 2017; Perrin et al. 2020). However, from
a practical viewpoint, here we need to make several approx-
imations. The main one is related to the challenges of con-

Figure 1: Neural network architecture of the Q-function for
the 2D beach bar experience.

ditioning on a MF state. Even though the state space X is
finite, the space of MF states M = ∆X is infinite and of
dimension equal to the number of states, which is poten-
tially very large. This is why we need to rely on function
approximation (e.g., by neural networks as in our imple-
mentation) to learn an optimal population-dependent policy.
Furthermore, the training procedure uses only a finite (and
relatively small) set of training distributions. On top of this,
other more standard approximations are to be taken into ac-
count, in particular due to the use of a Deep RL subroutine.

Numerical Experiments
Experimental Setup
We now illustrate the efficiency and generalization capabili-
ties of the Master policy learned with our proposed method.

Procedure. To demonstrate experimentally the perfor-
mance of the learned Master policy trained by Alg. 1,
we consider: several initial distributions, several benchmark
policies and several metrics. For each metric, we illustrate
the performance of each policy on each initial distribution.
The initial distributions come from two sets: the training set
M used in Alg. 1 and a testing set. For the benchmark poli-
cies, in the absence of a population-dependent baseline of
reference (since, to the best of our knowledge, our work is
the first to deal with Master policies), we focus on natu-
ral candidates that are population-agnostic. The metrics are
chosen to give different perspectives: the population distri-
bution and the policy performance in terms of reward.

Training set of initial distributions. In our experiments,
we consider a training setM composed of Gaussian distri-
butions such that the union of all these distributions suffi-
ciently covers the whole state space. This ensures that the
policy learns to behave on any state x ∈ X . Furthermore,
although we call “training set” the set of initial distributions,
the policy actually sees more distributions during the train-
ing episodes. Each distribution visited could be considered
as an initial distribution. Note however that it is very differ-
ent from training the policy on all possible population dis-
tributions (which is a simplex with dimension equal to the
number of states, i.e., 32 or 162 = 256 in our examples).
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Testing set of initial distributions. The testing set is com-
posed of two types of distributions. First, random distribu-
tions generated by sampling uniformly a number in [0, 1]
for each state independently, and then normalizing the dis-
tribution. Second, Gaussian distributions with means located
between the means of the training set, and various variances.

Benchmark type 1: Specialized policies. For a given
initial distribution µi0 with i ∈ {1, . . . , |M|}, we con-
sider a Nash equilibrium starting from this MF state, i.e.,
a population-agnostic policy π̂i and a MF flow µ̂i satisfying
Def. 1 with µ0 replaced by µi0. In the absence of analytical
formula, we compute such an equilibrium using Fictitious
Play algorithm with backward induction (Perrin et al. 2020).
We then compare our learned Master policy with each π̂i,
either on µi0 or on another µj0. In the first case, it allows us
to check the correctness of the learned Master policy, and in
the second case, to show that it generalizes better than π̂i.

Benchmark type 2: Mixture-reward policy. Each
(population-agnostic) policy discussed above is specialized
for a given µi0 but our Alg. 1 trains a (population-dependent)
policy on various initial distributions. It is thus natural to
see how the learned Master policy fares in comparison
with a population-agnostic policy trained on various initial
distributions. We thus consider another benchmark, called
mixture-reward policy, which is a population-agnostic
policy trained to optimize an average reward. It is computed
as the specialized policies described above but we replace
the reward definition with an average over the training
distributions. For 1 ≤ i ≤ |M|, recall µ̂i is a Nash
equilibrium MF flow starting with MF state µi0. We consider
the average reward: r̄n(x, a) = 1

|M|
∑|M|
i=1 r(x, a, µ̂

i
n). The

mixture-reward policy is an optimal policy for the MDP
with this reward function. In our experiments, we compute
it as for the specialized policies described above.

Benchmark type 3: Unconditioned policy. Another
meaningful comparison is to use the same algorithm while
removing the population input. This amounts to running
Alg. 1 where, in the DQN subroutine, the Q-function neu-
ral network is a function of x and a only. So in Fig. 1, we
replace the µ input embedding by zeros. We call the result-
ing policy unconditioned policy because it illustrates the per-
formance when removing the conditioning on the MF term.
This benchmark will be used to illustrate that the success of
our approach is not only due to combining Deep RL with
training on various µ0: conditioning the Q-function and the
policy on the MF term plays a key role.

Metric 1: Wasserstein distance between MF flows. We
first measure how similar the policies are in terms of in-
duced behavior at the scale of the population. Based on the
Wasserstein distanceW between two distributions, we com-
pute the following distance between MF flows truncated at
some horizon NT :

Wi,j := 1
NT+1

∑NT
n=0W (µ

πi,µj0
n ,µ

πj ,µj0
n ).

Figure 2: Exploration 1D: Performance matrices when the
training set is made of Gaussian distributions. From left to
right: (a) Log of Wasserstein distances to the exact solution
(time average); (b) Log of exploitabilities. The x-axis is the
initial distribution index: on the left (resp. right) of the ver-
tical red line are the training (resp. testing) distributions.

Note that Wi,i = 0. The term µπj ,µj0 = µ̂j is the equilib-
rium MF flow starting from µj0, while µπi,µj0 is the MF flow
generated by starting from µj0 and using policy πi.

