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Abstract

Aggregating opinions of a collection of agents is a ques-
tion of interest to a broad array of researchers, ranging from
ensemble-learning theorists to political scientists designing
democratic institutions. This work investigates the optimal
number of agents needed to decide on a binary issue under
majority rule. We take an epistemic view where the issue at
hand has a ground truth “correct” outcome and each one of
n voters votes correctly with a fixed probability, known as
their competence level or competence. These competencies
come from a fixed distribution D. Observing the competen-
cies, we must choose a specific group that will represent the
population. Finally, voters sample a decision (either correct
or not), and the group is correct as long as more than half the
chosen representatives voted correctly. Assuming that we can
identify the best experts, i.e., those with the highest compe-
tence, to form an epistemic congress we find that the optimal
congress size should be linear in the population size. This re-
sult is striking because it holds even when allowing the top
representatives to become arbitrarily accurate, choosing the
correct outcome with probabilities approaching 1. We then
analyze real-world data, observing that the actual sizes of rep-
resentative bodies are much smaller than the optimal ones our
theoretical results suggest. We conclude by examining under
what conditions congresses of sub-optimal sizes would still
outperform direct democracy, in which all voters vote. We
find that a small congress would beat direct democracy if the
rate at which the societal bias towards the ground truth de-
creases with the population size fast enough, and we quantify
the speed needed for constant and polynomial congress sizes.

Introduction
Modern governments often take the form of a representa-
tive democracy, that is, a college of chosen representatives
form a congress to make decisions on behalf of the cit-
izenry. Clearly, the performance of the congress depends
on the number of representatives, and this optimal number
of representatives has been subject to great debate.1 In the
Federalist Paper No. 56, Madison argued that there should
be a representative for every thirty thousand inhabitants.

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1See activists at https://thirty-thousand.org who advocate for
enlarging the congress.

In response, every ten years between 1785 and 1913, the
American congress was enlarged–in aggregate from 65 to
435–adapting to evolving state populations (Szpiro 2010).
However, since 1913, this number of representatives has re-
mained constant, bringing the current number of inhabitants
per representative well below Madison’s objective.

Quantitative research rationalizing the optimal congress
size dates back to at least the 1970s. Taagepera (1972) con-
cluded that the number of representatives should be the cube
root of the population size. These findings are regarded as
seminal (Jacobs and Otjes 2015) and have influenced po-
litical decisions and referendums, such as the 2020 Italian
referendum to reduce the size of both chambers from 945
to 600 parliamentary (Margaritondo 2021; De Sio and An-
gelucci 2019).

Yet, recent work using machinery from physics and eco-
nomics revisited these claims and showed that the optimal
number should be larger, at least proportional to the square
root of the population size (e.g., Auriol and Gary-Bobo
2012; Margaritondo 2021). In particular, Magdon-Ismail
and Xia (2018) explored an epistemic setup that groups vot-
ers into pods of size L, and each pod selects one represen-
tative. The authors find that the congress size ought to be
linear under this model when voting is cost-less.

Note that our setup for decision-making in a congress on
binary issues, applied here in a democratic context, resem-
bles an ensemble of classifiers in machine learning: classi-
fiers are “voters” who predict a binary outcome, and they
collectively decide, through a majority rule, on the deci-
sion’s outcome (Magdon-Ismail and Xia 2018). To obtain a
good ensemble of classifiers, one can measure the accuracy
of all classifiers and keep only the most accurate ones. De-
signers have used these ideas to reduce uncertainty in deci-
sions and increase the classifiers’ performance by combining
their predictions (Yang 2011; Polikar 2012; Sagi and Rokach
2018).

We can now reformulate our research question in these
terms: how many agents should we include to maximize the
accuracy of the decision?

Our Contribution
Through novel proofs techniques, we strengthen the pes-
simistic results of Magdon-Ismail and Xia (2018) for
congress under the epistemic approach, finding that even
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with the ability to identify the most accurate agents to form
a congress, the optimal number of representatives remains
linear in the size of the population. However, we find that all
is not lost for congresses of a more practical nature: we fol-
low this up with comparisons of different sizes and identify
conditions for smaller congresses to be more accurate than
when the entire society votes.

