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Abstract

Effective communication can improve coordination in coopera-
tive multi-agent reinforcement learning (MARL). One popular
communication scheme is exchanging agents’ local observa-
tions or latent embeddings and using them to augment indi-
vidual local policy input. Such a communication paradigm
can reduce uncertainty for local decision-making and induce
implicit coordination. However, it enlarges agents’ local pol-
icy spaces and increases learning complexity, leading to poor
coordination in complex settings. To handle this limitation,
this paper proposes a novel framework named Multi-Agent
Incentive Communication (MAIC) that allows each agent to
learn to generate incentive messages and bias other agents’
value functions directly, resulting in effective explicit coordi-
nation. Our method firstly learns targeted teammate models,
with which each agent can anticipate the teammate’s action
selection and generate tailored messages to specific agents.
We further introduce a novel regularization to leverage inter-
action sparsity and improve communication efficiency. MAIC
is agnostic to specific MARL algorithms and can be flexibly
integrated with different value function factorization methods.
Empirical results demonstrate that our method significantly
outperforms baselines and achieves excellent performance on
multiple cooperative MARL tasks.

Introduction
Cooperative multi-agent reinforcement learning (MARL) has
attracted popular attention (Hernandez-Leal, Kartal, and Tay-
lor 2019; Du and Ding 2021), showing a promise in many
domains like autonomous vehicle teams (Zhou et al. 2020),
sensor networks (Zhang and Lesser 2011) and intelligent
warehouse systems (Nowé, Vrancx, and De Hauwere 2012).
To avoid non-stationarity and enable scalability, a popular
MARL paradigm, called Centralized Training and Decen-
tralized Execution (CTDE) (Kraemer and Banerjee 2016;
Lyu et al. 2021), has recently been adopted, where agents’
policies are learned in a centralized way and executed in
a decentralized manner. Many CTDE learning approaches
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have been proposed, including both policy gradient methods
(Lowe et al. 2017; Foerster et al. 2018; Wang et al. 2020a,
2021b; Zhang et al. 2021), and value-based methods (Rashid
et al. 2018; Wang et al. 2020b, 2021a, 2020c; Cao et al. 2021;
Qin et al. 2022), which show state-of-the-art performance in
challenging tasks (e.g., the StarCraft II micromanagement
benchmark). Despite its recent success, fully decentralization
policy execution may not be effective in many applications,
especially when agents have partial observability and the en-
vironment is stochastic, where an agent’s uncertainty of other
agent’s states and actions can be exacerbated during decen-
tralized sequential execution, which results in catastrophic
miscoordination and sub-optimal policies.

An effective mechanism to address the mentioned chal-
lenges is to enable communication among agents. One popu-
lar communication scheme has been adopted to exchange
messages about agents’ local observations (Sukhbaatar,
Szlam, and Fergus 2016; Singh, Jain, and Sukhbaatar 2019;
Ding, Huang, and Lu 2020) or corresponding embeddings
(Das et al. 2019; Zhang, Zhang, and Lin 2019; Wang et al.
2020d; Mao et al. 2020b). Such messages are then used
to augment individual local observations for learning poli-
cies and selecting actions. This informative communication
scheme can reduce uncertainty for individual local decision-
making and induce implicit coordination. However, such
a communication mechanism enlarges agents’ local policy
spaces and increases learning complexity, leading to poor per-
formance in some complex scenery. Furthermore, this scheme
deviates a common way humans communicate, as humans
would often offer helpful and tailored suggestions based on
their knowledge and beliefs instead of simply providing their
own information (Stenning, Lascarides, and Calder 2006).

