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Abstract

The cost efficiency of model inference is critical to real-
world machine learning (ML) applications, especially for
delay-sensitive tasks and resource-limited devices. A typi-
cal dilemma is: in order to provide complex intelligent ser-
vices (e.g. smart city), we need inference results of multi-
ple ML models, but the cost budget (e.g. GPU memory) is
not enough to run all of them. In this work, we study un-
derlying relationships among black-box ML models and pro-
pose a novel learning task: model linking. Model linking aims
to bridge the knowledge of different black-box models by
learning mappings (dubbed model links) between their out-
put spaces. Based on model links, we developed a scheduling
algorithm, named MLink. Through collaborative multi-model
inference enabled by model links, MLink can improve the ac-
curacy of obtained inference results under the cost budget. We
evaluated MLink on a multi-modal dataset with seven differ-
ent ML models and two real-world video analytics systems
with six ML models and 3,264 hours of video. Experimental
results show that our proposed model links can be effectively
built among various black-box models. Under the budget of
GPU memory, MLink can save 66.7% inference computa-
tions while preserving 94% inference accuracy, which outper-
forms multi-task learning, deep reinforcement learning-based
scheduler and frame filtering baselines.

Introduction
Multi-model inference workloads are increasingly prevalent,
e.g., smart speaker assistants (Bentley et al. 2018), smart
cities (Duan et al. 2018), drone-based video monitoring (Dil-
shad et al. 2020), multi-modal autonomous driving (Feng
et al. 2020), etc. Besides the accuracy of the trained mod-
els, costs in the inference phase can become the bottleneck
to the quality of services, especially for delay-sensitive tasks
and resource-limited devices.

Towards cost-efficient inference, existing work explored
various perspectives to achieve the resource-performance
trade-offs. Multi-task learning and zipping (He, Zhou, and
Thiele 2018; Sanh, Wolf, and Ruder 2019; Crawshaw 2020;
Zhang and Yang 2021) can reduce the computing overheads
by sharing neurons among different tasks; Model compres-
sion (Hinton, Vinyals, and Dean 2015; Liu et al. 2018; Gold-
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blum et al. 2020; Bai et al. 2020) techniques attempt to elim-
inate parameters and connections not related to the inference
accuracy; Inference reusing (Guo et al. 2018; Ning, Guan,
and Shen 2019) approaches aim to avoid the same or similar
computations; Source filtering (Li et al. 2020) methods try to
transmit only necessary input data to backend ML models.
Adaptive configuration (Jiang et al. 2018) and multi-model
scheduling (Yuan et al. 2020a) were proposed to make infer-
ence workloads adaptive to the dynamics of input content.
We summarize them as answers to an interesting question:

How to obtain as accurate inference results as possi-
ble without the exact execution of ML models?

From this perspective, multi-task learning and model com-
pression generates a lighter model for the same inference
task(s) by pruning the original model(s). Inference reusing
and source filtering techniques reuse previous inference re-
sults as the predicted results through analyzing the correla-
tion between inputs. Based on the observation that, for some
input data, the accuracy of expensive and cheap models is
similar, adaptive configuration analyzes the input dynam-
ics and predicts the inference results of expensive models
by executing cheap ones. Adaptive multi-model scheduling
predicts unnecessary inference results as empty using the ex-
ecuted models’ outputs as the hint information.

We address this problem from a novel perspective: link-
ing black-box models. We were motivated by the insight that
even ML models that are different in input modalities, learn-
ing tasks, architectures, etc., can share knowledge with each
other, since ML models are prone to “overlearning” (Song
and Shmatikov 2020) and outputs of different models have
semantic correlations (Tan et al. 2018). If we can effectively
bridge the knowledge among ML models, we can directly
predict inference results of remaining models based on exe-
cuted models’ outputs. If the cost of this prediction is low, it
is promising to improve the resulting accuracy of inference
results from all models under a limited cost budget, com-
pared to the original workflow where results of unexecuted
models cannot be obtained at all. To realize this vision, the
following two main challenges need to be solved:

(1) How to build knowledge-level links among black-
box and highly different ML models? In practice, de-
ployed ML models could have different architectures and
input modalities, and they could be developed by different
programming languages and ML frameworks. The hetero-
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geneity makes it challenging to design a general model of
knowledge-level connections among ML models. On the
other hand, model linking should be non-intrusive to the
original inference system and require as little model infor-
mation and code modification as possible. The black-box
access of ML models bringing additional challenges to the
design and implementation.