In the epistemic setting, voters decide on a binary issue
and aim at differentiating between the ground truth correct
choice, the value 1, and its alternative, 0. Each voter has a
competence level in [0, 1] representing the probability they
vote correctly. Further, the competence levels of the popula-
tion are drawn according to some distribution D. We take the
idealized view that, given a target size k, we can identify the
k most competent voters in society (that is, the first k order
statistics from the competence levels p1, . . . , pn where each
pi ∼ D) to form the congress. These members then vote on
the issue, and the outcome is that of the majority. We first ob-
serve that, if voters’ competence levels are the expected val-
ues of the order statistics from uniform distribution U(0, 1),
the optimal size of congress is between (3 − 2

√
2)n and n

2 .
For arbitrary distributions where the maximum competence
level is bounded away from 1 and the inverse cumulative dis-
tribution function is Lipschitz continuous, the optimal size is
Θ(n) with more refined bounds based on the distribution.

The assumption that we can identify the k best agents is
purposefully idealistic; we give the congress its best shot at
favoring smaller sizes by granting it an unrealistically pow-
erful selection procedure. This assumption strengthens our
claim: the optimal congress size is linear with the popula-
tion size even under the generous assumption that only the
most competent agents represent. Second, our first analysis
of the uniform distribution in [0, 1] allows the best agents’
competence to converge towards 1 as the population size in-
creases, again providing an unrealistic assumption favoring
small congress sizes. Under this extra generous assumption,
we prove that the optimal congress size remains, strikingly,
linear with the population size — later, we generalize this to
more realistic distributions.

We then turn to study real-world data on the sizes of coun-
tries’ representative bodies. Here, we notice that congresses
in the real world are on the order of the cube root of the
population size, much smaller than the optimal (linear) size
our theoretical results suggest. We then seek to understand
when real-world congress sizes can be deemed effective: we
identify conditions on the distribution of competence level
under which a smaller congress outperforms the majority.
If the population is unbiased or biased towards 0, a congress
composed of experts with expertise levels above 0.5 trivially
outperforms the majority. We further find that, for a popula-
tion whose average level of competence is biased above 0.5,
a relatively small congress can still be better than the major-
ity as long as the bias is small enough. We characterize this
threshold for both single-agent and nr-sized congresses.

Related Work
The use of an epistemic approach, relying on voting to ag-
gregate objective opinions, is well studied in computational

social choice (Brandt et al. 2016). One particularly signif-
icant result is the Condorcet Jury Theorem (De Condorcet
1785; Grofman, Owen, and Feld 1983), which shows that in
the limit, a majority vote by an increasing number of inde-
pendent voters biased towards the correct outcome will be
correct with probability approaching 1. Note that this epis-
temic setup models legislative decisions or referendums in
which one choice is inherently more desirable for society —
yet, this correct outcome is not known a priori, and agents
are trying to uncover it. Subsequent work has studied exten-
sions of the Condorcet Jury Theorem in instances where the
voters are inhomogeneous, dependent, or strategic, as sum-
marized in a survey paper by Nitzan and Paroush (2017).

The first work about the optimal size of parliaments fo-
cused on maximizing parliament’s efficiency (Taagepera
1972). For them, maximizing efficiency was equivalent to
minimizing the communication time spent on discussions
with constituents — the authors ultimately stated that the
average time spent talking to the constituents per congress-
members should be equal to the time spent talking to the
other congress-members. Hence, Taagepera (1972) argued
that the optimal congress size should follow a “cube root
law”. Margaritondo (2021) revisited this work and found
a flaw in the original proof, arguing that the optimal size
under this model should instead be Θ(

√
n). Empirical pa-

pers (Taagepera 1972; Auriol and Gary-Bobo 2007) focused
on finding the optimal number of representatives have used
country data to back up the “square root law” result. Jacobs
and Otjes (2015), on the other hand, investigate potential
causal effects of different congress sizes.

The work of Auriol and Gary-Bobo (2012) also aims to
derive the optimal number of representatives for a society.
However, their model lies in stark contrast to the epistemic
one: they assume that voters have preference-based utilities,
with an uninformative prior, and the representatives are cho-
sen uniformly at random from society. They too reach the
conclusion that the optimal size of congress is proportional
to the square root of the population size. Zhao and Peng
(2020) look at the optimal number of representatives in a
social network. They consider a set of nodes representative
if together they can reach all other nodes in at most m steps
(where m = Θ(log n) is an exogenous threshold). The goal
is to find the minimum size of such a set. Under a certain
class of realistic social networks, they find that the minimum
should be proportional to nγ for some 1

3 ≤ γ ≤ 5
9 .

