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Abstract

We propose a new problem setting to study the sequential in-
teractions between a recommender system and a user. Instead
of assuming the user is omniscient, static, and explicit, as the
classical practice does, we sketch a more realistic user behav-
ior model, under which the user: 1) rejects recommendations
if they are clearly worse than others; 2) updates her utility
estimation based on rewards from her accepted recommen-
dations; 3) withholds realized rewards from the system. We
formulate the interactions between the system and such an
explorative user in a K-armed bandit framework and study
the problem of learning the optimal recommendation on the
system side. We show that efficient system learning is still
possible but is more difficult. In particular, the system can
identify the best arm with probability at least 1 − δ within
O(1/δ) interactions, and we prove this is tight. Our finding
contrasts the result for the problem of best arm identification
with fixed confidence, in which the best arm can be identified
with probability 1− δ within O(log(1/δ)) interactions. This
gap illustrates the inevitable cost the system has to pay when
it learns from an explorative user’s revealed preferences on
its recommendations rather than from the realized rewards.

Introduction
Recommender systems (RS) are typically built on the inter-
actions among three parties: the system, the users, and the
items (Tennenholtz and Kurland 2019). By collecting user-
item interactions, the system aims to predict a user’s prefer-
ence over items. This type of problem setting has been ex-
tensively studied for decades and has seen many successes in
various real-world applications, such as content recommen-
dation, online advertising, and e-commerce platforms (Das
et al. 2007; Linden, Smith, and York 2003; Koren, Bell, and
Volinsky 2009; Schafer, Konstan, and Riedl 1999; Gopinath
and Strickman 2011).

Most previous works have modeled the RS users as an un-
known but omniscient “classifier” (Das et al. 2007; Li et al.
2010; Linden, Smith, and York 2003) that allows the system
to query their preference over the candidate items directly.
For instance, any RS algorithm based on supervised learn-
ing has to assume that users have the full information be-
forehand, as its training labels are derived from users’ feed-
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back. However, for at least two reasons, such modeling as-
sumptions of static and omniscient users appear less realis-
tic in many modern RS applications. First, given the huge
size of candidate choices, a typical user is usually not fully
aware of her “true preference” but needs to estimate it via the
interactions with the RS. For instance, an ordinary user on
video-sharing apps like TikTok or review-sharing apps like
Yelp does not have pre-determined rewards on all possible
choices or knows the optimal choice in advance. Instead, she
has to consume the recommendations in order to discover
the desirable content gradually. Second, in many applica-
tions, users simply respond to recommendations with accep-
t/reject decisions rather than reveal their consumed items’
utility. This situation is reflected in most practical recom-
mendation systems nowadays. Platforms like TikTok and
Yelp can easily collect binary feedback like click/non-click
while struggling to evaluate the users’ actual extent of sat-
isfaction (Schnabel et al. 2018). These two limitations chal-
lenge the reliability of existing recommendation solutions
in utility estimation from user feedback and thus shake the
foundation of modern recommender systems.

To address the challenges mentioned above, we intro-
duce a more realistic user behavior model, which hinges
on two assumptions of today’s RS users. Firstly, we be-
lieve the users are also learning the items’ utilities via explo-
ration. Their feedback becomes more relevant to the item’s
utility only after gaining more experience, e.g., consuming
the recommended item. This perspective has been observed
and supported in numerous cognitive science (Cohen, Mc-
Clure, and Yu 2007; Daw et al. 2006), behavior science
(Gershman 2018; Wilson et al. 2014), and marketing sci-
ence studies (Villas-Boas 2004). For instance, Zhang and
Angela (2013) showed through a multi-armed bandit exper-
iment that humans maintain confidence levels regarding dif-
ferent choices and eliminate sub-optimal choices to achieve
long-term goals when they are aware of the uncertain envi-
ronment. These works motivate us to study the recommen-
dation problem under a more realistic user model, where the
user keeps refining her assessment about an item after con-
suming it, and she is willing to explore the uncertainty when
deciding on the recommendations. Formally, we model her
exploration as being driven by her estimated confidence in-
tervals of each item’s reward: she will only reject an item
when its estimated reward is clearly worse than others.
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Secondly, we assume that only the users’ binary responses
of acceptance are revealed to the system, whereas the real-
ized user reward of any consumed items is kept only to the
user (to improve her own reward estimation). This thus gives
rise to an intriguing challenge of learning user’s utility pa-
rameters from only the coarse and implicit feedback of “re-
vealed preference” (Richter 1966). Learning from compara-
tive binary feedback is not a novel setting in both empirical
studies of recommendation systems and online learning lit-
erature (Yue et al. 2012; Yue and Joachims 2011; Komiyama
et al. 2015; Zoghi et al. 2014). However, we adopt a new and
more general perspective to interpret this binary feedback in
the sense that the system does not even know the references
in observed comparisons. We will discuss it more in the re-
lated work. One may naturally wonder why the user does not
simply give all her realized rewards to the system since both
the system and user are learning the best recommendation
for the user. This is certainly an ideal situation but, unfor-
tunately, is highly unrealistic in practice. As we mentioned
before, it is widely observed that very few RS users would
bother to provide detailed feedback (even not numerical rat-
ings). This observation is also supported by the 90-9-1 Rule
for online community engagement, and the “Lazy User The-
ory” (Tétard and Collan 2009) in the HCI community, which
states that a user will most often choose the solution that will
fulfill her information needs with the least effort.