(2) How to efficiently select models to be executed and
models to be predicted? Given a set of ML models, after
constructing model links among them, we need to select a
proper subset of models to be executed under a certain cost
budget, e.g. the allocatable GPU memory. Highly efficient
model selection is critical to the cost-performance trade-off,
which is non-trivial due to its theoretical hardness.

In this paper, we first formalize the model linking task
and propose the design of model links which supports link-
ing heterogeneous black-box ML models. And we develop
a model link-based algorithm, named MLink, to schedule
multi-model inference under a cost budget. We evaluated
our designs on a multi-modality dataset with seven differ-
ent ML models, covering five classes of learning tasks and
three types of input modalities. Results show that our pro-
posed model links can be effectively built among heteroge-
neous black-box models. We evaluated MLink on two real-
world video analytics systems, one for the smart building
and the other for city traffic monitoring, including six visual
models and 3,264 hours of video from 58 cameras. Under
the budget of GPU memory, MLink outperforms baselines
(multi-task learning (Crawshaw 2020), deep reinforcement
learning-based scheduler (Yuan et al. 2020a) and frame fil-
tering (Li et al. 2020)) and can save 66.7% inference com-
putation while preserving 94% output accuracy.

Problem Statement
In this section, we define the model linking task and the in-
ference under budgets problem.

Model linking. Given a set of black-box ML models F =
{fi}ki=1, where fi : Xi → Yi is a function mapping the in-
put to its inference result. ML models can be highly hetero-
geneous, i.e., different input modalities, learning tasks, ar-
chitectures, etc. We only assume that input spaces {Xi}ki=1
are the same or aligned. The case that different models
share the same input spaces is common, e.g., multi-task
learning-based robotics (Crawshaw 2020; Zhang and Yang
2021) and multimedia advertising (Yuan et al. 2020b). The
aligned input spaces typically exists in the context of multi-
modal scenarios, e.g., multi-modality event detection (Elho-
seiny et al. 2016) and visual speech synthesis (Baltrušaitis,
Ahuja, and Morency 2018). In practice, synchronization in
time can easily align inputs for many applications. More-
over, approaches such as spatial alignment of multi-view
videos (Black, Ellis, and Rosin 2002) and audio-visual se-
mantic alignment (Wang, Fang, and Zhao 2020) can be
adopted for specific scenarios. We define model linking as
a function gij : Yi → Yj , i.e., a mapping from the source
model fi’s output space to the target model fj’s. Then the
composite function gij ◦ fi : Xi → Yj can perform the
inference computation of fj . Correspondingly, gji links the
knowledge of fi into gji ◦ fj .

Multi-source model links ensemble. When the number
of models k ≥ 3, for one target model fj , there could be
multiple model links from different sources. Let A ⊆ F
denote the set of source models. Then for all fi ∈ A,
gij ◦ fi performs the prediction task to fj’s inference out-
puts. The question that follows is, how do we determine the
final prediction? From the ensemble learning perspective,
{gij ◦ fi}fi∈A constitute a multi-expert model (Yuksel, Wil-
son, and Gader 2012), which has the potential to perform
better prediction with the multi-task & multi-modal repre-
sentation (Baltrušaitis, Ahuja, and Morency 2018; Zhang
and Yang 2021). We define hA,j as the ensemble model link
from A to fj . So the input of hA,j is the set of predictions
by gij where fi ∈ A. Note that if A has only one element fi,
then hA,j = gij ◦ fi.

