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Abstract

Networked discrete dynamical systems are often used to
model the spread of contagions and decision-making by
agents in coordination games. Fixed points of such dynami-
cal systems represent configurations to which the system con-
verges. In the dissemination of undesirable contagions (such
as rumors and misinformation), convergence to fixed points
with a small number of affected nodes is a desirable goal.
Motivated by such considerations, we formulate a novel op-
timization problem of finding a nontrivial fixed point of the
system with the minimum number of affected nodes. We es-
tablish that, unless P = NP, there is no polynomial time algo-
rithm for approximating a solution to this problem to within
the factor n1−ϵ for any constant ϵ > 0. To cope with this
computational intractability, we identify several special cases
for which the problem can be solved efficiently. Further, we
introduce an integer linear program to address the problem
for networks of reasonable sizes. For solving the problem on
larger networks, we propose a general heuristic framework
along with greedy selection methods. Extensive experimental
results on real-world networks demonstrate the effectiveness
of the proposed heuristics.
A full version of the manuscript, source code and data are
available at:
https://github.com/bridgelessqiu/NMIN-FPE

1 Introduction
Discrete dynamical systems are commonly used to model
the propagation of contagions (e.g., rumors, failures of sub-
systems in infrastructures) and decision-making processes in
networked games (Valdez et al. 2020; Jackson 2010). Specif-
ically, the states of nodes in such dynamical systems are
binary, with state 1 indicating the adoption of a contagion.
At each time step, the states of the nodes are updated using
their local functions. When the local functions are threshold
functions, a node v acquires a contagion (i.e., v changes to
state 1) if the number of v’s neighbors that have adopted the
contagion (i.e., v’s peer strength) is at least a given thresh-
old value. Conversely, an individual’s adoption of a conta-
gion is reversed (i.e., v changes to state 0) when the peer
strength is below the threshold (Barrett et al. 2006). Since its
introduction by Granovetter (1978), the threshold model has
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been extensively studied in many contexts including opin-
ion dynamics (Auletta, Ferraioli, and Greco 2018), informa-
tion diffusion (Cheng et al. 2018) and the spread of social
conventions and rumors (Dong et al. 2019; Ye et al. 2021).
The threshold model also captures decision patterns in net-
worked coordination games (Ramazi, Riehl, and Cao 2016).

One important stage of the system dynamics is the conver-
gence of nodes’ states, where no individuals change states
further; this is similar to an equilibrium in a networked
game (Daskalakis and Papadimitriou 2007, 2015). Such a
stage is called a fixed point of the dynamical system. Con-
sider a scenario where a rumor is spreading in a community
under the threshold model; here, an individual v chooses to
believe the rumor if the number of believers in v’s social cir-
cle is at least the threshold of v. Given the undesirable nature
of rumors, identifying fixed points with minimum numbers
of believers is desirable (Wang et al. 2017).

For some social contagions that are widely adopted in
communities, it is often unrealistic to expect contagions
to eventually disappear spontaneously. One example is the
anti-vaccination opinion, which emerged in 1853 against the
smallpox vaccine (Wolfe and Sharp 2002). Even today, the
anti-vaccination sentiment persists across the world (Willis
et al. 2021). Such considerations motivate us to study a
more realistic problem, namely determining whether there
are fixed points with at most a given number of contagion
adoptions under the nontriviality constraint that the number
of adoptions in the fixed point must be nonzero. We refer to
this as the nontrivial minimum fixed point existence prob-
lem (NMIN-FPE).

Nontrivial minimum fixed points of a system, which are
jointly determined by the network structure and local func-
tions, provide a way of quantifying the system’s resilience
against the spread of negative information. In particular,
the number of contagion adoptions in a nontrivial minimum
fixed point provides the lower bound on the number of indi-
viduals affected by the negative contagion. Further, when the
complete absence of a contagion is impractical, nontrivial
minimum fixed points serve as desirable convergence points
for control strategies (Khalil, Dilkina, and Song 2013). Simi-
larly in coordination games, one is interested in finding equi-
libria wherein only a small number of players deviate from
the strategy adopted by a majority of the players (Ramazi,
Riehl, and Cao 2016).
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As we will show, the main difficulty of the NMIN-FPE
problem lies in its computational complexity. A related
problem is that of influence minimization (e.g., (Yao et al.
2015)). The main differences between the two problems are
twofold. First, the influence minimization problem is based
on the progressive model where a node state can only change
from 0 to 1 but not vice versa. Second, the influence mini-
mization problem aims to find optimal intervention strate-
gies (e.g., node/edge removal) to reduce the cascade size,
while NMIN-FPE aims to find a minimum influenced group
without changing the system.