Towards realizing efficient and human-like teamwork,
this paper investigates a new communication scheme that
allows agents to exchange persuasive messages to coordi-
nate their decision-making explicitly. We propose a novel
MARL framework called Multi-Agent Incentive Communica-
tion (MAIC), where each agent learns to generate incentive
messages and uses the messages to bias other agents’ value
functions directly for effective coordination. Inspired by re-
cent opponent modeling works (Albrecht and Stone 2018),
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the MAIC agent learns a targeted teammate model for every
other agent from its local observation. This teammate model,
which maximizes a mutual information regularizer to asso-
ciate learned models with opponent intention anticipation,
can help each agent dynamically generate tailored incen-
tive messages to specific teammates without enlarging policy
spaces. We utilize the teammate model to design a novel mes-
sage generator to produce messages, along with distinguished
communication weights. The emergence of communication
weights can tackle interaction sparsity, a commonly exist-
ing structure in multi-agent systems, by pruning messages
with minor communication weights. Therefore, we explicitly
introduce a sparse regularizer at communication weights to
distinguish valuable agents to communicate with. In this way,
our method provides a tailored and sparse communication
paradigm by teammate modeling with incentive interaction,
promoting the coordination ability in cooperative tasks. We
extensively evaluate MAIC on diverse MARL benchmarks,
including level-based foraging (Papoudakis et al. 2021), Hall-
way (Wang et al. 2020d), and StarCraft Multi-Agent Chal-
lenge (SMAC) (Samvelyan et al. 2019). Empirical results
show that MAIC can generate dynamic and individualized
messages for specific teammates to achieve outstanding per-
formance and effective coordination.

Related Work
Recently, communication in MARL has attracted widespread
attention (Giles and Jim 2002; Foerster et al. 2016;
Hernandez-Leal, Kartal, and Taylor 2019; Lazaridou and
Baroni 2020; Xue et al. 2021; Du et al. 2021). DAIL (Fo-
erster et al. 2016) is a simple communication mechanism
where agents broadcast messages to all teammates that allow
the gradient to flow among agents for end-to-end training
with reinforcement learning. Nevertheless, this method is
limited to discrete messages. CommNet (Sukhbaatar, Szlam,
and Fergus 2016) proposes an efficient centralized commu-
nication structure, where the outputs of the hidden layers
from all the agents are collected and averaged to augment
local observation. It leads to information semantics loss and
limits its performance in complex scenarios. VBC (Zhang,
Zhang, and Lin 2019) adds a variance-based regularizer to
eliminate the noisy component in the messages, realizing
lower communication overhead and better performance than
other MARL communication methods. However, VBC needs
to send the local hidden information to teammates, which
causes bandwidth wasting inevitably. To alleviate the burden
of local policy caused by flooding messages, IC3Net (Singh,
Jain, and Sukhbaatar 2019), Gated-ACML (Mao et al. 2020a),
and I2C (Ding, Huang, and Lu 2020) learn a gate mechanism
to decide whom to communicate with. These methods work
well in applications such as traffic junction, packet routing,
and MPE (Lowe et al. 2017). Nevertheless, they use their
own observations (or encodings of their own observations) as
messages to augment the local policy. This paradigm makes
the local policy complex and hinders the learning process.

Research on learning targeted and efficient communication
has made some progress recently. TarMAC (Das et al. 2019)
sends coordinated messages with additional signatures and
received messages from different agents derive the attention

outputs to enlarge the policy. TarMAC needs to broadcast
an agent’s information to all teammates, leading to severe
bandwidth waste. DAACMP (Mao et al. 2020b) adds a dou-
ble attention mechanism in the actor-critic framework based
on MADDPG (Lowe et al. 2017), showing attention can sig-
nificantly improve the performance of multi-agent systems.
However, DAACMP also lacks knowledge about specific
teammates. NDQ (Wang et al. 2020d) utilizes a minimized
communication paradigm to alter value functions based on
two different information-theory-based regularizers. Com-
pared with our approach, the regularized message enlarges
local policy space, impairing the learning process, and the
uncertainty of messages limits its performance in complex
environments. TMC (Zhang, Zhang, and Lin 2020) realizes
succinct and robust communication by applying smoothing
and action selection regularizers. TMC processes received
messages by adding to individual value functions as incen-
tives, which is an efficient and promising way. However,
the lack of teammate modeling in TMC also results in the
broadcast paradigm and hinders its empirical performance.