Multi-model inference under budget. The model links
can be utilized to achieve resource-performance trade-offs
of multi-model inference workloads. Let c(·) denote the cost
of running a function, e.g., GPU memory or inference time.
For resource-limited devices (e.g., smartwatches and mo-
bile phones) and delay-sensitive tasks (e.g., real-time video
analytics and audio assistant), there are certain constraints
on the total cost. We define B as the cost budget and aim
to maximize the inference accuracy under that budget. Let
p(hA,j) denote the performance measure of the ensemble
model link, which depends on the target model’s task. We
assume the range of p is normalized into [0, 1]. For example,
the performance measure can be accuracy for classification
task and bounding box IoU for the detection task. Following
previous efforts for optimizing the inference efficiency (Li
et al. 2020; Yuan et al. 2020a), the performance measure
the consistency between obtained results and exact inference
outputs, instead of ground-truth labels. The multi-model in-
ference under cost budget problem is formalized as:

max
A⊆F

average output accuracy︷ ︸︸ ︷
(
1

|F |
(
∑
fi∈A

1︸ ︷︷ ︸
activated

+
∑

fj∈F\A

p(hA,j)︸ ︷︷ ︸
predicted

))

s.t.
∑
fi∈A

c(fi)︸ ︷︷ ︸
exact inference

+
∑

fj∈F\A

c(hA,j)︸ ︷︷ ︸
model links

≤ B.

(1)

Under the cost budget, the optimization problem aims to
maximize the average performance of all models F by se-
lecting an activated subset A to be executed. For ease of
description, we define the objective function as the output
accuracy. Activated models do exact inference, so their per-
formance scores are all 1. Models that are not activated only
participate in constructing model links and will not be exe-
cuted during the inference phase; instead, they are predicted
by the activated models via ensemble model links. The cost
of activated models is performing exact inference, while the
cost of predicted models is from running model links. So the
model links should be both accurate and lightweight to re-
duce the cost while preserving the quality of the multi-model
inference workloads.
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Black-Box Model Linking
In this section, we discuss the motivation of linking black-
box models and present the theoretical analysis, architecture
design, ensemble and training methods of model links.

Motivational Study
When training ML models for different tasks, the ideal rep-
resentation learned by them should be independent and dis-
entangled (Hjelm et al. 2019), i.e. each model only learns the
semantics that just covers its objective task. However, due to
the mismatched complexity of the data and the model, the
machine learning process is prone to “overlearning” (Song
and Shmatikov 2020), which means that unintended seman-
tics is encoded in the learned representation. Besides, there
exist semantic correlations among outputs of different tasks
and different models may pay attention to the same content,
e.g., the same regions in images. For example, in Fig. 1a,
based on G-CAM (Selvaraju et al. 2020), we plot the at-
tention heatmaps of YOLO-V3 (Redmon and Farhadi 2018)
object detector and ResNet50 (He et al. 2016) scene classi-
fier on the same images, and their attention areas have much
overlap. We experimented on the correlation between the
overlap ratio of attention heatmaps and the performance of
model linking. For example, from the scene classification
model to the object detection model, as shown in Fig. 1b,
the accuracy of model links is obviously relevant with the
overlap ratio ((Mapsource ∧ Maptarget)/Maptarget). To
a certain extent, it shows that the correlation learned by
model links is similar with the semantic attention. The
“overlearning” characteristic and underlying semantic cor-
relations among outputs make mappings from the same
or aligned input space to different output spaces transfer-
able (Tan et al. 2018).

Black-Box Output vs. Intermediate Representation
A key design principle is that we only use the black-box
output of the source model to for model linking. Existing
work has shown that by fine-tuning the last few layers (Guo
et al. 2019), the intermediate representation can be used to
predict other different tasks. However, in real applications,
we often have to deal with the deployed models, which only
provide a black-box inference API. Compared with interme-
diate representation, the downstream black-box outputs do
have weaker representation capability for general learning
tasks. But recent work (Yuan et al. 2020a) shows that, given
the same (or aligned) inputs, the executed models’ outputs
are very effective hints for scheduling unexecuted models.
The insight is that the correlation of black-box outputs be-
tween multiple tasks with the same input is more explicit
and even stronger than the intermediate features. And our
experimental results also show that, using the same amount
of training data, black-box model linking achieves higher
accuracy than a knowledge distillation approach (see Fig. 2)
and a multi-task learning approach (see Tab. 4). Considering
the better practicality and satisfactory accuracy, we select
black-box outputs rather than intermediate representations
for linking ML models.
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Figure 1: Inter-model Semantic Correlation