Finally, we build upon the work of Magdon-Ismail and
Xia (2018). There, the authors consider a model for rep-
resentative democracy where agents are grouped into K
groups of sizes L and each chooses one representative per
group. Importantly, the competencies are drawn from a dis-
tribution D only after the agents are grouped. The authors
then derive the group size that maximizes the probabil-
ity that the representatives make the correct decision. They
show the optimal group size is constant, so the optimal num-
ber of representatives (which is, in the simplest setup, the
population size divided by the number of groups) should
then be linear in the population size. The fact that the level of
competence is drawn after grouping people imposes a trade-
off between how accurate the representatives will be and
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how many representatives (n/L) there are. Indeed, the best
agent in each group has a competence level that is the top
order statistic of the distribution with L draws. For instance,
the top level of competence from a uniform distribution is
in expectation 1− 1

L+1 , which gets large only if the number
of groups n/L is small. Importantly, the trade-off implied
by the model favors large congresses. Yet, one could won-
der whether the optimal congress size remains linear if one
breaks with this implicit trade-off allowing the highest com-
petencies to become arbitrarily large. This is precisely the
gap we fill.

Model

Let n be the number of voters in the society. Following the
epistemic approach, voters need to choose between two op-
tions, 0 and 1, where 1 is assumed to be the ground truth.
Each voter i is endowed with a level of expertise (or com-
petence) pi ∈ [0, 1], which is the probability that she votes
“correctly” (i.e., votes for option 1). Depending on the in-
stance, we will sometimes assume that the pis are sampled
from some distribution D whose support is contained in
[0, 1] and other times assume the pis are deterministic (per-
haps also depending on n which will always be clear from
context).

Given p1, . . . , pn, we sort voters by decreasing compe-
tence level, denoted by p(1) ≥ · · · ≥ p(n), where p(i) is the
competence level of the ith best voter. (Note that, for nota-
tional convenience, this is the reverse of normal order statis-
tics.) Let X(1), . . . , X(n) be Bernoulli random variables de-
noting their votes, with X(i) = 1 meaning a correct vote for
the ith best voter and 0 otherwise; the X(i)s are conditionally
independent given p(i)s, and Pr[X(i) = 1 | p(i)] = p(i).

A congress of size k is composed of the k best voters in
society and makes a correct decision when a strict major-
ity is correct,

∑k
i=1 X(i) > k/2.2 One may envision other

rules to select the congress members, for example, the group
representatives analyzed by Magdon-Ismail and Xia (2018).
Here we take the best k voters, and this can be seen as a
best-case scenario for accuracy. Strikingly, as we will show,
even under this strong assumption, the optimal number of
representatives is already very large, which suggests that the
optimal number would even be larger in more realistic sce-
narios.

Although the assumption that we can sample the k best
experts is unrealistic if one thinks at the democratic context,
we could argue that finding the k most accurate classifiers
in an ensemble is indeed realistic. In any case, this sampling
method favors small congresses while allowing the sampled
congress to reach the maximal probability of making the cor-
rect decision. Our conclusions hence read that despite the
generous assumptions, a large number of voters are needed
to maximize a collective’s chance to make a correct decision.

2A strict rather than weak majority here corresponds to tie-
breaking in favor of the incorrect outcome. Tie-breaking in the
other direction would not asymptotically change our results.

Optimal Congress Size
In this section, we prove theoretical bounds on the optimal
size of congress for several natural distributions. We begin
by formally stating our problem.

For fixed voter competencies p(1) ≥ · · · ≥ p(n), we de-
fine K⋆ to be the optimal size of congress, the size k that
maximizes the probability that the representatives make a
correct decision (for convenience breaking ties in favor of
an arbitrary odd k3). Formally,

K⋆ ∈ argmax
1≤k≤n

{
Pr

[
k∑

i=1

X(i) >
k

2

∣∣∣∣ X(i) ∼ Bern(p(i))

]}
.

We note that since K⋆ is a function of the voter compe-
tencies, if these competencies are random samples, then
K⋆ is a random variable. However, we sometimes assume
for tractability that the competencies match their expecta-
tion, that is, p(i) is exactly equal to the expectation of the
(n+1− i)’th order statistic of n draws from D. In this case,
K⋆ is a deterministic value for each n.

For fixed voter competencies p(1) ≥ · · · ≥ p(n), let Ej
k

be the event that exactly j of the top experts out of k are
correct. Our characterization of the optimal size K⋆ relies
on the following key lemma.
Lemma 1. For fixed competencies p(1) ≥ · · · ≥ p(n), for
all odd k ≤ n with k = 2ℓ+ 1,

• If Pr[Eℓ+1
k ]

Pr[Eℓ
k]

<
p(k+1)p(k+2)

(1−p(k+1))(1−p(k+2))
, then K⋆ ̸= k.

• If Pr[Eℓ+1
k ]

Pr[Eℓ
k]

>
p(k+1)p(k+2)

(1−p(k+1))(1−p(k+2))
, then K⋆ ̸= k + 2.