Under this more realistic yet challenging environment, it
is unclear whether efficient system learning is even possible,
i.e., can the system still discover the user’s real preference?
To answer the question, we formulate the interactions be-
tween the system and such an explorative user in a K-armed
bandit framework and study best arm identification (BAI)
with fixed confidence. We design an efficient online learning
algorithm and prove it obtains an O( 1δ ) upper bound on the
number of recommendations to identify the best arm with
probability at least 1 − δ. We also show that this bound is
tight by proving a matching lower bound for any successful
algorithm. Our results illustrate the inevitable gap between
the performance under the standard best arm identification
setting and our setting, which indicates the intrinsic hard-
ness in learning from an explorative user’s revealed prefer-
ences. Our experiments also demonstrate the encouraging
performance of our algorithms compared to the state-of-the-
art algorithms for BAI applied to our learning setup.

Related Work The first related direction to this work is
the problem of best arm identification (BAI) with fixed con-
fidence (Garivier and Kaufmann 2016). Instead of minimiz-
ing regret, the system aims to find the arm with the highest
expected reward with probability 1 − δ, while minimizing
the number of pulls T . The tight instance-dependent upper
bound for T is known to be O(H log 1

δ ) (Carpentier and Lo-
catelli 2016), where H is a constant describing the intrinsic
hardness of the problem instance. In our work, the system
shares the same goal but under a set of more challenging
restrictions posed by learning from an explorative user’s re-
vealed preferences. For example, the system cannot directly
observe the realized reward of each pulled arm. We prove
that under this new learning setup, the budget upper bound

increases from O(log 1
δ ) to O( 1δ ).

There are also previous works that focus on online learn-
ing without access to the actual rewards. The dueling ban-
dit problem proposed in (Yue et al. 2012) modeled partial-
information feedback where actions are restricted to noisy
comparisons between pairs of arms. Our feedback assump-
tion is more challenging than dueling bandit in two aspects.
First, we do not assume the system knows the reference arm
to which the user compares when making her decisions. Sec-
ond, the user’s feedback is evolving over time as she learns
from the realized rewards. Hence, none of existing dueling
bandit algorithms (Yue and Joachims 2011; Komiyama et al.
2015; Zoghi et al. 2014) can address our problem. The unob-
served reward setting is also studied in inverse reinforcement
learning. For instance, Hoiles et al. (Hoiles, Krishnamurthy,
and Pattanayak 2020) used Bayesian revealed preferences to
study if there is a utility function that rationalizes observed
user behaviors. Their work focused on user behavior model-
ing itself while we studied system learning and analyzed the
outcome induced by this type of user behavior assumption.

Another remotely related direction is incentivized explo-
ration in the Internet economy. In such a problem, a sys-
tem aims to maximize the welfare of a group of users
who only care about their short-term utility. Kremer, Man-
sour, and Perry (2014) first studied this problem and devel-
oped a policy that attains optimal welfare by partially dis-
closing information to different users. Follow-up works ex-
tended the setting by allowing users to communicate (Ba-
har, Smorodinsky, and Tennenholtz 2015) and introducing
incentive-compatibility constraints (Mansour et al. 2016;
Mansour, Slivkins, and Syrgkanis 2020). Our motivation
considerably differs from this line of work in three important
aspects. First, incentivized exploration looks at an informa-
tionally advantaged principal whereas our system is in an
informational disadvantageous position, as it has mere ac-
cess to the user’s revealed preferences. Second, their setting
looks at how to influence user decisions through signaling
with misaligned incentives, whereas we are trying to help a
boundedly rational ordinary user to learn their best action in
a cooperative environment. Third, the user in our model is
an adaptive learning agent rather than a one-time visitor to
the system.

Modeling Users’ Revealed Preferences
To study the sequential interactions between a recommender
system and an explorative user, we adopt a stochastic bandit
framework where the time step t is used to index each in-
teraction, and the set of arms [K] = {1, · · · ,K} denote the
recommendation candidates. At each time step t, the follow-
ing events happen in order:
1. The system recommends an arm at to the user;
2. The user decides whether to accept or reject at. If the

user accepts at, realized reward rat,t is disclosed to the
user afterwards.