In this work, we study the NMIN-FPE problem for syn-
chronous dynamical systems (SyDS) with threshold local
functions, where the nodes update states simultaneously in
each time-step. Our main contributions are as follows:
1. Formulation. We formally define the Nontrivial Mini-

mum Fixed Point Existence Problem (NMIN-FPE) from
a combinatorial optimization perspective.

2. Intractability. We establish that unless P = NP, NMIN-
FPE cannot be approximated to within the factor n1−ϵ

for any ϵ > 0, even when the graph is bipartite. We also
show that the NMIN-FPE is W[1]-hard w.r.t. the natu-
ral parameter (i.e., the number of nodes in state 1 in any
nontrivial fixed point) of the problem.

3. Algorithms. We identify several special cases for which
NMIN-FPE can be solved in polynomial time. To ob-
tain optimal solutions for networks of moderate size, we
present an integer linear program (ILP) formulation for
NMIN-FPE. For larger networks, we propose a heuristic
framework along with three greedy selection strategies
that can be embedded into the framework.

4. Evaluation. We conduct extensive experiments to study
the performance of our heuristics on real-world networks
under various scenarios. Our results demonstrate that
the proposed heuristics are exceptionally effective and
outperform baseline methods significantly, despite the
strong inapproximability of NMIN-FPE.

2 Related Work
Fixed points. Fixed points of discrete dynamical systems
have been widely studied. Goles and Martinez (2013) show
that that for any initial configuration, a threshold SyDS al-
ways converges to either a fixed point or a cycle with two
configurations in a polynomial number of time steps. Bar-
rett et al.(2007) show that determining whether a system has
a fixed point (FPE) is NP-complete for symmetric sequen-
tial dynamical systems and that the problem is efficiently
solvable for threshold sequential dynamical systems. More
recently, Chistikov et al. (2020) study fixed points in the
context of opinion diffusion; they show that determining
whether a system reaches a fixed point from a given config-
uration is PSPACE-complete for SyDSs on general directed
networks, but can be solved in polynomial time when the
underlying graph is a DAG. In Rosenkrantz et al. (2021),
we investigate convergence and other problems for SyDSs
whose underlying graphs are DAGs. In particular, we show
that the convergence guarantee problem (i.e., determining if
a system reaches a fixed point starting from any configura-
tion) is Co-NP-complete for SyDSs on DAGs.

Influence minimization. Existing works on influence
minimization focus on reducing the prevalence via control
strategies. Yang, Li and Giua (2019) study the problem of
finding a k-subset of active nodes such that the converged
influence value is minimized and a target set of nodes is ac-
tive. They provide an integer program for the problem and
suggest two heuristics. Wang et al. (2017) propose a new
rumor diffusion model and use an Ising model to optimally
block the contagion. Zhu, Ni, and Wang (2020) estimate the
influence of nodes and minimize the adoption of negative
contagions by disabling nodes. Other approaches focus on
blocking the spread via node removal (Kimura, Saito, and
Nakano 2007; Yao et al. 2015; Chen et al. 2015; Kuhlman
et al. 2015) or edge removal (Kimura, Saito, and Motoda
2008; Khalil, Dilkina, and Song 2013; Chen et al. 2016;
Kuhlman et al. 2013) and enhance network resilience (Chen
et al. 2015).

Coordination games. Agent decision-making in coor-
dination games coincides with threshold-based cascade of
contagions. Adam et al. (2012) study the best response dy-
namics of coordination games, analyze the convergence and
propose a new network resilience measure. Ramazi et al.
(2016) study both coordination and anticoordination games
and show that such games always reach equilibria in a fi-
nite amount of time. Other aspects of equilibria in networked
games (such as developing control strategies and determin-
ing the existence of equilibria) have also been studied ((Yu
et al. 2020; Cao, Ertin, and Arora 2008; Anderson, Goeree,
and Holt 2001; Salehisadaghiani and Pavel 2018)).

3 Preliminaries and Problem Definition
3.1 Preliminaries
We follow the definition of discrete dynamical systems from
previous work (Rosenkrantz et al. 2021). A synchronous
dynamical system (SyDS) S over the Boolean domain B =
{0, 1} of state values is defined as a pair (GS ,F) where (1)
GS = (V,E) is the underlying graph of S with n = |V |
and m = |E|, and (2) F = {f1, ..., fn} is a collection of
functions for which fi is the local transition function of node
vi ∈ V, 1 ≤ i ≤ n. In general, fi ∈ F specifies how vi ∈ V
updates its state throughout the evolution of S . In this work,
we study SyDSs over the Boolean domain with threshold
functions as local functions. Following (Barrett et al. 2006),
we denote such a system by (BOOL, THRESH)-SyDS.