Metric 2: Exploitability. We also assess the performance
of a given policy by measuring how far from being a Nash
it is. To this end, we use the exploitability. We compute for
each i, j: Ei,j = E(µj0, π̂

i). When i = j, Ei,i = 0 because
(π̂i, µ̂i) is a Nash equilibrium starting from µi0. When i 6= j,
Ei,j measures how far from being optimal π̂i is when the
population also uses π̂i, but both the representative player
and the population start with µj0. If Ei,j = 0, then π̂i is a
Nash equilibrium policy even when starting from µj0.

Experiment 1: Pure Exploration in 1D
We consider a discrete 1D environment inspired by Geist
et al. (2022). Transitions are deterministic, the state space
is X = {1, . . . , |X| = 32}. The action space is A =
{−1, 0, 1}: agents can go left, stay still or go right (as long
as they stay in the state space). The reward penalizes the
agent with the amount of people at their location, while
discouraging them from moving too much: r(x, a, µ) =
− log(µ(x))− 1

|X| |a|. The training set of initial distributions
M consists of four Gaussian distributions with the same
variance but different means. The testing set is composed of
random and Gaussian distributions with various variances.
We can see that the Master policy is still performing well on
these distributions, which highlights its generalization ca-
pacities. The diagonal is white since the Wasserstein dis-
tance and exploitability are zero for specialized baselines
evaluated on their corresponding µ0. We also observe that
the random policy is performing well on random distribu-
tions, and that exact solutions trained on a randomly gener-
ated distribution seem to perform quite well on other ran-
domly generated distributions. We believe this is due to this
specific environment, because a policy that keeps enough en-
tropy performs well.
Experiment 2: Beach Bar in 2D
We now consider the 2 dimensional beach bar problem, in-
troduced by Perrin et al. (2020), to highlight that the method
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Figure 3: Beach bar 2D: Environment. From left to right: (a) an initial distribution µ0 ∈ M; (b) MF state at equilibrium
(specialized policy); (c) MF state at equilibrium (learned Master policy); (d) MF state at equilibrium (specialized policy of
another initial distribution). Note that the scale is very different for the last figure.

can scale to larger environments. The state space is a dis-
cretization of a 2-dimensional square. The agents can move
by one state in the four directions: up, down, left, right, but
there are walls on the boundaries. The instantaneous reward
is: r(x, a, µ) = dbar(x)− log(µ(x))− 1

|X|‖a‖1, where dbar

is the distance to the bar, located at the center of the domain.
Here again, the second term discourages the agent from be-
ing in a crowded state, while the last term discourages them
from moving if it is not necessary. Starting from an initial
distribution, we expect the agents to move towards the bar
while spreading a bit to avoid suffering from congestion.

We use the aforementioned architecture (Fig. 1) with one
fully connected network following two ConvNets: one for
the agent’s state, represented as a one-hot matrix, and one for
the MF state, represented as a histogram. Having the same
dimension (equal to the number |X| of states) and architec-
ture for the position and the distribution makes it easier for
the deep neural network to give an equal importance to both
of these features. Deep RL is crucial to cope with the high
dimensionality of the input. Here |X| = 162 = 256.

Fig. 4 illustrates the performance of the learned Master
policy. Once again, it outperforms the specialized policies
as well as the random, mixture-reward, and unconditioned
policies. An illustration of the environment and of the dif-
ferent policies involved is available in Fig. 3.

Figure 4: Beach bar 2D: Performance matrices with Gaus-
sian distributions. From left to right: (a) Log of Wasserstein
distances to the exact solution (average over time steps); (b)
Log of exploitabilities. Each row is a policy. Top part: a row
j gives the performance of the equilibrium policy for the j-th
initial distribution. Bottom part: policies given in the text).

Conclusion
Motivated by the question of generalization in MFGs, we
extended the notion of policies to let them depend explic-
itly on the population distribution. This allowed us to intro-
duce the concept of Master policy, from which a represen-
tative player is able to play an optimal policy against any
population distribution, as we proved in Thm. 1. We then
proved that a continuous time adaptation of Fictitious Play
can approximate the Master policy at a linear rate (Thm. 2).
However, implementing this method is not straightforward
because policies and value functions are now functions of
the population distribution and, hence, out of reach for tra-
ditional computational methods. We thus proposed a Deep
RL-based algorithm to compute an approximate Master pol-
icy. Although this algorithm trains the Master policy using
a small training set of distributions, we demonstrated nu-
merically that the learned policy is competitive on a vari-
ety of unknown distributions. In other words, for the first
time in the RL for MFG literature, our approach allows the
agents to generalize and react to many population distribu-
tions. This is in stark contrast with the existing literature,
which focuses on learning population-agnostic policies, see
e.g. (Guo et al. 2019; Anahtarci, Kariksiz, and Saldi 2020;
Fu et al. 2019; Elie et al. 2020; Perrin et al. 2021). To the
best of our knowledge, the only work considering policies
that depend on the population is (Mishra, Vasal, and Vish-
wanath 2020), but their approach relies on solving a fixed
point at each time step for every possible distribution, which
is infeasible except for very small state space.

Our approach opens many directions for future work.
First, the algorithm we proposed should be seen as a proof
of concept and we plan to investigate other methods, such
as Online Mirror Descent (Hadikhanloo 2017; Perolat et al.
2022). For high-dimensional examples, the question of
distribution embedding deserves a special attention. Sec-
ond, the generalization capabilities of the learned Master
policy offers many new possibilities for applications. We
plan to investigate how it can be used when the agent can
only access a partial observation of the population. Last,
the theoretical properties (such as the approximation and
generalization theory) are also left for future work. An
interesting question, from the point of view of learning is
choosing the training set so as to optimize generalization
capabilities of the learned Master policy.
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