To our knowledge, none of the existing MARL commu-
nication methods considers generating incentive messages
through teammate modeling. Therefore, agents may not only
be confused by redundant information in broadcast-like com-
munication but also suffer from learning policies from a
larger policy space augmented by messages. MAIC enables
agents to hold specific teammate models, generate tailored
incentives for others, and dynamically prune useless commu-
nication, realizing effective and sparse message exchange.

Background
This paper considers a fully cooperative multi-agent task
with partial observations, which can be modeled as a Dec-
POMDP (Oliehoek and Amato 2016). A Dec-POMDP can
be defined by a tuple M = ⟨N ,S,A, P,Ω, O,R, γ⟩, where
N = {1, . . . , n} is the set of agents, S is the set of global
states, A is the set of actions, Ω is the set of observations,
and γ ∈ [0, 1) stands for the discounted factor. At each time
step, every agent i ∈ N can only acquire the observation
oi ∈ Ω drawn from the observation function O(s, i) where
s ∈ S, and then choose the action ai ∈ A. The joint action
a = ⟨a1, . . . , an⟩ leads to next state s′ ∼ P (s′ | s,a) and
the global reward R(s,a). The formal objective is to find a
joint policy π(τ ,a) to maximize the global value function
Qπ

tot(τ ,a) = Es,a [
∑∞

t=0 γ
tR(s,a) | s0 = s,a0 = a,π].

Here, τ = ⟨τ1, . . . , τn⟩, and τi represents the history
(o1i , a

1
i , . . . , o

t−1
i , at−1

i , oti) of agent i at current timestep t.
Q-learning (Sutton and Barto 2018) is a widely-used

algorithm to find the optimal join action-value function
Q∗(s,a) = r(s,a) + γEs′ [maxa′ Q(s′,a′)]. Deep Q-
learning (Mnih et al. 2015) represents the action-value func-
tion Q∗(s,a) with a deep neural network Q(τ ,a;θ) param-
eterized by θ. In the training phase, deep Q-learning uses a
replay memory D to store the transition tuple ⟨τ ,a, r, τ ′⟩.
We use Q(τ ,a;θ) to approximate Q(s,a;θ) to relieve the
partial observable problem. Thus, the parameters θ are learnt
by minimizing the expected TD error:

L(θ) = E(τ ,a,r,τ ′)∈D

[(
r + γV

(
τ ′;θ−)−Q(τ ,a;θ)

)2]
,

9467



Mixing Network𝑄!(𝜏!, 𝑎!)

MLP

GRU

MLP

Teammate
Modeling

Message
Generator

𝜏!"#$

Agent 𝑖

+

𝑄"%"(𝝉, 𝒂)

𝑄!&%'(𝜏!, 𝑎!)

𝒎⋅!

𝒗!)

𝒛!⋅

𝒛!)

MLPFC FC

𝒌!)
⋅𝒒!

Softmax

⋅

𝒎!) 𝒎⋅)

𝑄)(𝜏), 𝑎))

Sparse Regularization

𝛼!)

𝒎!⋅

Agent 𝑗

+

𝑄)&%'(𝜏), 𝑎))𝒎)⋅

𝜏!"

Encoder 𝜀

𝝁𝒊𝒋, 𝝈𝒊𝒋

MI Loss

sample

(a) (b) (c)

𝑠!

𝜏"#
𝜏"!

𝜏"!𝑑)

𝒛!)

𝑜!", 𝑎!"#$ 𝑜)", 𝑎)"#$

𝜏!"

Figure 1: Schematics of MAIC. (a) Decentralized teammate modeling. (b) Network for agent i. (c) The message generator.

where V (τ ′;θ−) = maxa′ Q (τ ′,a′;θ−) is the expected
future return of the TD target and θ− are parameters of the
target network, which will be periodically updated with θ.