3. The system observes the user’s binary decision of accep-
tance or not, i.e., the revealed preference (Richter 1966).

From the user’s perspective, we denote the true reward
of each arm i ∈ [K] as µi, and the realized reward after
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each acceptance of arm i is drawn independently from a
sub-Gaussian distribution with mean µi and unit variance.
The system has a long-term objective and aims to find the
best arm while minimizing the total number of recommen-
dations. This renders our problem a best arm identification
(BAI) problem with fixed confidence but based on partial in-
formation about the rewards. Throughout the paper, we as-
sume without loss of generality that µ∗ = µ1 > µ2 ≥ µ3 ≥
· · · ≥ µK , and let ∆1 = µ1−µ2,∆i = µ∗−µi > 0, ∀i > 1.
Following the convention in BAI literature (Carpentier and
Locatelli 2016; Audibert, Bubeck, and Munos 2010), we fur-
ther define the quantity H =

∑K
i=1

1
∆2

i
which characterizes

the hardness of the problem instance.
As discussed previously, the user cannot choose from the

full arm set but can only decide whether to accept or reject
the recommended arms from the system. To make a decision
at time t, we assume the user utilizes the information in all
previous interactions by maintaining a confidence interval
CIi,t = (lcbi,t, ucbi,t) for each arm i, which is defined as

(lcbi,t, ucbi,t) ≜

(
µ̂i,t −

√
Γ(t; ρ, α)

nt
i

, µ̂i,t +

√
Γ(t; ρ, α)

nt
i

)
,

where lcb and ucb stand for the lower/upper confidence
bounds respectively, nt

i is the number of acceptances on
arm-i up to time t, µ̂i,t = 1

nt
i

∑t
s=1 I[i is accepted at s]ri,s

is the empirical mean reward of arm i at time t, and
Γ(t; ρ, α) is a function parameterized by {ρt, α}, which
characterize the user’s confidence level to her reward esti-
mation at time step t. Following the convention rooted in the
UCB1 algorithm (Auer, Cesa-Bianchi, and Fischer 2002),
we consider the (flexible) confidence bound form:

Γ(t; ρ, α) = max {0, 2α log[ρt · n(t)]} , (1)

where n(t) =
∑

i∈[K] n
t
i is the total number of accepted

recommendations up to time t. We note that the choice of
Γ is to flexibly cover possibly varied user types captured by
parameters α and ρt. In particular, α directly controls the
span of the CIs and thus represents the user’s intrinsic ten-
dency to explore: a larger α indicates a higher tolerance for
the past observations, meaning the user is more willing to
accept recommendations in a wider range. ρt : N −→ [ρ0, ρ1]
is allowed to be any sequence that can depend on the inter-
action history and has a bounded range [ρ0, ρ1] ⊂ (0,+∞),
which captures the cases where the user’s confidence over
the system evolves over time. For example, ρt can be a func-
tion of the acceptance rate n(t)

t ∈ [0, 1] and increases mono-
tonically with respect to n(t)

t . Our results only rely on the
lower and upper bound of ρt and are oblivious to its specific
format. Note that for the special case of α = 1, ρt = 1 ∀t,
Eq (1) corresponds to the classic confidence interval defined
in UCB1. We remark that parameters α and ρt are only to
characterize different types of users, which provide flexibil-
ity in handling different real-world scenarios; but they are
not introduced for our solution.
The decision rule. When an arm i is recommended, we as-
sume the user will reject it if and only if there exists j ̸= i

Algorithm 1: Phase-1 Sweeping

Input: K > 0, δ ∈ (0, 1), N1(δ) > 0.
Initialization: F = [K],N = 0, ni = 0, i ∈ [K].
repeat

Recommend each item in F once, and remove the re-
jected ones from F .

until F is empty or the time step exceeds N1(δ).
repeat

If F is empty, reset F = {1, · · · ,K};
for i ∈ F do

Recommend i until rejected, then remove it from F .
until The time step exceeds N1(δ).
Output: number of acceptances for each arm {ni}Ki=1.

Algorithm 2: Phase-2 Elimination

Input: K > 0, {ni}Ki=1 from Phase-1.
Initialization: F = [K].
while |F | > 1 do

Recommend at = argmini∈[K] ni and update nat .
Remove at from F if rejected.

Output: F .

such that lcbj ≥ ucbi. That is, the user only accepts an arm
if there is no other arm that is clearly better than the recom-
mended one with a high confidence. The rationale behind
our imposed user decision rule is straightforward: first, the
user should not miss the arm with the highest lower con-
fidence bound as this is arguably the safest choice for the
user at the moment; second, if two arms have chained confi-
dence intervals, the user does not have enough information
to distinguish which one is better, and hence should not re-
ject either one, i.e., being explorative.