The proof of the lemma involves comparing a congress
of some specific size k to one of size k + 2 (recall that we
chose K⋆ to be odd, so we may as well restrict ourselves
to odd k). Clearly, if the top k + 2 experts have a higher
chance of being correct than k, then k cannot be optimal (and
vice-versa). Importantly, this gives us a sufficient condition
to rule out certain values of k. For example, if we know that
for all k < c the first condition of the lemma holds, then that
implies K⋆ ≥ c.

Proof of Lemma 1. For any k ≤ n, let qk =∑k
j=⌊k/2⌋+1 Pr[E

j
k ] be the probability that a congress of

size k will be correct. We have that K⋆ ∈ argmaxk≤n qk.
Fix p(1) ≥ · · · ≥ p(n) and a specific k = 2ℓ + 1. We
will show that qk+2 > qk (resp. <) is equivalent to
Pr[Eℓ+1

k ]

Pr[Eℓ
k]

<
p(k+1)p(k+2)

(1−p(k+1))(1−p(k+2))
(resp. >). If qk+2 > qk

(resp. <), then K⋆ ̸= k (resp. k + 2) as that would imply
K⋆ is not optimal.

Let us now consider qk+2 − qk. The only way the two
new experts can change the outcome from incorrect to cor-
rect is when exactly ℓ of the top k experts were correct (so
the majority of k were incorrect), and the two new experts
are correct. Conversely, the only scenario in which a correct
outcome becomes incorrect is when exactly ℓ+1 of the top k

3Note that there must always be an optimal k that is odd, as for
any even k, due to our strict majority constraint, k − 1 must have
overall accuracy at least as high.
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experts are correct while the two new experts are incorrect.
Since Ej

k is the event that exactly j of the top k experts out
of n are correct, we can formally write the above as

qk+2 − qk = Pr[Eℓ
k] · p(k+1)p(k+2)

− Pr[Eℓ+1
k ] · (1− p(k+1))(1− p(k+2)).

Rearranging this yields the two equivalent inequalities pre-
viously stated.

For a set of representatives S ⊆ [k], let w(S) =∏
i∈S p(i) ·

∏
i∈[k]\S(1−p(i)) be the probability that exactly

those in S are correct (and those in [k]\S are incorrect). We
then have the following.

Lemma 2. For each Ej
k ,

Pr[Ej
k ] =

1

k − j

∑
S⊆[k]

|S|=j+1

w(S)
∑
i∈S

1− p(i)

p(i)
.

Proof. By the definition of Ej
k , Pr[Ej

k ] =
∑

S⊆[k]
|S|=j

w(S). We

then note that∑
S⊆[k]
|S|=j

w(S) =
1

k − j

∑
S⊆[k]

|S|=j+1

∑
i∈S

w(S \ {i})

because when we count the sets S of size j by first selecting
a set of size j+1 and then removing one of its j+1 elements,
each set of size j is counted exactly k − j times. Therefore,

Pr[Ej
k ] =

1

k − j

∑
S⊆[k]

|S|=j+1

∑
i∈S

w(S \ {i})

=
1

k − j

∑
S⊆[k]

|S|=j+1

w(S)
∑
i∈S

1− p(i)

p(i)
,

as needed.

Armed with these lemmas, we can now move to proving
bounds on the optimal congress size.

Standard Uniform Distribution
First, we focus on the case where competence levels are
drawn from uniform distribution U(0, 1). For tractability,
as discussed in the problem statement, we assume that the
competence levels are exactly equal to their expectation, i.e.,
p(i) = n+1−i

n+1 (see e.g., Ma (2010)). In this case, the com-
petence levels of the top experts approach 1 asymptotically.
Note that this is an unrealistic assumption that, again, acts in
favor of small congresses. Including it emphasizes the strik-
ing nature of the result: Even with top experts becoming ar-
bitrarily accurate and the ability to identify the most accurate
members of society, the optimal size of congress remains a
constant fraction of the population.

Theorem 1. Suppose p(i) =
n+1−i
n+1 . Then, (3− 2

√
2) · n−

O(1) ≤ K⋆ ≤ 1
2 · n+O(1).

Proof. Recall that we can focus only on odd k. Fix
some odd k ≤ n where k = 2ℓ + 1 for some non-
negative integer ℓ. Our goal will be to compare Pr[Eℓ+1

k ]

Pr[Eℓ
k]

and p(k+1)p(k+2)

(1−p(k+1))(1−p(k+2))
= (n−k)(n−k−1)

(k+1)(k+2) in order to apply
Lemma 1.