Method
In this section, we will describe the detailed design of MAIC
(Figure 1). For decentralized decision making, each MAIC
agent takes its obtained observation and last action as in-
put and feeds them into a GRU cell (Cho et al. 2014) to
get a representation of historical information. We further
use this historical representation to generate local Q-values
Qloc

i (τi, ai) by a multi-layer perceptron (MLP). The local
network of each MAIC agent (Figure 1(b)) also contains
a teammate modeling network (Figure 1(a)) and a tailored
message generator (Figure 1(c)). The MAIC agent utilizes
sampled representation from teammate models to generate
sparse communication weights and tailored message contents.
Processed messages are then fed to other agents’ policies in
an incentive way, resulting in efficient and sparse communi-
cation.

Decentralized Teammate Modeling
To guide the intentions for specific agents, MAIC learns tar-
geted teammates models, which can infer the action selection
of these agents in a partially observable way (Figure 1(a)).
We leverage this local information τi and the specific team-
mate ID dj to obtain a teammate model from agent i to agent
j. The teammate model is represented by a multivariate Gaus-
sian distribution whose parameters (µij ,σij) are computed
by an encoder E(τi, dj) with multiple fully connected lay-
ers. A valid teammate representation zij for agent j is then
sampled from the teammate model N(µij ,σ

2
ij) to guide the

message generation process of agent i.
As the simple MLP cannot guarantee the anticipation of

teammate models, we introduce an explicit regularization to
guide the teammate modeling. We hope the learned teammate
models should be responsive to the action selection of every

specific teammate, as the selected actions can intuitively
exhibit the coordination relation among agents. We optimize
the teammate models by maximizing the mutual information
(MI) between the action aj taken by agent j and the random
variable zij of the teammate model distribution conditioned
on agent i’s local trajectory τi and the specific ID of teammate
j, dj . We express the MI term via the entropy H (zij | τi, dj)
and the conditional entropy H (zij | τi, aj , dj):
I(zij , aj | τi, dj) = H (zij | τi, dj)−H (zij | τi, aj , dj) .

If the knowledge of H (zij | τi, aj , dj) does not provide
any information about H (zij | τi, dj), the conditional en-
tropy would reduce to the unconditional entropy, i.e.,
H (zij | τi, dj) = H (zij | τi, aj , dj) and the mutual infor-
mation would become zero. Maximizing MI is equivalent
to minimizing the uncertainty about the learned teammate
model conditioned on the agent’s local information, leading
agent i to acquire a powerful teammate representation zij
when modeling agent j.

Unfortunately, it is difficult to compute the conditional
distribution directly. Inspired by the information bottleneck
(Alemi et al. 2017), we use qξ(zij | τi, aj , dj) as a varia-
tional distribution to approximate the conditional distribution
p(zij | τi, dj), and derive a lower bound for the MI term:

I (zij ; aj | τi, dj) ≥
ED [−DKL (p (zij | τi, dj) ∥ qξ (zij | τi, aj , dj))] ,

where the variables of distribution p and qξ are sampled
from the experience replay buffer D and DKL denotes the
Kullback-Leibler divergence. We can rewrite the lower bound
and derive the teammate modeling loss function:
Lm(θm) =∑
i ̸=j

ED

[
DKL(p (zij | τi, dj) ∥ qξ (zij | τi, aj , dj))

]
, (1)

where θm defines all parameters including parameters of the
teammate modeling encoder and the variational distribution.
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Multi-Agent Incentive Communication
As the MAIC agent can extract targeted teammate infor-
mation from learned teammate models, this representation
can be utilized to generate tailored messages for different
agents (Figure 1(c)). Specifically, MAIC maintains a local
Q-network to compute the local Q-values Qloc

i (τi, ai) for
each action ai ∈ A. The message generator contains an MLP
vij = fm(τi, zij), whose input includes the local observation
history τi of agent i as well as the teammate representation
zij for agent j ∈ {1, · · · , i − 1, i + 1, · · · , n}. The output
vij has the same dimension as the local Q network, which is
the dimension of the action space.