Learning from Explorative Users’ Revealed
Preferences

With stochastic rewards, we know P[µi ∈ CIi,t] almost al-
ways increases as the number of acceptances n(t) grows.
Therefore, the system can confidently rule out a sub-optimal
arm once it has collected a reasonable number of accep-
tances. In light of this, we devise a two-phase explore-then-
exploit strategy for system learning: the system first accu-
mulates a sufficient number of acceptances and then exam-
ines through the arm set to eliminate sub-optimal ones with
a high confidence.

The Phase-1 design is presented in Algorithm 1. Like
standard bandit algorithms, the system will execute an ini-
tialization procedure by sweeping through the arm set F =
[K] and then recommend each arm repeatedly until it col-
lects exactly one rejection on each arm there. This initializa-
tion stage is similar to the round-robin style pulls in stan-
dard bandit algorithms (e.g., UCB1, ϵ-Greedy). But the key
difference is that our algorithm will initialize by collecting
one rejection on each arm whereas standard bandit algorithm
will initialize by collecting one pull (i.e., acceptance) on
each arm. This is because rejections in our setup are more
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informative than acceptances to the system. After initializa-
tion, Algorithm 1 enters the main loop and do the following:
keeps recommending the same arm until it gets rejected and
then moves to another arm in F . After each arm gets rejected
once, the system starts a new round by resetting F = [K].
This procedure continues until the total number of accep-
tances exceeds N1(δ). An inquisitive reader might wonder
why repeatedly recommending a specific arm could be prac-
tical when deploying a real recommender system. To clarify,
we note that an arm in our model represents a type or cate-
gory of items, rather than just literally an individual. This is
also the typical interpretation of arms in the stochastic ban-
dit literature. The sweeping strategy reflects the principle of
Phase-1: the system aims to collect a reasonable number of
acceptances while minimizing the number of rejections by
not recommending any risky arm. For the ease of analysis,
we divide Phase-1 into different rounds (indexed by r) by
the time steps when the system resets F . We will prove later
that there is a tailored choice of N1(δ) such that when the
system enters Phase-2 with N1(δ) acceptance, it can iden-
tify the best arm with probability 1− δ.

We now present the design for Phase-2, as shown in Al-
gorithm 2, which follows Phase-1 Sweeping. Here, the sys-
tem executes arm elimination: always recommend the arm
with the minimum number of acceptances; and eliminate an
arm when it is rejected by the user, until there is only one
arm left. We prove that the stopping time of Algorithm 2 is
finite with probability 1, and it outputs the best arm with
probability 1 − δ when it terminates. We name our pro-
posed two-phase algorithm Best Arm Identification under
Revealed preferences, or BAIR for short.

Next, we analyze BAIR by upper bounding its stopping
time given fixed confidence δ. Our main result is formalized
in the following theorem. All formal proofs of our theories
are omitted due to the space limit and can be found in the
full version (Yao et al. 2021).

Theorem 1. When Γ is defined as in Eq (1), with probability
at least 1− 2δ, the system makes at most

O
(
K

1
α δ−

1
α +K1+ 1

2α δ−
1
2α

√
log

K

δ
+

αK

∆2
1

log
K

δ∆1

)
recommendations and successfully identifies the best arm by
running Algorithm 1 and 2.

Note that the upper bound on the number of rounds above
is deterministic while not in expectation. The proof of The-
orem 1 requires separate analysis for Phase-1 and Phase-2,
which we discuss in the following subsections. At a high
level, the first two terms in the bound come from the num-
ber of acceptances and rejections in Phase-1, and the last
term corresponds to the number of acceptances in Phase-2.
We decompose the bound in Theorem 1 in Table 1.

Note that there is a clear tradeoff between the upper
bounds in Phase-1 and Phase-2 in terms of α: a smaller α
increases the upper bound in Phase-1 but requires less num-
ber of recommendations in Phase-2, while a larger α en-
sures a lighter Phase-1 but would result in a more cumber-
some Phase-2. This is expected because, e.g., when facing a

Phase # Acceptance # Rejection
1 O(K

1
α δ−

1
α ) O(K

1+2α
2α δ−

1
2α log

1
2 K

δ )

2 O(αK
∆2

1
log K

δ∆1
) K

Table 1: Upper bounds on #recommendations in Phase 1,2.
Both are achieved with probability 1− δ.

highly explorative user (large α), the system can easily ac-
cumulate sufficient acceptances in Phase-1. However, it will
need more comparisons in Phase-2 to identify the best arm
for such a highly explorative user. Theoretically, there exists
an optimal α which minimizes the total number of recom-
mendations; however, this is not particularly interesting to
investigate in this paper, as α is not under the system’s con-
trol, but a characterization of the user.

Upper Bound for Phase-2
We start the analysis for Phase-2 first as it will lead to the
correct N1 for us to run Phase-1. Specifically, we prove that

when N1 = 1
ρ0

·
(

2K
δ

) 1
α

acceptances are accumulated in
Phase-1, it is safe for the system to move on to Phase-2.