Update rules. In (BOOL, THRESH)-SyDSs, each node
vi ∈ V has a fixed integer threshold value τvi

≥ 0. At
each time step t ≥ 0, each node vi ∈ V has a state value
in B. While the initial state of any node vi (at time 0) can
be assigned arbitrarily, the states at time steps t ≥ 1 are
determined by vi’s local function fi. Specifically, vi transi-
tions to state 1 at time t if the number of state-1 nodes in its
closed neighborhood N(vi) (which consists of vi and all its
neighbors) at time t− 1 is at least τvi

; the state of vi at time
t is 0 otherwise. Furthermore, all nodes update their states
synchronously. When GS is a directed graph, a node v tran-
sitions to state 1 at a time t ≥ 1 iff the number of state-1
in-neighbors of v (i.e., node v itself and those from which v
has incoming edges) is at least τv . Note that undirected net-
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works are the primary focuses of this work; we assume that
GS is undirected unless specified otherwise.

Configurations and fixed points. A configuration
of S gives the states of all nodes during a time-step.
Specifically, a configuration C is an n-vector C =
(C(v1), C(v2), ..., C(vn)) where C(vi) ∈ B is the state of
node vi ∈ V under C. There are a total of 2n possible con-
figurations for a system S . During the evolution of the S ,
the system configuration C changes over time. If S transi-
tions from C to C ′ in one time step, then C ′ is the successor
of C. Due to the deterministic nature of (BOOL, THRESH)-
SyDSs, if C = C ′, that is, the states of all nodes remain
unchanged, then C is a fixed point of the system. An exam-
ple of a (BOOL, THRESH)-SyDS S = (GS ,F) is shown in
Figure 1. Note that given any configuration C, its successor
C ′ can be computed in time that is polynomial in the number
of nodes n. As shown in (Goles and Martı́nez 2013), starting
from any initial configuration, S converges either to a fixed
point or a cycle consisting of two configurations within a
number of transitions that is a polynomial in n.

Constant-state nodes. A node v ∈ V is a constant-1 node
if τv = 0, that is, given any configuration C, the state of v is
1 in the successor C ′ of C. Similarly, v is a constant-0 node
if τv = deg(v) + 2.

Figure 1: The evolution of a (BOOL, THRESH)-SyDS S =
(GS ,F) where V (GS) = {vi : i = 1, ..., 5}. The threshold
values are as follows: τ1 = 3, τ2 = 1, τ3 = 1, τ4 = 2,
and τ5 = 2. State-1 nodes are highlighted in blue. The
system undergoes the following evolution: (1, 0, 0, 0, 0) →
(0, 1, 1, 0, 0) → (0, 1, 1, 1, 0) → (1, 1, 1, 1, 0), with the last
configuration being a fixed point.

3.2 Problem Definition
Let S = (GS ,F) be a SyDS and let C be a configuration
of S . The Hamming weight of C, denoted by H(C), is the
number of 1’s in C. A minimum fixed point of S is a fixed
point with the smallest possible Hamming weight. Note that
when a (BOOL, THRESH)-SyDS S has no constant-1 nodes,
the minimum fixed point of S is trivially 0n. A nontrivial
fixed point is a fixed point that is different from 0n. Our work
focuses on finding nontrivial minimum fixed points.

Definition 3.1. A nontrivial minimum fixed point of S is
a nontrivial fixed point of minimum Hamming weight.

We now provide a formal definition of the problem.
Nontrivial Minimum Fixed Point Existence (NMIN-FPE)

Instance: A SyDS S = (GS ,F) and a positive integer q.
Question: Is there a fixed point C of S with Hamming

weight at least 1 and at most q?

We focus on the NP-optimization version of NMIN-FPE
which is to find a nontrivial minimum fixed point.

4 Computational Hardness of NMIN-FPE
In this section, we present an inapproximability result for
NMIN-FPE. Specifically, we show that NMIN-FPE can-
not be efficiently approximated to within a factor n1−ϵ for
any constant ϵ > 0, unless P = NP. We also establish
that NMIN-FPE is W[1]-hard, with the parameter being the
Hamming weight of a fixed point. Under standard hypothe-
ses in computational complexity, our results rule out the
possibility of obtaining efficient approximation algorithms
with provable performance guarantees and fixed parameter
tractable algorithms w.r.t. the Hamming weight for NMIN-
FPE.

Theorem 4.1. For (BOOL, THRESH)-SyDSs, NMIN-FPE
cannot be approximated to within a factor n1−ϵ for any con-
stant ϵ > 0, unless P = NP. This inapproximability holds
even when the underlying graph is bipartite.