By Lemma 2 with j = ℓ and using the fact that k − ℓ =
ℓ+ 1,

Pr[Eℓ
k] =

1

ℓ+ 1

∑
S⊆[k]

|S|=ℓ+1

w(S)
∑
i∈S

i

n+ 1− i
. (1)

We begin with the lower bound. Let us consider the inner
sum of Equation (1). We have that for all S,∑

i∈S

i

n+ 1− i
≥ 1

n

∑
i∈S

i ≥ 1

n

ℓ+1∑
i=1

i =
(ℓ+ 1)(ℓ+ 2)

2n

where the first inequality holds because i ≥ 1 for all i and
the second inequality holds because |S| = ℓ+1 and S ⊆ [k]
hence the minimum it could sum to is that of the smallest
ℓ + 1 positive integers. As this bound is independent of S,
we can pull it out of the outer sum to yield

Pr[Eℓ
k] ≥

ℓ+ 2

2n

∑
S⊆[k]

|S|=ℓ+1

w(S) =
k + 3

4n
· Pr[Eℓ+1

k ]

where the last inequality holds because ℓ+ 2 = k−1
2 + 2 =

k+3
2 . This allows us to write Pr[Eℓ+1

k ]

Pr[Eℓ
k]

≤ 4n
k+3 , so in order to

invoke the first item of Lemma 1 to show a specific value
of k is not optimal, we need a sufficient condition for k to
guarantee

4n

k + 3
<

(n− k)(n− k − 1)

(k + 1)(k + 2)
. (2)

Note that Equation (2) is implied by 4n < (n−k−1)2

k+1 which
we can rearrange to (k + 1)2 − 6n(k + 1) + n2 > 0. The
left hand side of the inequality is a quadratic in (k+1) with
roots at (3 ± 2

√
2) · n. Since the squared term is positive

and hence the quadratic is only non-positive between the two
roots, as long as (k + 1) < (3 − 2

√
2) · n, the inequality

holds. Along with the first item of Lemma 1, this implies the
desired (3− 2

√
2) · n−O(1) lower bound.

Next, we will show the upper bound. In the inner sum-
mand of Equation (1), i ∈ [k] so i ≤ k, and hence i

n+1−i ≤
k

n+1−k . This yields

Pr[Eℓ
k] ≤

1

ℓ+ 1

∑
S⊆[k]

|S|=ℓ+1

w(S)
∑
i∈S

k

n+ 1− k

≤ 1

ℓ+ 1

∑
S⊆[k]

|S|=ℓ+1

w(S) · |S| · k

n+ 1− k

=
k

n+ 1− k

∑
S⊆[k]

|S|=ℓ+1

w(S) =
k

n+ 1− k
Pr[Eℓ+1

k ].
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Here, we get that Pr[Eℓ+1
k ]

Pr[Eℓ
k]

≥ k
n+1−k . As with the lower

bound, to invoke the second item of Lemma 1, we need a
sufficient condition for

k

n+ 1− k
>

(n− k)(n− k − 1)

(k + 1)(k + 2)
. (3)

Equation (3) is equivalent to

k(k + 1)(k + 2) > (n− k − 1)(n− k)(n− k + 1).

As both sides are the product of three consecutive integers,
this will be true as long as n − k − 1 < k, or equivalently
k+2 > n

2 + 3
2 . Applying Lemma 1 yields the desired upper

bound.

Hence, we have proved that for competencies equal to the
expectation of U [0, 1] order statistics, a constant fraction of
the total population is necessary to maximize the probability
the representatives make the correct decision. We conjecture
that K⋆ is in fact close to n/4 in this set up (see simulations
in Appendix B).

Distributions Bounded Away From 1
Next, we consider a broad class of distributions that do not
allow for arbitrarily accurate experts. Unlike in the previous
section, we do not fix p(i) to be their expectation; instead,
they are random draws from D. Under relatively mild con-
ditions, we show that the optimal size K⋆ grows linearly in
the population size with high probability.

Theorem 2. Let D be any continuous distribution sup-
ported by [L,H] with cumulative distribution function F (·).
If 0 < L < 1

2 < H < 1, and F−1(·) is M -Lipschitz con-
tinuous with 0 < M < ∞,4 then, with probability at least
1−4e−2nε2 the competency draws will yield an optimal K⋆

such that

cHn−O(1) ≤ K⋆ ≤ cLn+O(1)

for all n and ε > 0, where cH = 1− F

(
1

1+
√

1−H
H

+Mε

)
and cL = 1− F

(
1

1+
√

1−L
L

−Mε

)
.