Lemma 1. If Phase-1 terminates with N1 = 1
ρ0

·
(

2K
δ

) 1
α

acceptances, the Phase-2 Algorithm 2 will output the best
arm with probability at least 1− δ.

The next Lemma shows that no matter when the system
enters Phase-2, Algorithm 2 must terminate with probability
1− δ within O(log 1

δ ) steps.

Lemma 2. With probability 1 − δ, Algorithm 2 terminates
within O(K +

∑K
i=1

α
∆2

i
log ρ1K

ρ0δ∆i
) steps.

The first term O(K) in the bound corresponds to the num-
ber of rejections in Phase-2, since Phase-2 Elimination in-
curs at most K−1 rejections by definition. The second term
characterizes the number of acceptances, which matches the
tight lower bound of BAI with fixed budget (Carpentier and
Locatelli 2016) in terms of δ with a factor

∑K
i=1

1
∆2

i
log 1

∆i

instead of H =
∑K

i=1
1
∆2

i
. Thus, the bound provided by

Lemma 2 is almost tight. The ρ1 also plays a role in the
upper bound because when ρ1 is too large, the user could
maintain a very wide confidence interval for each arm which
requires extra effort for the system to eliminate sub-optimal
arms. Combining Lemma 1 and Lemma 2 and take ρ0, ρ1
as fixed constants, we conclude that Algorithm 2 will termi-
nate and output the best arm with probability 1 − δ within
O(
∑K

i=1
α
∆2

i
log K

δ∆i
) steps after Algorithm 1 is equipped

with N1(δ) = O(K
1
α δ−

1
α ). Note that compared with the

theoretical guarantee for BAI with fixed confidence, our up-
per bound matches the lower bound in (Garivier and Kauf-
mann 2016) in terms of δ. This implies that once the system
has accumulated sufficient acceptances in Phase-1, the learn-
ing from reveal preferences does not bring extra difficulty.
However, the bottleneck for the integrated system strategy
lies in Phase-1, which we now analyze.
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Upper Bound for Rejections in Phase-1
Recall that a round in Algorithm 1 is a segment of a se-
quence of interactions indexed by r, in which the candidate
arm set F is reset to [K] at the beginning and each arm gets
rejected once in the end. We abuse the notation a bit by using
[t
(r)
s , t

(r)
e ] to denote the r-th round that starts from time t

(r)
s

with N = n(t
(r)
s ) acceptances and ends at time t

(r)
s with

N = n(t
(r)
e ) acceptances. Next we upper bound the total

number of rounds in Phase-1. We prove that Algorithm 1
must terminate in a small number of rounds with probability
1− δ, as shown in the following lemmas.
Lemma 3. For any K > 0, δ > 0, N1 > 0, with probability

1−δ, Algorithm 1 terminates in O(
√
N1 log

K
δ ) rounds and

thus incurs at most O(K
√

N1 log
K
δ ) rejections.

In particular, if we choose N1 ∼ O(K
1
α δ−

1
α )

in accordance with Lemma 1, the total number
of rejections in Phase-1 can be upper bounded by

O(K1+ 1
2α δ−

1
2α

√
log K

δ ) = o(N1) as δ −→ 0. In the

next section, we will show that N1 ∼ O(K
1
α δ−

1
α ) is

necessary to guarantee the success in Phase-2. The proof of
Lemma 3 depends on the following two lemmas.
Lemma 4. (Lattimore and Szepesvári 2020) Let {Xt}∞t=1
be a sequence of i.i.d. sub-Gaussian random variables with
zero mean and unit variance, and µ̂n = 1

n

∑n
t=1 Xt, for any

δ ∈ (0, 1),

P
(
∀n ∈ N+ : |µ̂n| ≤

√
2

n
log

n(n+ 1)

δ

)
> 1− δ.

Lemma 5. Let f(t) = maxKi=1 µ̂i,t be the highest empirical
mean maintained by the user at time step t. Then for any
round r denoted by [t

(r)
s , t

(r)
e ] in Algorithm 1, we have

f(t(r)e ) ≤ f(t(r)s )− 2

√√√√ Γ(r)

n(t
(r)
e )

,

where Γ(r) = min
t∈[t

(r)
s ,t

(r)
e ]

Γ(t).

Lemma 5 shows an interesting property about the user’s
empirical reward estimation during our Algorithm 1 —
the maximum empirical mean will decrease by at least

2

√
Γ(r)

n(t
(r)
e )

after each round. This implies that Phase 1 cannot

run for too many rounds. Finally, assembling Lemma 1, 2,
and 3, we can derive the upper bound for the stopping time
of BAIR in Theorem 1.