Sample Complexity Analysis
Let f ∈ F denote task-specific parameters and h denote
shared parameters across tasks. It has been proved that when
the training data for h is abundant, to achieve bounded pre-
diction error on a new task only requires C(F) sample com-
plexity (Tripuraneni, Jordan, and Jin 2020), where C(·) is
the complexity of a hypothesis family. Learning a model
link gij ∈ G from source model fi ∈ Fi to the target
fj ∈ Fj constitutes a compound learning model gij ◦ fi.
A lightweight design of model links can makes C(G) <
C(Fj) hold. Therefore, applying the above result, model
linking can significantly reduce the sample complexity to
C(G), compared with the C(Fj) complexity of learning the
target model from scratch. This result is also confirmed by
our experiments: effective model links can be learnt by a
very small amount (e.g. 1%) of training samples (see Fig.2).

Model Link Architecture
Model links map between black-box models’ output spaces,
so the output format determines the architecture. We classify
output formats as the fixed-length vector and the variable-
length sequence. These two types of outputs could cover
most ML models. We propose four types of model link ar-
chitectures based on best practices of similar learning tasks.

Vec-to-Vec: The model link maps from a vector-output
source to a vector-output target. We use a ReLU-activated
multilayer perception (MLP) for the vec-to-vec model link.

Seq-to-Vec: The model link maps from a sequence-output
source to a vector-output target. We first use an embedding
layer, which performs a matrix multiplication to transform
the sequence into a fixed-size embedding. Then we use an
LSTM (Hochreiter and Schmidhuber 1997) layer followed
by an MLP to generate the vector output.

Vec-to-Seq: The model link maps from a vector-output
source to a sequence-output target. We adopt the encoder-
decoder framework, where an MLP serves as the encoder
and the decoder consists of an embedding layer, an LSTM
layer, an attention layer (Bahdanau, Cho, and Bengio 2015),
and a fully-connected layer, in the forward order.

Seq-to-Seq: The model link maps from a sequence-output
source to a sequence-output target. We adopt the sequence-
to-sequence framework (Sutskever, Vinyals, and Le 2014),
where an embedding layer followed by an LSTM layer
serves as the encoder and the decoder is the same as the one
in the vec-to-seq model link.
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The output activation functions are determined by the
learning task of the target model. Softmax is used for single-
label classification, and sigmoid is used for multi-label clas-
sification and sequence prediction. Linear activation works
with regression and localization tasks. In our implementa-
tion, the default number of hidden units is twice the length
of the output dimension, which empirically achieved a good
trade-off between effectiveness and efficiency.

Ensemble of Multi-Source Links
The ensemble of multi-source model links has the potential
to improve the prediction performance (Shen, He, and Xue
2019), since cross-task and cross-modal representation ca-
pabilities could be beneficial. For the target model fj , given
the set of sources A, we multiply outputs of gij by trainable
weights, where fi ∈ A. The weighted prediction is then ac-
tivated according to fj’s learning task. The learned weights
of hA,j can be used to ensemble model links from any subset
of sources, i.e., hA′,j , A

′ ⊂ A.

Training
Classic knowledge distillation (Hinton, Vinyals, and Dean
2015) suggests that soft-label supervisions are better for
training the “student” model, since the “teacher” model’s
outputs augment the hard-label space with relations among
different classes. Our experimental results show that this em-
pirical experience still holds in the proposed model linking
setting. To train model links and the ensemble model, we
collect n inference results {{yji }kj=1}ni=1 from k models on
the same or aligned inputs. Given fi, fj as the source and
the target, respectively, the objective of training the model
link gij is min

∑n
l=1 Lj(gij(y

l
i), y

l
j), where the loss func-

tion Lj depends the learning task of the target model fj .
Given A, fj as the set of sources and the target, respec-
tively, the objective of training the ensemble model hA,j

is min
∑n

i=l Lj(hA,j({yli}fi∈A), y
l
j). Both model links and

ensemble models are optimized via gradient descent. Note
that if A has only one element fi, then the ensemble simply
fits as an identity layer and hA,j = gij ◦ fi.