The teammate representation can also help communicate
in a more targeted way, as unnecessary information may
confuse the receiver and impair coordination. An MAIC agent
will calculate communication weights for all other agents
by taking the teammate representation as input. To better
combine the representation with the agent’s own information,
we apply an attention-like mechanism (Vaswani et al. 2017)
to compute the query qi from the agent’s trajectory τi and
the key kij from the representation of teammate j. Both
qi and kij are computed by simple linear functions. The
communication weight αij , which defines the weight to agent
j for agent i’s communication, is normalized to make all αij

from agent i form a categorical distribution:

αij =
1

η
exp(λqT

i kij), (2)

where η =
∑

m̸=i exp(λq
T
i kim) and λ ∈ R+ is the temper-

ature parameter to scale the magnitude of input. The final
message from agent i to agent j can be calculated by a prod-
uct mij = αijvij . As our message is already represented in
an effective and targeted way, we utilize the final message
to bias the other agent’s Q-values as an incentive, because
this approach would not explicitly enlarge the policy space
of every agent. Specifically,

Qi(τi, ·) = Qloc
i (τi, ·) +

∑
j ̸=i

mji, (3)

where Qi(τi, ·) and Qloc
i (τi, ·) denote the corresponding Q-

value vector for every action ai.

Sparse Communication Among Agents Even though we
can generate different communication weights for different
teammates, the neural network itself cannot force agents to
produce sparse weights, resulting in uniform communication
weights for different agents. To learn sparse yet effective
communication, we further introduce a sparsity regulariza-
tion, which optimizes the entropy of the category distribution
formed by communication weights:

Lc(θc) =
∑n

i=1
H(αi·) = −

∑n

i̸=j
αij logαij , (4)

where θc are parameters of the message generator. To min-
imize this entropy loss, we can acquire communication
weights with lower uncertainty. Furthermore, it is available
to cut useless communication links and reduce redundant
information through the communication weight. As the com-
munication weight should be less than 1 and their summation

equals 1, we can remove the communication link from agent
i to agent j when αij < δ

n , where δ ∈ (0, 1] represents the
message sparsity threshold.

Overall Optimization Objective
As the MAIC framework is implemented with the CTDE
paradigm, all parameters in it are updated by the standard
TD loss from the global Q-values Qtot, which are the output
of any mixing network such as VDN (Sunehag et al. 2018),
QMIX (Rashid et al. 2018), and QPLEX (Wang et al. 2021a):

LTD(θ) = E(τ ,a,r,τ ′)∼D

[
(y −Qtot(τ ,a;θ))

2
]
, (5)

where y = r +maxa′ Qtot(τ
′,a′;θ−) is the target, and θ−

are parameters of the periodically updated target network.
Together with the mentioned teammate modeling loss and
sparsity regularization, the learning objective of MAIC is:

L(θ) = LTD(θ) + λm

n∑
i=1

Lm(θm) + λc

n∑
i=1

Lc(θc), (6)

where θ stands for all parameters in MAIC, and λm and
λc are adjustable hyperparameters of the teammate model-
ing loss and sparse regularization respectively. In the CTDE
framework, the mixing network will be removed during the
execution phase. To prevent the lazy-agent problem (Sunehag
et al. 2018) and reduce model complexity, we make the lo-
cal network, including teammate modeling and the message
generator, have same parameters for all agents.

Experimental Results
In this section, we conduct experiments on multiple coopera-
tive MARL environments, aiming to verify whether MAIC
can provide more effective and targeted communication.1
We evaluate MAIC with multiple state-of-the-art baselines
on tasks including level-based foraging, Hallway, and the
StarCraft II unit micromanagement benchmark. As MAIC
can be applied to any value factorization method, we choose
the simple VDN mixing network on the first two small coop-
erative tasks and the more complex QMIX mixing network
on the StarCraft II unit micromanagement benchmark. All
presented curves are illustrated with average performance
and 25 ∼ 75% deviation over five random seeds.