We remark that L ≥ 0 is sufficient for the lower bound
cHn − O(1) ≤ K⋆ to hold and vice-versa, H ≤ 1 is suf-
ficient for the upper bound to hold. Both of these bounds
individually hold with probability at least 1− 2e−2nε2 .

To prove Theorem 2, we will make use of the following
well-known concentration inequality.

Lemma 3 (Dvoretzky–Kiefer–Wolfowitz inequality, see
e.g., Massart 1990). Let p(1) ≥ · · · ≥ p(n) be
n sorted i.i.d. draws from D. For every ε > 0,
Pr

[
∀i ∈ [n],

∣∣F (p(i))− n−i
n

∣∣ ≤ ε
]
≥ 1− 2e−2nε2 .

4This condition is satisfied when the PDF of D is lower
bounded by 1/M , which is satisfied by, e.g., uniform, normal, and
beta distributions truncated to [L,H].

Lemma 3 implies that, with probability at least 1 −
2e−2nε2 , for every i ∈ [n],

∣∣F (p(i))− n−i
n

∣∣ ≤ ε. Since F−1

is assumed to be M -Lipschitz continuous,∣∣∣∣p(i) − F−1

(
n− i

n

)∣∣∣∣ ≤ Mε. (4)

We are now ready to prove Theorem 2. We show the lower
bound here; the proof for the upper bound uses similar tech-
niques and is relegated to Appendix A.

Proof of Theorem 2. We will show that both the lower
bound cHn − O(1) ≤ K⋆ and the upper bound K⋆ ≤
cLn+O(1) each occur with probability at least 1−2e−2nε2

which, by a union bound, proves the desired probability. As
previously mentioned, we will only prove the lower bound
here. Fix arbitrary odd k and n with k ≤ n where k = 2ℓ+1
for some non-negative integer ℓ. We will give sufficient con-
ditions as a function of n and k for which we can apply
Lemma 1.

First, by Lemma 2 with j = ℓ, Pr[Eℓ
k] =

1
k−ℓ

∑
S⊆[k]

|S|=ℓ+1

w(S)
∑

i∈S
1−p(i)

p(i)
. Because the support of

D is upper-bounded by H , p(i) ≤ H for all i with prob-
ability one. So,

∑
i∈S

1−p(i)

p(i)
≥ (ℓ + 1) 1−H

H . Noting that

ℓ+1 = k+1
2 = k− ℓ and Pr[Eℓ+1

k ] =
∑

S⊆[k]
|S|=ℓ+1

w(S), after

rearranging we have Pr[Eℓ+1
k ]

Pr[Eℓ
k]

≤ H
1−H . Further, we note that

p(k+1)p(k+2)

(1−p(k+1))(1−p(k+2))
≥ p2

(k+2)

(1−p(k+2))2
.

Now, if we want to apply the first item of Lemma 1 to
show some k is not optimal, it suffices to require that

p2(k+2)

(1− p(k+2))2
>

H

1−H
⇐⇒ p(k+2) >

1

1 +
√

1−H
H

.

(5)
Relying on Equation (4), it holds that p(k+2) ≥
F−1

(
n−k−2

n

)
−Mε. If we require

F−1

(
n− k − 2

n

)
−Mε >

1

1 +
√

1−H
H

, (6)

then Equation (5) is satisfied and hence so will the condition
of Lemma 1, which implies that such k cannot be optimal.

Equation (6) gives k
n ≤ 1− F

(
1

1+
√

1−H
H

+Mε

)
− 2

n , so

K⋆

n
≥ 1− F

 1

1 +
√

1−H
H

+Mε

− 2

n
.

Multiplying by n yields the desired lower bound.

This proves that for competencies drawn from an arbitrary
distribution whose support is bounded away from 1, a con-
stant fraction of the total population is needed to maximize
the probability that the representatives make the correct de-
cision on behalf of the entire population.
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We illustrate Theorem 2 by distribution D = U(0.1, 0.9).
Letting ε =

√
logn
2n , one can check that 0.186n ≤ K⋆ ≤

0.813n with probability at least 1 − 4
n for sufficiently large

ns.

Can a Small Congress Outperform Direct
Voting?

Our theoretical results from the previous section suggest that
the optimal size of a congress should be linear in the size of
the population. However, this may not be feasible for many
scenarios, and there are other desiderata one must consider
in choosing an “optimal” size. Hence, we now turn to com-
paring how well different sizes of congresses perform in the
epistemic model.