Proof (sketch). The overall scheme is a reduction from MIN-
IMUM VERTEX COVER (MVC) such that if there exists a
polynomial time factor n1−ϵ approximation algorithm A for
NMIN-FPE, we then can use A to solve MVC in poly-
nomial time, implying P = NP. Let M = ⟨GM, k⟩ be
an arbitrary instance of MVC, where nM = |V (GM)|,
mM = |E(GM)|, and the target vertex cover size is k.

We build an instance S = (GS ,F) of NMIN-FPE for
which nS = |V (GS)| and mS = |E(GS)|. Let α = mM +
nM + 1, and β = α⌈2/ϵ⌉. The construction is as follows.

The vertex set V (GS): Let X = {xu : u ∈ V (GM)}
and Y = {ye : e ∈ E(GM)} be two disjoint sets of nodes in
GS that correspond to the nodes and edges in GM, respec-
tively. Let w, z be two additional nodes. Lastly, we introduce
a set of β nodes R = {r1, ..., rβ}.

The edge set E(GS): Let E1 = {(xu, ye) : e ∈ E(GM)
is incident on u ∈ V (GM)}; thus, if an edge e is incident
on a node u in GM, their corresponding nodes ye and xu are
adjacent in GS . Let E2 = {(ye, z) : ye ∈ Y }; that is, node
z is adjacent to all ye ∈ Y . Let E3 = {(xu, w) : xu ∈ X};
E3 ensures that w is adjacent to all xu ∈ X . Let E4 =
{(ri, ri+1) : ri ∈ R, 1 ≤ i ≤ β − 1}; that is, nodes in R
form a simple path. Lastly, we introduce an additional edge
(w, r1) to connect w with an endpoint of the above path.
Thus, the edge set E(GS) = E1∪E2∪E3∪E4∪{(w, r1)}.

Thresholds: Let τxu
= deg(u) + 1, ∀xu ∈ X; τye

=
3, ∀ye ∈ Y ; τw = k + 1, τz = mM + 1; τri = 1, ∀τri ∈ R.

We establish that GM has a vertex cover of size at most
k if and only if Algorithm A returns a nontrivial fixed point
for S with Hamming weight at most n1−ϵ

S α. A detailed proof
appears in the full version (Qiu et al. 2022).

Theorem 4.1 points out that for NMIN-FPE, even obtain-
ing an approximation guarantee that is slightly better than a
linear factor is hard.

Parameterized Complexity of NMIN-FPE. Next, we
examine whether NMIN-FPE is fixed-parameter tractable
(FPT) w.r.t. a natural structural parameter of the problem,
namely the Hamming weight of a fixed point.
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Theorem 4.2. The problem NMIN-FPE is W[1]-hard w.r.t.
to the natural parameter (i.e., the Hamming weight of a fixed
point) for (BOOL, THRESH)-SyDSs.
Theorem 4.2, whose proof is in the full version, implies that
NMIN-FPE is not FPT w.r.t. to the natural parameter. Note
that this does not exclude FPT results for other parameters.
We identify one such parameter in the next section.

5 Approaches for Solving NMIN-FPE
In this section, we consider several approaches for tackling
the hardness of NMIN-FPE. We start by identifying spe-
cial cases where the problem can be solved efficiently. We
also present an integer linear programming (ILP) formula-
tion that can be used to obtain optimal solutions for networks
of reasonable sizes. Then we introduce a heuristic frame-
work for NMIN-FPE that is useful in obtaining good (but
not necessarily optimal) solutions in larger networks.

5.1 Efficient Algorithms for Special Classes
Restricted classes. We identify four special classes of prob-
lem instances where NMIN-FPE can be solved in polyno-
mial time. Motivated by real-world scenarios, we consider
the classic progressive threshold model (Kempe, Kleinberg,
and Tardos 2003), where once a vertex changes to state 1, it
retains the state 1 for all subsequent time-steps. Further, we
investigate the problem on special graph classes.
Theorem 5.1. For (BOOL, THRESH)-SyDSs, NMIN-FPE
admits a polynomial time algorithm for any of the following
restricted cases:
1. The SyDS uses the progressive threshold model.
2. The underlying graph is a directed acyclic graph.
3. The underlying graph is a complete graph.
4. There exists at least one constant-1 node.

Proof (sketch). We provide proof sketches for the first two
cases. Detailed proofs for all the cases appear in the full ver-
sion. Let S = (GS ,F) be a (BOOL, THRESH)-SyDS.