The Lower Bound
It is worthwhile to compare our upper bound on the number
of recommendations in Theorem 1 with the O(log 1

δ ) up-
per bound in standard BAI setting. Specifically, our bound
is worse due to the leading term O(δ−

1
α ). In this subsection,

we prove that this performance deterioration is inevitable
due to our focus on an intrinsically harder setup with only

the user’s revealed preferences. As our second main result,
the following theorem shows that the dependence of δ in the
upper bound of Theorem 1 is tight.

Theorem 2. For any algorithm π and 0 < c < 1
2 , there ex-

ists a problem instance depending on δ such that if π collects

less than N0 = max{ δ−
1
α

+c

ρ0
, 2
∆2

1
log 1

4δ} accepted recom-
mendations, it must make mistake about the best arm with
probability at least 1− δ.

Proof Sketch. The lower bound N0 ≥ 2
∆2

1
log 1

4δ is from the
general lower bound result for BAI in a stochastic bandit set-
ting, as the system in our setting can never find the best arm
quicker than an BAI algorithm that has access to the real-
ized rewards. To prove N0 ≥ δ−

1
α+c/ρ0, we construct two

problem instances ν and ν′ such that: 1). they have differ-
ent best arms; 2). any system interacting with ν or ν′ will
receive exactly the same sequences of user binary responses
with probability at least 2δ, as long as it collects less than
N0 acceptances. Therefore, the system is not able to differ-
entiate between ν and ν′ with probability at least 1− δ, thus
making mistakes about the best arm with probability δ on
either ν or ν′. Our final proof is based on the ensemble of
the difficult instances in both situations.

Note that the lower bound δ−
1
α+c/ρ0 illustrates the in-

trinsic hardness of BAI from revealed preferences: any algo-
rithm has to make at least Ω(δ−

1
α+c) recommendations in

order to guarantee the identification of the best arm for any
problem instances in our setup. This is in sharp contrast to
the well-known O(log 1

δ ) lower bound in the standard bandit
reward feedback setting.

Experiments
In this section, we empirically study BAIR to support
our theoretical analysis. We use simulations on synthetic
datasets in comparison with several baseline algorithms.
Since we propose a new perspective to model user-system
interactions in RS, there is no baseline for direct compari-
son. However, this also gives us an opportunity to demon-
strate how problematic it may be when using a wrong user
model for the observed system-user interactions.

Experiment Setup and Baselines
As we discussed in the introduction, prior works treat
users as an unknown but omniscient classifier, and therefore
stochastic bandits are the typical choices to learn from user
feedback. Moreover, since the users’ responses in our prob-
lem setup are not necessarily stochastic, adversarial bandits
could be another choice. Therefore, we employ the corre-
sponding state-of-the-art algorithms, Track-and-stop (Gariv-
ier and Kaufmann 2016) (for BAI) and EXP3 (Auer et al.
2002) (for adversarial bandits), to compare with BAIR. Be-
sides, we also propose a heuristic baseline, uniform explo-
ration, to directly compete with BAIR. The details of these
baselines are as follows.
Uniform exploration (UNI): The system recommends can-
didate arms uniformly until the number of recommen-
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Stopping Time Rejection Rate (%) Prob. of Success
δ K BAIR T&S BAIR UNI EXP3 T&S BAIR UNI EXP3 T&S

0.1

2 405 539 0.8 8.5 2.5 1.0 0.999 0.786 0.621 0.999
5 737 1069 1.4 27.6 8.8 1.7 1.000 0.568 0.549 0.971
20 2113 3107 1.9 33.7 11.6 4.6 1.000 0.229 0.408 0.966
100 10449 16523 2.0 34.4 13.4 11.9 1.000 0.092 0.400 0.965

0.05

2 413 557 0.7 9.4 2.8 1.1 1.000 0.799 0.654 1.000
5 787 1123 1.2 29.2 7.6 1.9 1.000 0.599 0.581 0.978
20 2421 3161 1.5 40.4 12.3 4.4 1.000 0.429 0.577 0.965
100 10826 16577 2.2 43.2 14.1 11.1 1.000 0.150 0.534 0.945

0.02

2 422 544 0.7 12.2 3.9 1.2 1.000 0.806 0.638 0.999
5 879 1148 1.2 31.8 7.7 2.1 1.000 0.670 0.607 0.962
20 3593 3210 1.6 50.2 11.9 4.4 1.000 0.436 0.680 0.957
100 11528 16955 2.5 46.7 14.2 12.3 1.000 0.153 0.634 0.963

0.01

2 437 554 0.8 17.6 2.7 1.3 1.000 0.821 0.632 0.998
5 940 1153 1.3 34.9 7.7 2.0 1.000 0.701 0.604 0.959
20 4017 3223 1.4 51.6 13.6 3.0 1.000 0.476 0.737 0.947
100 20344 27548 1.5 52.8 15.9 12.4 1.000 0.130 0.725 0.930