Level-Based Foraging
Level-based foraging (LBF) (Papoudakis et al. 2021) is a
partially observable grid world game, where agents and foods
are initialized with random skill levels. The action space
of each agent consists of the movement in four directions,
loading food and a “none” action. A group of agents can
collect the food if they all choose the loading food action and
the summation of their levels is greater than or equal to the
level of the food. Then agents will receive a reward correlated
to the level of the food. The goal of agents is to maximize the
global return in a limited horizon, and the maximized return
is normalized to one. Figure 2(a) shows our conducted task,
where 4 agents need to cooperate in collecting 2 portions of

1Code available at https://github.com/mansicer/MAIC
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Figure 2: A case study on the level-based foraging task indicates that MAIC can generate different communication weights with
local information to realize targeted communication by teammate modeling. (a) One test frame from the level-based foraging
environment. (b) Visualization of every agent’s teammate representation from all other agents’ teammate modeling based on
the test frame in (a). The dimensionality of representations is reduced by PCA. (c) The communication weights generated by
each agent to all other agents based on the test frame in (a). The y-axis stands for the agent who generates these communication
weights, and the x-axis stands for the agent who will receive the corresponding message. (d) The average message value generated
by Agent 4 to any other agent is based on the test frame in (a). The presented scalar is averaged from the original message vector.
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Figure 4: (a) Hallway; (b) Average battle win rate on Hallway.

food in a 10 × 10 grid world with a limited horizon of 50,
agents have a restricted vision with range 2. The difference of
levels between agents and foods makes strong coordination
necessary towards receiving a high return.

We compare MAIC with multiple baselines, including
the classical CTDE method QMIX and two state-of-the-art
MARL communication methods named NDQ and TMC. As
shown in Figure 3, MAIC gets an averaged return close to
one at 0.8M timesteps, faster than all other baselines, which
shows the efficient communication structure of MAIC ac-
celerates coordination. TMC presents the advantage of com-
munication compared with QMIX. NDQ struggles in LBF,
probably because the augmentation of policy space and the
uncertainty of messages lead to insufficient training.

We further investigate how the components of MAIC

agents help coordinate. We evaluate MAIC in multiple tests,
and Figure 2(a) shows one frame from a test episode, where
the fill color indicates a sight range of 2 for each agent. Fig-
ure 2(b) correspondingly shows the latent teammate repre-
sentations computed by each agent individually, where we
apply dimensionality reduction to original representations by
principal component analysis (PCA) (Wold, Esbensen, and
Geladi 1987). We can find that there is much more variance
among the teammate representations of Agent 1, as Agent 1
is out of sight for other agents in few timesteps, resulting in
ambiguous modeling. The representations of Agents 2, 3, and
4 have less discrepancy, and their internal variances are much
smaller because they can see each other more frequently.

Figure 2(c) exhibits values of different communication
weight pairs in this test frame. Agents 2 and 4 coordinate
strongly since their communication weights are quite large.
Agent 4 also has non-zero weights with other agents as it can
coordinate with any other agent to successfully get the food
with the level of 5. Agent 3 presents a huge communication
weight toward Agent 4, for it considers Agent 4 has the
most probability to acquire the food. Nevertheless, Agent 1
generates the communication weight in a slightly arbitrary
way because it is a little unclear about other agents due to the
long distance. The average values of messages from Agent 4
to other agents are shown in Figure 2(d), which illustrates that
Agent 4 generates different but targeted messages correlated
to its communication weights of other agents.

Hallway
Hallway (Wang et al. 2020d) (Figure 4(a)) is a sparse reward
cooperative environment with 3 agents randomly initialized
at states a1 to aj , b1 to bk and c1 to cl, respectively. An agent
can only observe its own position and select actions from
moving left, moving right, and keeping still. The episode
ends if some agents arrive at state g, and they win and get a
reward of 10 only when reaching state g simultaneously. The
horizon is set to max(j, k, l) + 10 for avoiding infinite loops.
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Figure 5: Average test win rates on four SMAC super hard maps.
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Figure 6: (a) The average test win rate across all 13 scenarios;
(b) the number of scenarios (out of all 13 maps) where the
algorithm’s average test win rate is the highest by an advan-
tage of at least 0.1% (smoothed in a range of 5 timesteps).