Algorithm 1: NMIN-FPE DAG(S)
Input : A (BOOL, THRESH)-SyDS S = (GS ,F); GS is a DAG
Output: A non-trivial minimum fixed point C∗

V ′ = {v : v ∈ V (GS), τv = 1}
min h = |V (GS)|+ 1

for each v ∈ V ′ do
Cv ← the configuration where only v is in state 1

C∗
v ← the fixed point of S reached from Cv

if H(C∗
v ) < min h then

min h = H(C∗
v )

C∗ = C∗
v

end
end
return C∗

Part 1: Under the progressive threshold model, NMIN-FPE
can be solved in O(mn+ n2) time.

The algorithm consists of n iterations where n =
|V (GS)|. At the ith iteration, 1 ≤ i ≤ n, we construct an

initial configuration Ci by setting node vi to state 1, and all
other nodes to state 0. We then evolve the system from Ci.
Due to the progressive model, S always reaches some fixed
point C∗

i . By repeating the above process for n iterations,
we get a collection of n fixed points C = {C∗

1 , C
∗
2 , ..., C

∗
n}.

Again because of the progressive model, all n fixed points
are non-trivial. It can be seen that a fixed point with mini-
mum Hamming weight in C is an optimal solution. With a
simple data structure, the fixed point reached from an ini-
tial configuration can be found in O(m+ n) time. Thus, the
overall running time of the algorithm is O(mn+ n2).
Part 2: NMIN-FPE can be solved in O(mn+n2) time when
GS is a directed acyclic graph.

We first establish that if all nodes have thresholds greater
than 1, then there are no nontrivial fixed points for S . Thus,
suppose that there is at least one node whose threshold is 1.
Our algorithm for finding a nontrivial minimum fixed point
is shown in Algorithm 1. It can be shown that for each initial
configuration, the fixed point reached by S can be computed
in O(m+n) time. So, the running time is O(mn+n2).

Fixed parameter tractability. We further extend the
solvability of NMIN-FPE and establish that NMIN-FPE is
fixed parameter tractable w.r.t. the number of nodes with
thresholds greater than 1.

Theorem 5.2. For (BOOL, THRESH)-SyDSs, NMIN-FPE
is fixed parameter tractable w.r.t. the parameter k which is
the number of nodes with thresholds greater than 1.

Specifically, we develop a quadratic kernelization algo-
rithm that finds a nontrivial minimum fixed point in time
O(2k +n+m). A detailed proof appears in the full version.

5.2 Solving NMIN-FPE in General Networks
An ILP formulation. Given a (BOOL, THRESH)-SyDS S =
(GS ,F), our ILP solves the NMIN-FPE problem by con-
structing a nonempty minimum-cardinality subset V ∗ ⊆
V (GS) of nodes to set to state 1, and all nodes not in V ∗ to
state 0, such that the resulting configuration is a fixed point
of S . Let xv, v ∈ V (GS), be a binary variable where xv =
1 if and only if node v ∈ V ∗. Let ∆ = max deg(G) + 2
denote a constant that is greater than the maximum degree of
G. Let N(v), v ∈ V (GS) denote the closed neighborhood
of v. Then an ILP formulation for NMIN-FPE is defined as
follows in (1). An optimal solution to the ILP yields a set of
state-1 nodes in a nontrivial minimum fixed point. See full
version for proof of correctness.

min
∑

v∈V (GS)

xv (1a)

s.t. τvxv ≤
∑

u∈N(v)

xu, ∀v ∈ V (GS) (1b)

∑
v∈V (GS)

xv ≥ 1 (1c)

∆ · xv + τv ≥
∑

u∈N(v)

xu + 1, ∀v ∈ V (GS) (1d)

xv ∈ {0, 1}, ∀v ∈ V (GS) (1e)
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The greedy framework for heuristics. As we have
shown that NMIN-FPE is hard to approximate, one can
only rely on heuristics to quickly find solutions for large
networks. Given a (BOOL, THRESH)-SyDS S = (GS ,F),
we propose a general framework that iteratively constructs a
fixed point by greedily setting nodes to state 1. Specifically,
the framework iterates over each node u ∈ V (GS) and finds
a fixed point seeded at u, which is denoted as Cu. In Cu, we
have (1) u is in state 1, and (2) the Hamming weight of Cu is
heuristically small. The algorithm then returns a fixed point
Cu with the smallest Hamming weight over all u ∈ V (GS)
as shown in Algorithm 2.