0.005

2 512 570 0.8 27.6 4.0 1.4 1.000 0.992 0.901 1.000
5 1692 1580 0.8 50.0 8.3 1.6 1.000 0.942 0.844 0.993
20 7827 5983 0.7 71.4 12.4 5.4 1.000 0.938 0.921 0.979
100 40246 37931 0.7 73.1 15.0 16.0 1.000 0.794 0.930 0.970

Table 2: Comparison between BAIR and three baselines on proposed metrics. (α = 1)

dations reaches the given threshold T . When the algo-
rithm terminates, it outputs the arm with the maximum
number of acceptances; ties are broken arbitrarily. Track-
and-stop (T&S): This is the state-of-the-art solution for
BAI with fixed confidence (Garivier and Kaufmann 2016).
The expected stopping time of T&S provably matches its
information-theoretic lower bound O(log 1

δ ) in the stochas-
tic bandit setting. The effectiveness of T&S relies on the in-
dependent and stationary reward assumptions on each arm,
which fail to hold in our setup as user responses are not a
simple function of their received rewards. We will investi-
gate how the theoretical optimality of the T&S breaks down
under our problem setting. EXP3: To the best of our knowl-
edge, there is no BAI algorithm under an adversarial setting.
As a result, we adopt EXP3 (Auer et al. 2002) for com-
parison. Given the number of arms K and a time horizon
T > K logK, EXP3 is provably a no-regret learning algo-

rithm if taking γ ∼ O(
√

logK
KT ) and ϵ ∼ O(

√
K logK

T ). We
run EXP3 with this configuration and output the arm with
the maximum number of acceptances in the end.

Simulation Environment and Metrics
For different configurations of (δ,K,∆1) for BAI, we gen-
erate 1000 independent problem instances (µi)

K
i=1 by sam-

pling each µi ∈ N(0, 1) and then reset µ∗ to meet the given
value of ∆1. Observing that our conclusion does not vary
much under different ∆1, we present the result for ∆1 = 0.5
in this section and leave more results in the full version
(Yao et al. 2021) due to space limit. The parameters in the
user model are set to α = 1, ρt = 1 + n(t)

t ∈ [1, 2], i.e.,
ρ0 = 1, ρ1 = 2, and results for different choice of α can
be found in (Yao et al. 2021). We run BAIR with N1 = 2K

δ
and compare its performance with UNI, EXP3 and T&S on

the entire set of problem instances and calculate the follow-
ing three metrics. Probability of success: When each algo-
rithm terminates, we examine whether the output arm is the
best arm (i.e., success). The probability of success (p) is then
given by the empirical frequency of success over all problem
instances. We also calculate the value 1−p

δ to measure if and
how much the probability of success falls below the given
confidence level δ, which is presented right after the proba-
bility of success. Rejection rate: When each algorithm ter-
minates at step T , we count the total number of rejections
#Rej the system receives. The rejection ratio is given by
#Rej

T , and then averaged over all problem instances. Stop-
ping time: It is the total number of interactions needed to
terminate an algorithm. BAIR and T&S stop by their own
termination rules; UNI and EXP3 stop by the input time T ,
since these two algorithms terminate by a preset time hori-
zon. To make a fair comparison, we set T for UNI/EXP3 as
the average stopping time of BAIR under the corresponding
problem instance. Hence, this metric is only set to compare
BAIR and T&S.

Experiment Results
The results are reported in Table 2. Based on the comparison
results for BAIR and the baselines, we have the following
observations.
BAIR vs. T&S. As shown in Table 2, T&S enjoys the best
performance among three baselines on rejection rate and
probability of success, but still does not work well in our
problem setting. Given the confidence threshold δ, T&S fails
to identify the best arm with probability 1 − δ for K > 2
and δ < 0.05. We also find the stopping time of T&S is
worse than BAIR in most cases and fails to meet its the-
oretical lower bound O(log 1

δ ). This is expected: our binary
user feedback cannot be simply modeled as independent and
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stationary rewards, which are the fundamental assumptions
behind the design of T&S. Since T&S wrongly models user
responses, it is easily misinformed by the user’s potentially
inaccurate feedback in the early stage. As a result, it is very
likely to miss the best arm and spend most of the rest time
on a wrong subset. In contrast to T&S, BAIR is aware that
the revealed preferences from the early stage are very likely
to have a large variance. Therefore, it chooses to make safe
recommendations at first to help the user gain more experi-
ences (Phase-1 preparation) such that that the user will re-
veal more accurate feedback later on (Phase-2 elimination).
This explains how BAIR achieves the goal more efficiently,
even with the additional cost in Phase-1.
BAIR vs. UNI/EXP3. The other two baselines, UNI and
EXP3, exhibit worse performance in both the rejection ratio
and the probability of success than BAIR. Given the same
time budget, UNI always suffers from the largest propor-
tion of rejections because it does not take any measures to
eliminate bad arms. As rejections do not update the user’s
empirical reward estimation, the given time budget is in-
sufficient for UNI to differentiate the arms with similar ex-
pected rewards, thus causing a low probability of success.
EXP3 enjoys a lower rejection rate than UNI, because it
pulls those empirically bad arms less. The mandatory ex-
ploration in EXP3 helps correct the inaccurate early obser-
vations and gives a more competitive probability of success
when K gets larger. However, due to the larger variance of
EXP3, if the user’s estimated reward for the best arm is low
at the beginning, EXP3 tends to overly focus on differentiat-
ing a group of suboptimal arms, which decreases its chance
of discovering the best arm.