We set j = 2, k = 6, l = 10 to make the simultaneous
arrival difficult, as agents need strong coordination and com-
munication to win in this partially observable task. As shown
in Figure 4(b), QMIX, NDQ, and TMC almost fail to resolve
the Hallway problem. QMIX fails because agents cannot ac-
quire other teammates’ positions and actions, leading to the
failure of policy learning, which indicates efficient commu-
nication is necessary for an extremely partially observable
environment. TMC also fails on the Hallway task, as the mes-
sage broadcast paradigm cannot adapt to agents with quite
different states and causes miscoordination issues. NDQ may
learn a valid policy in few running seeds, but its average
performance is much worse than MAIC, which resolves the
task with more effective communication.

StarCraft II Micromanagement Benchmark
We applied our method and baselines on the StarCraft II
Multi-Agent Challenge (SMAC) benchmark (Samvelyan et al.
2019). We test all methods in 13 maps, including three easy
maps, three hard maps, and seven super hard maps. The
compared baselines include QMIX, NDQ, TMC, and QPLEX
(Wang et al. 2021a), a novel value decomposition method
that reaches the state-of-the-art performance in the SMAC
benchmark. All hyperparameters for training and in-game AI
are the same as PyMARL2 on StarCraft 2.4.6.

To demonstrate the overall performance of each algorithm,
Figure 6 shows the average test win rates across all 13 maps
and the number of maps where an algorithm outperforms
others, respectively. From Figure 6(a), we can find MAIC

2https://github.com/oxwhirl/pymarl
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Figure 7: Average test win rates of MAIC implemented with
mixing networks including VDN, QMIX, and QPLEX.

achieves outstanding performance compared with other base-
lines and converges faster than methods except for QPLEX
in the initialed 0.5M timesteps. We guess the improvement
in the representation capability of QPLEX makes it good at
easy and medium maps at the beginning of training. When the
training finishes, MAIC exceeds nearly 20% averaged win
rate in all 13 scenarios. NDQ has worse overall performance
than QMIX, which may be attributed to its augmented pol-
icy space and the complex constraints on message learning,
resulting in higher training cost. TMC, QPLEX, and QMIX
have comparable performance when converged, while TMC
and QPLEX’s performances are a little better than QMIX
for their adaptions on QMIX. Figure 6(b) illustrates MAIC
finally has the best performance in up to 10 scenarios among
all scenarios and is worse than QPLEX and other baselines
in 3 scenarios, while almost tying with others in the rest.

Figure 5 shows the learning curves on four super hard maps
in SMAC. MAIC significantly outperforms other baselines on
these super hard maps, showing its high coordination ability
even in complex settings. Notably, NDQ fails on maps with
many agents like MMM3 and 27m vs 30m as it is difficult to
process a large number of messages while MAIC can handle
numerous messages in an incentive way. TMC also exhibits
less promising performance because its broadcast paradigm
limits its ability, but MAIC’s tailored communication pro-
vides richer representative ability for better coordination.

Integrative Abilities MAIC is agnostic to specific value
decomposition methods. We can integrate it with existing
MARL value decomposition methods such as VDN, QMIX,
and QPLEX. The combined methods, called MAIC-VDN,
MAIC-QMIX, and MAIC-QPLEX, respectively, are tested
on maps including MMM2 and 2c vs 64zg. As shown in Fig-
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Message
Pruning

Rate

MAIC TMC NDQ VBC
Test Win
Rate %

Win Rate
Increase

Test Win
Rate %

Win Rate
Increase

Test Win
Rate %

Win Rate
Increase

Test Win
Rate %

Win Rate
Increase

0% 96.7 ± 0.50 0.00% 85.6 ± 5.45 0.00% 72.5 ± 6.37 0.00% 59.8 ± 1.05 0.00%

10% 96.2 ± 0.63 -0.52% 85.0 ± 5.38 -0.73% 35.0 ± 11.2 -51.7% 60.0 ± 0.74 0.33%
20% 96.8 ± 0.50 0.12% 86.2 ± 4.24 0.73% 27.5 ± 7.23 -62.1% 58.7 ± 1.44 -1.77%
30% 96.4 ± 0.62 -0.31% 83.1 ± 7.02 -2.92% 27.5 ± 3.64 -62.1% 59.4 ± 2.20 -0.57%