Algorithm 2: NM1FPE(S)
Input : SyDS S = (GS ,F)
Output: A fixed point C∗ ∈ {0, 1}n
best obj = |V (GS)|

for u ∈ V (G) do
Cu = Greedy Seeded NM1FPE(S, u)

if H(Cu) < best obj then
best obj = H(Cu)

C∗ = Cu

end
end
return C∗

We now introduce the greedy scheme to compute Cu, u ∈
V (GS). Let Au ⊆ V (GS) be a subset of state 1 nodes un-
der Cu. The scheme constructs Cu by progressively adding
nodes to Au, thus effectively setting them to state 1. Overall,
the scheme has the following two key steps: (1) the construc-
tion of Au terminates when the fixed point condition is met.
Specifically, (i) for each v ∈ Au, the threshold τv is satis-
fied, that is, the number of v’s neighbors (including v itself)
in Au is at least τv , and (ii) for each v ∈ V (GS) \ Au, the
number of v’s neighbors in Au is less than τv; (2) nodes are
added to Au based on a greedy selection method specified by
a heuristic. Under this framework, different heuristics can be
obtained by using different greedy selection strategies.

The fixed point condition. We use a superscript to denote
the iteration number. Initially, A(0)

u contains only u, and we
actively add a new node to A

(k)
u in each iteration k ≥ 1. To

determine if the fixed point condition is met at the kth iter-
ation, we maintain a value δ(k) that is the number of addi-
tional nodes that need to be selected to satisfy the thresholds
of nodes in A

(k)
u at the kth iteration. Heuristically, δ(k) =∑

v∈A
(k)
u

τ̃
(k)
v where τ̃

(k)
v = max{0, τv − |A(k)

u ∩N(v)|} is
the residual threshold of v at the kth iteration. We can view
τ̃
(k)
v as the additional number of v’s neighbors that need to

be selected to satisfy τv .
Given a node w ∈ A

(k)
u , we call w unsatisfied if τ̃w ̸= 0.

Note that after adding a node v to A
(k+1)
u , v decreases the

residual thresholds of its unsatisfied neighbors in A
(k)
u ; yet, v

may remain unsatisfied. Furthermore, we might “passively”
satisfy the thresholds of some other nodes that are not in
A

(k)
u . Let A′ denote such a set of “passive” nodes. We define

ϵ
(k)
v to be the decrease of δ(k) after selecting v and A′. Thus,

δ(k+1) for the next iteration is computed by δ(k+1) = δ(k)+

τ̃v − ϵ
(k)
v . Lastly, A(k+1)

u = A
(k)
u ∪ {v} ∪ A′. We have the

following proposition.

Proposition 5.3. The fixed point condition is met at the kth
iteration of the algorithm if and only if δ(k) = 0.

The subroutine returns the fixed point Cu where a node
v is in state 1 iff v ∈ Au. The pseudocode of the entire
framework is presented under Algorithms 2 and 3.

Algorithm 3: Greedy Seeded NM1FPE(S, u)
Input : SyDS S = (GS ,F); node u ∈ V (GS)
Output: A fixed point Cu seeded at node u
A′ ← The set of nodes being passively set to state 1 if s(u) = 1

Au ← {u} ∪A′

B ← {N(u) \Au} ▷ Candidate nodes
D = {v ∈ Au : τ̃v ̸= 0} ▷ Unsatisfied nodes
δ = max{0, τu − |Au ∩N(u)|}
while δ ̸= 0 do

v∗ = argminv∈B{obj(v)} ▷ Greedy selection
δ = δ + τ̃v∗ − ϵv∗

A′ ← The set of nodes being passively set to state 1 after se-
lecting v∗

Au = Au ∪ {v∗} ∪A′

Update sets B and D

end
Cu ← the configuration with v ∈ V (GS) in state 1 iff v ∈ Au

return Cv

Greedy selection strategies. We now discuss a method-
ology for adding a new node v to A

(k)
u . Observe that un-

der any nontrivial minimum fixed point, the subgraph in-
duced by the state-1 nodes is connected, assuming the ab-
sence of constant-1 nodes. Thus, only the unselected neigh-
bors of unsatisfied nodes, denoted by B(k), are candidate
nodes at the kth iteration. Specifically, we greedily select a
node v = argminv∈B{obj(v)} into A

(k)
u where obj(v) is

an objective function specified by some heuristic. We now
present objective functions for three heuristics. Let ρ(k)v de-
note the number of unselected nodes that will be passively
set to state 1 if v is set to state 1 at the kth iteration. The
objective for the first heuristic GreedyFull is defined as
obj1(v) = τ̃

(k)
v + ρ

(k)
v − ϵ

(k)
v which considers v’s resid-

ual thresholds, the number of passive nodes, and the de-
crease of δ(k). The objective functions of two other meth-
ods, namely GreedyNP and GreedyThresh, are simpli-
fications of the first heuristic with obj2(v) = τ̃

(k)
v − ϵ

(k)
v

and obj3(v) = τ̃
(k)
v , respectively. To speed up the execu-

tion time, we use pruning in the implementation of heuris-
tics. Specifically, for each node u enumerated in the heuris-
tic framework, we keep track of the current best Hamming
weight and actively terminate construction of Cu if the ac-
cumulated Hamming weight of Cu is larger than the cur-
rent best value. In addition, we examine nodes in ascending
order of their threshold values, thus heuristically attempt-
ing to find a small fixed point faster. To further simplify the
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GreedyFull algorithm, we propose GreedySub, which
only examines the seeded fixed points for nodes v if they
have never been set to state 1 under Cu for each node u that
is examined in previous iterations.