Collaborative Multi-Model Inference
Define F(A) = 1

|F | (
∑

fi∈A 1+
∑

fj∈F\A p(A, fj)) and the
gain of activating one more model fi as ∆(A, fi) = F(A ∪
{fi})−F(A). Assuming that adding a source of model link
into the ensemble model will not decrease the performance:
p(A∪{fi}, fj) ≥ p(A, fj), which is empirically true (Zhou
2012). Then ∆(A, fi) ≥ 0. In our experiments, we observed
two typical cases: (1) Dominance. The performance of the
ensemble model approximately equals the best-performance
source of model links. Let fi∗ = argmaxfi∈Ap(gij) de-
note the source with maximal performance. We observe that
p(hA,fj ) ≈ p(gi∗j), i.e., the best source dominates the
ensemble performance. (2) Mutual assistance. The multi-
source model links ensemble outperforms any single source.
∀fi ∈ A, p(hA,fj ) > p(gij), i.e., sources of model links
assist mutually. And in this case, fj’s gain for A2 is possi-
bly greater than its gain for A1, A1 ⊂ A2, if fj collaborates
better with models in A2 \A1.

Algorithm 1: Collaborative Multi-model Inference
Input: model set F , cost budget B

1 For every fi, fj ∈ F, i ̸= j, train model links gij ;
2 For every fj ∈ F , train ensemble model hAj ,j , where

Aj = F \ {fj};
3 for each period do
4 Profiling activation probability of fi ∈ F ;
5 Greedily select A← A ∪ {argmaxfi∈F\A(Pi)} until

reach the cost budget B;
6 Given incoming input x, for fi ∈ F :
7 if fi ∈ A then: yi ← fi(x);
8 else: yi ← hA,i({yj}fj∈A).
9 end

Activation probability. Solving Eq. (1) is NP-hard and
the (1 − e−1)-approximation algorithm (Sviridenko 2004)
needs partial-enumeration and requires O(n5) computations
of the objective function. The optimization is not a one-off
process and should be executed online to fit the dynamics
of the inference system. So we design a heuristic metric of
activation probability, whose calculation only depends on
the model links’ performance rather than ensemble mod-
els’. Given a model fi, the activation probability considers
three factors: (1) the average performance of model links
from fi to all the others, denoted as P1

i =
∑

j ̸=i p(gij)

|F |−1 ; (2)
the average performance of model links targeted to fi from
all the others, denoted as P2

i =
∑

j ̸=i p(gji)

|F |−1 ; (3) the cost
of fi, i.e., c(fi). Then we design the activation probability
as Pi =

1+P1
i −P2

i

wc(fi)
, where the weight w can be determined

by the following normalization. By regularizing the range
into 0 to 1, we have (1 + 1 − 0)/(wmini(c(fi)) = 1, i.e.,
w = 2/mini c(fi). This activation probability can be re-
garded as an coefficient that are positively correlated with
the gain of the objective function when selecting a ML
model.

Periodic re-selection. Due to the content dynamics, the
optimal subset of activated models may change over time.
But adapting to such dynamics brings additional overheads
of loading and unloading ML models. So we propose to peri-
odically re-select activated models. At the beginning of each
period, we use a small proportion (e.g. 1%) of the data for
profiling the prediction performance of model links. Then
we update ML models’ activation probabilities and re-select
models to be loaded during the current period. By reason-
ably setting the period length and the proportion of data
used for profiling, we can amortize the overheads of load-
ing/unloading ML models to negligible.

Algorithm. 1 shows the workflow of integrating MLinks
with multi-model inference workloads. Initially, we train
pairwise model links and ensemble models. During each
period, we first calculate the activation probability by run-
ning all models on data for profiling. Then we select greed-
ily w.r.t. activation probability under the cost budget. In the
serving phase, activated models do exact inference while the
others’ outputs will be predicted by the model link ensemble
of activated sources.
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Task Class ML Model Input Modality Output Format Metric
Single-Label Classification Gender Classification (Kumar 2021) Audio 2-D Softmax Labels Acc.
Multi-Label Classification Action Classification (Tran et al. 2015) Video 12-D Sigmoid Labels mAP

Localization Face Detection (Serengil and Ozpinar 2020) Image 4-D Bounding Box IoUPerson Detection (Redmon and Farhadi 2018) Image
Regression Age Prediction (Levi and Hassner 2015) Image 1-D Scalar MAE

Sequence Generation Image Captioning (Wang 2021) Image Variable-Length Text WERSpeech Recognition (Mozilla 2021) Audio

Table 1: Summary of ML models used on Hollywood2 dataset.