70% 96.8 ± 0.63 0.12% 81.9 ± 6.06 -4.38% 18.8 ± 10.3 -74.1% 59.2 ± 1.46 -1.27%
80% 97.1 ± 0.98 0.43% 79.5 ± 5.51 -7.12% 19.4 ± 6.37 -73.3% 58.9 ± 0.90 -1.47%
90% 96.5 ± 0.55 -0.27% 78.7 ± 5.00 -8.06% 7.50 ± 4.24 -89.7% 57.8 ± 2.23 -3.35%

Table 1: Average test win rates and average win rate changes for MAIC, TMC, NDQ, and VBC under different message pruning
rates. The results are averaged from 1000 test episodes among 5 random seeds.
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Figure 8: Average test win rates for ablations studies.

ure 7, we find all integrated methods outperform the original
methods, which indicates the communication paradigm of
MAIC can significantly enhance coordination.

Ablation Studies To evaluate the effect of every component
in MAIC, we design the ablation studies with multiple com-
pared algorithms. We call the MAIC version without sparse
communication control MAIC-FC, as it continuously sends
tailored messages to other teammates with uniform commu-
nication weights. Furthermore, the MAIC version without
teammate modeling is called MAIC-NC, whose agent broad-
casts non-tailored messages to its teammates due to the lack
of teammate modeling. We also introduce QMIX-LARGE,
which has a similar number of parameters as MAIC, to in-
vestigate whether the superiority of MAIC over QMIX is
due to the increase in the number of parameters. We con-
duct experiments on the same two maps, 2c vs 64zg and
MMM2, respectively. As shown in Figure 8, the comparison
between MAIC and QMIX-LARGE indicates that QMIX
with a larger network cannot fundamentally improve the per-
formance, and the larger network even leads to a lower win
rate in MMM2. MAIC-FC outperforms all methods except
MAIC, which shows tailored messages make sense, but the
broadcast communication paradigm leads to redundancy and
injury to the learning process. MAIC-NC has comparable per-
formance as QMIX, which indicates communication without
intentionality does not make sense.

Results on Message Pruning We now investigate the ro-
bustness of MAIC by message pruning. We conducted ex-
periments on MMM2, which is a super hard map requir-

ing strong coordination. Communication methods including
MAIC, TMC, NDQ, and VBC, a communication method
with variance-based control, are trained for 2M timesteps.
We test the final models after 2M timesteps to evaluate the
test win rates under different message pruning rates. For a
fair comparison, we prune the sent messages by its values
in an ascending order accordingly with a given pruning rate,
except for VBC, which is a particular case as VBC can prune
messages with the proposed variance-based control. Table 1
shows the test win rates and performance changes of all al-
gorithms under different message pruning rates. We can find
the performance of MAIC is better than other baselines under
any message pruning rate. The win rate of NDQ decreases
dramatically, as the reduction of messages will severely alter
the input of the policy. TMC has higher robustness than NDQ
because TMC adds two regularizers to achieve robustness.
VBC shows a more robust communication for its variance-
based pruning way, but its win rates are not much promising.
MAIC has a smaller win rate decrease under most pruning
rates and even performs better than the complete communi-
cation paradigm, suggesting that MAIC is sufficiently robust
to cut useless communication links and the elimination of
redundant messages can promote coordination.

Conclusion
This paper proposes MAIC, a novel framework which adopts
incentive communication via teammate modeling to enhance
coordination. We utilize teammate modeling to anticipate
action selection of other agents, guiding the incentive mes-
sage generation, and then introduce a tailored communication
structure by computing communication weights towards dif-
ferent agents. Empirical results in diverse multi-agent coop-
erative tasks show that our method significantly outperforms
other baselines and can be integrated with existing value de-
composition methods to improve coordination. Furthermore,
we find MAIC can prune most messages without an evident
performance decrease, indicating its high robustness. MAIC
learns teammate modeling for each agent, which may be
intractable when facing environments with hundreds or thou-
sands of agents. Solving the scalability issue by techniques
like grouping would be of great interest, and more discussions
on efficient communication paradigms are promising.
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