As shown in the full version, the time complexity of the
framework is O(n2 ·q+n2m) where q is the runtime of a sin-
gle greedy selection process. Consequently, the time com-
plexities of GreedyNP/Thresh and GreedySub/Full
are O(n2m) and O(n3m) respectively.

6 Experimental Results
We conduct extensive experiments to investigate the perfor-
mance of the heuristics across several scenarios. Overall,
our results demonstrate high effectiveness of the heuristics
in real-world networks.

6.1 Experimental Setup
Datasets. We select the networks based on their sizes, diver-
sity and application areas. Overall, we evaluate the heuristics
on 13 real-world networks from various domains (listed in
Table 1) and on Erdös Rényi (Gnp) random networks.

Dataset Type n m Max deg
router Infrastructure 2,113 6,632 109
power Infrastructure 5,300 8,271 19
twitch Social 7,126 35,324 720
retweet Social 7,252 8,060 1,884
lastfm Social 7,624 27,806 216
arena Social 10,680 24,316 205
gnutella Peer-to-Peer 10,876 39,994 103
auto Infrastructure 11,370 22,002 2,312
astroph Coauthor 17,903 196,972 504
condmat Coauthor 21,363 91,286 279
facebook Social 22,470 170,823 709
google+ Social 23,613 39,182 2,761
deezer Social 28,281 92,752 172

Table 1: List of networks
Heuristics and baselines. We evaluate the performance

of the proposed greedy heuristics by comparing with the fol-
lowing baselines: (1) DegDis: a minimization version of
the selection method proposed in (Chen, Wang, and Yang
2009); (2) Random: select nodes randomly. We also con-
sider other methods that select nodes with a smallest value
of the metrics: (3) Pagerank, (4) Distance (closeness
centrality) which are also widely used by others as base-
lines (Yao et al. 2015; Kempe, Kleinberg, and Tardos 2003).

Experimental scenarios. We consider the following
three cases in investigating the effectiveness of the above
heuristics: (1) random thresholds, (2) uniform thresholds,
and (3) Gnp networks with increasing sizes. The details of
each setting are given in later sections.

Evaluation metric. We use the approximation ratio γ =
obj/OPT as the evaluation metric, where OPT is the op-
timal objective (i.e., the Hamming weight of a minimum
nontrivial fixed point) of a problem instance, computed by
solving the proposed ILP using the Gurobi solver (Gurobi
Optimization), and obj is the objective value returned by a
heuristic. We remark that γ ≥ 1 and an algorithm with a
lower γ gives a better solution.

Machine and reproducibility. All experiments were per-
formed on Intel Xeon(R) Linux machines with 64GB of
RAM. Our source code (in C++ and Python), documenta-
tion, and selected datasets are available in the github reposi-
tory mentioned at the end the abstract.

6.2 Experimental Results
We summarize the results produced by the heuristics under
the three experimental scenarios mentioned earlier.

Random thresholds. We first study the scenario where a
threshold value is assigned to each node v randomly from
the range [3, deg(v) + 1]. This assignment guarantees that
there are no constant-1 nodes as the NMIN-FPE would
become efficiently solvable in that case by Theorem 5.1.
The random threshold assignment is a way to cope with
the incomplete knowledge of the actual threshold values of
nodes (Kempe, Kleinberg, and Tardos 2003).

The results, averaged over 10 initializations of thresh-
old assignments, are shown in Fig. 2 under the log10
scale. Overall, we observe that the proposed Greedy
family significantly outperforms other baselines. Specif-
ically, the averaged approximation ratios (over all net-
works) of GreedyFull/NP/Sub are less than 3, which
is over 10 times better than those of baselines on most net-
works. Within the Greedy family, the simplest heuristic
GreedyThresh shows the lowest performance, with an
averaged approximation ratio of 4.34. Nevertheless, we re-
mark that this empirically constant ratio is significantly bet-
ter than that of other baselines. Further, GreedyThresh,
which is the most efficient among all its counterparts, finds
solutions in minutes for most of the selected networks.