As a baseline, we will compare the accuracy of a congress
to the accuracy of direct democracy in which all n members
of society vote. This comparison is well-motivated by classic
results such as the Condorcet Jury Theorem and extensions
thereof, which show that the entire society will converge to
the correct answer if and only if the competency distribution
is biased toward the correct answer, that is, Ep∼D[p] > 1/2.
We aim to find bounds on how biased this distribution must
be for congresses of different sizes to outperform the entire
society.

We now state our problem formally. We will be interested
in how the cutoff of the bias of the competency distribution
varies with n; hence, we will allow the distribution D to de-
pend on n by having a distribution Dn for each n. We use
Fn and fn to denote the CDF and PDF of Dn respectively.
Let Γp

n(k) be the gain in probability of correctness by using
a congress of size k instead of the entire population, given
competence levels p = (p(1), . . . , p(n)):

Γp
n(k) = Pr

[
k∑

i=1

X(i) >
k

2

∣∣∣∣ X(i) ∼ Bern(p(i))

]

− Pr

[
n∑

i=1

X(i) >
n

2

∣∣∣∣ X(i) ∼ Bern(p(i))

]
.

Similar to the definition of K⋆, Γp
n(k) is a random vari-

able whose randomness comes from the random draws of
pi ∼ Dn. We aim at identifying, for certain values of k, for
what kinds of distributions Dn we have Γp

n(k) > 0 with high
probability as n grows large.

Dictatorship
First, we consider an extreme case: when can a single voter
outperform the entire society? In particular, we identify con-
ditions under which Γp

n(1) > 0 or Γp
n(1) < 0. We show that

if the distributions Dn put high enough probability mass on
competence levels near 1 and its mean EDn

[p] is not much
larger than 1/2, then Γp

n(1) > 0 with high probability as n
grows large, and Γp

n(1) < 0 on the contrary. The probability
mass conditions are satisfied by many natural classes of dis-
tributions; we give several examples (e.g., uniform and beta
distributions) in Appendix C.
Theorem 3. Let k = 1.

• Suppose EDn
[p] ≤ 1

2 + a
√

logn
n and fn(x) ≥ C(1 −

x)β−1 for x ∈ [1− δ, 1] for some constants a,C, β, δ >

0. If a <
√

EDn [p(1− p)] ·min{1, 2/β}, then, with

probability at least 1− n−Ω(1), Γp
n(1) > 0.

• Suppose EDn
[p] ≥ 1

2 + a
√

logn
n and fn(x) ≤ C for

x ∈ [1− δ, 1] for some constants a, C, δ > 0. If a > 1√
2

,

then with probability at least 1− n−Ω(1), Γp
n(1) < 0.

We sketch a proof of the theorem; the full proof is in Ap-

pendix A. When EDn
[p] = 1

2 +O(
√

logn
n ), by Hoeffding’s

inequality, the entire population makes a correct decision
with probability 1−O(n−c1) for some constant c1, while by
our assumption on Dn the top expert is correct with proba-
bility p(1) = 1−O(n−c2). We identify conditions on Dn for
which c1 < c2 or c1 > c2.

Real-world and Polynomial-sized Congress
We now turn our attention to more practical congress sizes.
As discussed in the introduction, prior work has suggested
that the size of congress should be near the cube root of
the population size. Exploring real-world data for 240 legis-
latures (the data comes from https://en.wikipedia.org/wiki/
List of legislatures by number of members; we considered
the number of representatives to be the total number of rep-
resentatives in both chambers), we re-ran regression analysis
of Auriol and Gary-Bobo (2012) on the log of the congress
sizes of many countries compared to the log of the popula-
tion size, which yields a slope of 0.36 (with intercept −0.65
and coefficient of determination R2 = 0.85)), suggesting
k = Θ(n0.36). See results in Appendix B.

Next, we numerically investigate how congresses of this
size perform compared to direct democracy with different
levels of bias. We consider k = n0.36 and Dn = U(L +
εn, 1 − L) such that EDn

[p] = 1+εn
2 . So the society is

slightly biased toward the correct answer. We identify se-
quences (εn)∞n=1 such that a congress of size k outperforms
direct democracy for sufficiently large n.

The simulations were run on a MacBook Pro as follows:
for a given distribution, we sample n competencies and votes
associated with these competencies. We perform two major-
ity votes — with all the voters and with the top k voters.
Repeating this operation 1, 000 times, we estimate the prob-
abilities that the majority of all voters (Direct Democracy)
and k voters (Representative Democracy) are correct. Fig-
ure 1 displays the probabilities and 95% confidence inter-
vals for different population sizes, with L = 0.4. Additional
simulations are located in Appendix B.