To summarize, the fundamental reason for the failure of
these baselines lies in the insufficient system exploration
when facing an explorative user. These baselines either treat
the user as a black-box or assume independent and station-
ary user feedback, which leads to a worse empirical result
in terms of both accuracy and efficiency in finding the best
arm.

The result in Table 2 supports our theoretical analysis in
Theorem 1. When ∆1 = 0.5 and δ < 0.1, 1

δ dominates 1
∆2

1

and Theorem 1 suggests the algorithm’s stopping time grows
approximately linear in 1

δ . As expected, the first column in
Table 2 confirmed our theory. The first column in Table 2
also suggests an approximately linear dependency between
BAIR’s stopping time and K. Although it is not fully sup-
ported by our theory (the leading term in the upper bound
result is O(K1.5) when α = 1), we believe this observation
is informative and could be an interesting target for future
work.

Additional Experiments on the Robustness
In practice, it might be too restrictive to assume that the user
strictly follows our proposed confidence interval (CI) based
behavior model. Thus, it is interesting and also crucial to test
the robustness of BAIR under the situation where the user’s
behavior might deviate from the CI-based model. To this
end, we extended the user model to a stochastic setting by
incorporating “decision randomness”. Specifically, we as-

sume at each time step, with some constant probability p,
the user makes a random decision (accept/reject the recom-
mendation with an equal probability); otherwise, she would
follow the CI-based behavior model. We demonstrate that a
minor modification of Phase-2 still guarantees a competitive
empirical performance of BAIR, against the three baselines.
The idea is, instead of eliminating an arm after the first re-
jection in Phase-2, the system only discards an arm after its
m-th rejection. It turns out that if we choose m = O(Kδ ),
BAIR still successfully finds the best arm with probability
1 − 2δ in this stochastic setting, with merely an additional
cost up to a multiplicative constant. Due to space limit, a de-
tailed discussion can be found in the full version (Yao et al.
2021).

Discussions and Future Work

To bring user modeling to a more realistic setting in modern
recommender systems, we proposed a new learning prob-
lem of best arm identification from explorative users’ re-
vealed preferences. We relax the strong assumptions that
users are omniscient by modeling users’ learning behavior,
and study the learning problem on the system side to infer
user’s true preferences given only the revealed user feed-
back. We proved efficient system learning is still possible
under this challenging setting by developing a best arm iden-
tification algorithm with complete analysis, and also dis-
closed the intrinsic hardness introduced by the new prob-
lem setup. Our result illustrates the inevitable cost a recom-
mender system has to pay when it cannot directly learn from
a user’s realized utilities. As concluding remarks, we point
out some interesting open problems in this direction:
The optimal choice of N1. Although our lower bound re-
sult in Theorem 2 is tight in δ, it does not match the upper
bound in Theorem 1 in terms of K. The mismatch comes
from the choice of N1 = (2K/δ)1/α/ρ0, which might be
overly pessimistic as Theorem 2 only indicates a necessary
condition of N1 > δ−1/α/ρ0. To bridge this gap, a tighter
upper bound is needed to improve the choice of N1. We be-
lieve this is promising because the experiment results in Ta-
ble 2 demonstrate that the choice of N1 = (2K/δ)1/α/ρ0 al-
most guarantees a success probability 1.0 even when δ takes
a large value, e.g., 0.1. This implies the stopping time of
BAIR could be improved by setting a smaller N1. In prac-
tice, we can fine-tune N1 to pin down the optimal choice.
For example, one can simply apply binary search within
(0, (2K/δ)1/α/ρ0) with N1 = O(δ−1/α) as a starting point.
Beyond a single user. We note that our problem formula-
tion and solution for the system and a single user also shed
light on learning from a population of users. For example,
users sometimes learn or calibrate their utility from third-
party services that evaluate the quality of items by aggregat-
ing users’ feedback across different platforms. As a result,
users equipped with these services are inclined to exhibit an
exploratory pattern and make decisions based on the com-
parison of confidence intervals. We believe that our problem
setting also provides a prototype to study the optimal strat-
egy for the system under this new emerging situation.
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out the system’s help or simply relying on off-the-shelf best
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