Uniform thresholds. We assign all nodes the same
threshold τ > 3. We consider different values of the uniform
threshold τ to study how the heuristics perform. Note that
as τ increases, more constant-0 nodes emerge in the system
because their threshold values are larger than their degrees.
Thus, the uniform-threshold setting pushes the performance
limits of algorithms by (1) setting the thresholds of nodes
to be indistinguishable and (2) introducing a considerable
number of constant-0 nodes which makes it harder for the
heuristics to even find a feasible solution.

We first present analyses on instances of the same network
with different uniform thresholds τ . Due to page limits, we
show results for the Google+ network in Fig. 3; the results
are similar for all other networks where the Greedy family
outperforms the other heuristics in terms of approximation
ratios. In particular, the averaged ratios for heuristics in the
Greedy family are all less than 3 for Google+ network,
with GreedyThresh having the highest averaged ratio
(lower is better) of 2.41. We also observe when the uniform
threshold τ is large enough, many natural heuristics failed to
even find a valid solution due to the presence of a large num-
ber of constant-0 nodes. This experiment demonstrates the
high effectiveness of the proposed framework when nodes
have indistinguishable thresholds.

Next, we fix the uniform threshold τ and analyze the
heuristics across all networks. We have investigated differ-
ent values of τ from 3 to 20, where the Greedy family
again outperforms the other heuristics on most instances,
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Figure 2: The approximation ratios (lower is better) under random threshold setting. The y axis denotes the approximation
ratios of heuristics under the log10 scale. The results are averaged over 10 initializations of threshold assignments.
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Figure 3: The approximation ratios (lower is better) of heuristics on google+ network under uniform threshold τ . The y
axis shows the approximation ratios of heuristics under the log10 scale. Results of several heuristics (DegDis, Pagerank,
Distance, Random) are absent for some instances because they failed to find valid fixed points.
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Figure 4: The approximation ratios (lower is better) of heuristics on networks under uniform threshold setting where τ = 8. The
y axis shows the approximation ratios of heuristics under the log10 scale. Results of several heuristics (DegDis, Pagerank,
Distance, Random) are absent for some instances because they failed to find valid fixed points.

producing results that are over 10 times better than base-
lines. Due to the page limit, we show the results for τ = 8
in Fig. 4. Note we omit the results for networks power and
gnutella because they have no feasible solutions when
τ = 8.

Gnp networks. We study the heuristics on Erdös Rényi
networks with sizes up to 1000 nodes, where thresh-
olds are assigned randomly. We observe that the ratios of
GreedyFull/NP/Thresh are all over 40, and the ra-
tios of GreedySub are as high as 148.48. We remark that
in a Gnp network, the state-1 nodes in a nontrivial mini-
mum fixed point are often surrounded by nodes with similar
thresholds and similar degrees. Our results suggest a lim-
itation of the proposed framework; that is, when networks
exhibit uniformity at the node level, the heuristics might not
correctly choose state-1 nodes to construct a minimum fixed
point. Note that such results are expected since NMIN-FPE
is hard to approximate. We remark that the Greedy family
still outperforms baselines on Gnp networks.

Efficiency. Our results also demonstrate that the proposed
Greedy NP/Sub/Thresh are more efficient than the
ILP solver Gurobi for the tested scenarios. In Table 2, we
show the execution times of Greedy NP/Sub/Thresh
and Gurobi solver on the two largest networks under the
random threshold scenario. (In Table 2, we use “G-” as the
abbreviation for “Greedy”.)

We remark that the heuristics achieve high efficiency
due to the pruning technique. For some networks, Gurobi

runs comparably fast, usually within 5 minutes. Neverthe-
less, Gurobi uses parallelization mechanisms such as mul-
tithreading (over 30 threads are used on each instance)
whereas our heuristics achieve high efficiency while execut-
ing in serial mode.

Network G-NP G-Sub G-Thresh Gurobi

google+ 26.13s 263.64s 32.16s 1153.04s
deezer 104.76s 395.89s 96.22s 794.89s

Table 2: Execution times of heuristics in seconds.

7 Conclusions and Future Work
In this paper, we study the NMIN-FPE problem from both
the theoretical and empirical points of view. We establish the
computational hardness of the problem and propose effec-
tive algorithms for solving NMIN-FPE under special cases
and for general graphs. Our results point to a new way of
quantifying system resilience against the diffusion of neg-
ative contagions and a new approach to tackle the influ-
ence minimization problem. One limitation of the proposed
heuristics is the time complexity. Thus, a future direction is
to develop more efficient heuristics for solving NMIN-FPE.
Another promising direction is to approximate NMIN-FPE
for restricted graph classes such as regular graphs. Lastly,
we plan to extend the model to multi-layer networks and in-
vestigate problems in this new domain.
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