Let us now formalize and prove this result for general
distributions. If the average competence level of the popu-
lation, EDn [p], is larger than 1

2 by a constant margin, then
both the entire population and a congress of size nr will
be correct with probabilities that are exponentially close to
1. Hence, again, to make things more interesting, we are
concerned with the case where EDn

[p] = 1
2 + εn with

0 < εn < o(1). We identify conditions on εn, n and Dn
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Figure 1: Estimates of Pr[
∑k

i=1 X(i) >
k
2 | p] (Representative Democracy) and Pr[

∑n
i=1 X(i) >

n
2 | p] (Direct Democracy)

as a function of the population size for different values of εn, with k = n0.36 and Dn = U [0.4 + εn, 0.6]. For large εn, the
population size needs to reach a critical mass for the congress to outperform direct democracy.

under which Γp
n(k) > 0 or Γp

n(k) < 0. The following result
is proved in Appendix A.

Theorem 4. Let k = nr for some constant 0 < r < 1.

• Suppose EDn
[p] ≤ 1

2 + a
√

logn
n , and 1 − Fn(

1
2 +

α
√

log k
k ) ≥ k

n+Ω(
√

logn
n ) for some constants a, α > 0.

If a <
√
EDn [p(1− p)] and α > a

2
√

r·EDn [p(1−p)]
, then,

with probability at least 1− n−Ω(1), Γp
n(k) > 0.

• Suppose EDn
[p] ≥ 1

2 + a
√

logn
n and 1 − Fn(

1
2 +

α
√

log k
k ) ≤ 1

n1+Ω(1) for some constants a, α > 0. If

α < 1
2 and a >

√
rα, then, with probability at least

1− n−Ω(1), Γp
n(k) < 0.

Intuitively, in the first item above, the condition on the
CDF,

1− Fn(
1

2
+ α

√
log k

k
) ≥ k

n
+Ω(

√
log n

n
),

and the condition on α imply that Dn assigns large enough

probability to high competence levels p > 1
2+α

√
log k
k , so a

congress of size nr will be composed of competent enough
experts and hence will beat the entire population. The con-
ditions in the second item are in the opposite direction.

We remark that the above conditions on the relation be-
tween a and α are sharp: for distributions Dn that are con-
centrated around 1/2, we have EDn [p(1 − p)] ≈ 1/4, so
the first condition becomes α > a

2
√

r·1/4
= a√

r
, or equiva-

lently a <
√
rα, while the second condition is the opposite:

a >
√
rα.

Finally, we note that the conditions in Theorem 4 on the
distributions Dn are satisfied by many natural classes of dis-
tributions, e.g., beta distributions and normal distributions
truncated to [0, 1]. We identify more examples in Appendix
C.

Discussion
We have proved that under mild conditions, through the lens
of an epistemic approach, current congresses are run with a
sub-optimal size. However, despite this, it seems that these

smaller congresses can still be cogent by at least beating the
majority under appropriate conditions.

Current debates about the number of representatives in
democracies tend to discuss reductions in size, not increases,
as embodied by a 2020 Italian referendum approved re-
ducing congress’ size from 945 to 600 (De Sio and An-
gelucci 2019). Indeed, even under the assumption that a
larger congress would lead to a “correct” answer more often,
this is clearly not the only desiderata to consider. Even un-
der the strong assumption that the congress members’ votes
reflect those of the top experts in society, congress-members
are costly for the taxpayers. Beyond this, the legitimacy and
representativeness (Michener, Amorim Neto, and Civitarese
2021) of the institution are constantly under scrutiny. De-
signing political institutions relying solely on mathematical
insights could yield unforeseen negative externalities (did
Madison not warn against the confusion of the multitude?).
Cognitive, sociological, and economic knowledge should be
coupled with mathematical analyses to reach a reasonable
trade-off rather than optimizing a single factor.

Incorporating a cost analysis, similar to Magdon-Ismail
and Xia (2018) also seems particularly relevant to quantify
the trade-off between the congress accuracy and its costs for
the constituents. They find that adding a cost polynomial
in the number of representatives and a benefit of choosing
the correct outcome polynomial in the number of voters de-
creases the optimal congress size to O(log n). Finally, this
work supports, to some extent, propositions to constitute as-
semblies of citizens under fluid democracy (Miller 1969;
Blum and Zuber 2016; Green-Armytage 2015; Christoff and
Grossi 2017; Kahng, Mackenzie, and Procaccia 2021; Gölz
et al. 2018; Halpern et al. 2021) that would vote on behalf
of the entire population. Indeed, fluid democracy could yield
very large citizen assemblies deemed desirable by our find-
ings. Further research on the accuracy of such citizen assem-
blies could discuss the influence of the voters’ weight in the
weighted majority’s performance.
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