Evaluation
Implementation and Experiment Setup
We implemented our designs in Python based on Tensor-
Flow 2.0 (TensorFlow 2021) as a pluggable middleware
for inference systems 1. We tested the integration on pro-
grams implemented with TensorFlow (TensorFlow 2021),
PyTorch (PyTorch 2021) and MindSpore (MindSpore 2021),
with only dozens of lines of code modification, which shows
the ease of use of MLink. We evaluated our designs on a
multi-modal dataset and two real-world video analytics sys-
tems.

Multi-modal dataset and ML models. We used the
Hollywood2 video dataset (Marszalek, Laptev, and Schmid
2009). To obtain aligned inputs for multi-modal models, we
selected the 30th frame and extracted audio data from each
video. We deployed seven pre-trained ML models that cover
five classes of learning tasks: single-label and multi-label
classification, object localization, regression, and sequence
generation. And they have different model architectures, in-
put modalities and output formats. To evaluate the perfor-
mance of model links, we used task-specific metrics, includ-
ing accuracy, mean average precision (mAP), intersection
over union (IoU) of the bounding box, mean absolute error
(MAE), and word error rate (WER). Tab. 1 summarizes in-
formation of these ML models.

Smart building and city traffic monitoring systems. We
evaluated MLink on two real-world video analytics systems.
1) Smart building. To support applications including auto-
matic air conditioning and lighting, abnormal event mon-
itoring, and property security, three ML models were de-
ployed: OpenPose (Cao et al. 2019)-based person count-
ing, ResNet50 (He et al. 2016)-based action classifica-
tion (Olafenwa 2021a), and YOLOV3 (Redmon and Farhadi
2018)-based object counting. We collected two days (one
weekday and one weekend) of video frames from all 58
cameras (1 frame per minute). We use an edge server with
one NVIDIA 2080Ti GPU. 2) Traffic monitoring. On a city-
scale video analytics platform with over 20,000 cameras,
three AI models were deployed for traffic monitoring: Open-
Pose (Cao et al. 2019)-based person counting, ResNet50 (He
et al. 2016)-based traffic condition classification (Olafenwa
2021b), and YOLOV3 (Redmon and Farhadi 2018)-based
vehicle counting. We selected 10 cameras at the road in-
tersections and collected two days (one weekday and one
weekend) of frames (1 FPS). We used five servers, each with
four NVIDIA T4 GPUs.

1https://github.com/yuanmu97/MLink

Baselines. We introduce the naive standalone inference
and three strong alternative resource-performance trade-off
approaches as baselines. (1) Standalone: running models in-
dependently. (2) MTL: We adopt a multi-task learning ar-
chitecture (Crawshaw 2020) that consists of a global fea-
ture extractor shared by all tasks and task-specific output
branches. We use ResNet50 (He et al. 2016) to imple-
ment the feature extractor and fully-connected layers for
task-specific outputs. We initialize the ResNet50 feature ex-
tractor with weights pretrained on ImageNet (Deng et al.
2009) and connect three output branches for person count-
ing, action/traffic classification, and object/vehicle count-
ing tasks, on smart building/traffic monitoring testbeds. The
MTL models are trained under the supervision of exact in-
ference results of corresponding models. (3) Reducto (Li
et al. 2020): a frame filtering approach. For each model,
Reducto first computes the feature difference of successive
frames. If the feature difference is lower than a threshold, it
filters out the current frame and reuses the latest inference
output. We tested four types of low-level features as pro-
posed in Reducto and selected the one that has the best per-
formance. (4) DRLS (Deep Reinforcement Learning-based
Scheduler) (Yuan et al. 2020a): a multi-model scheduling
approach. DRLS trains a deep reinforcement learning agent
to predict the next model to execute on the given data, based
on the observation of executed models’ outputs.

Black-Box Model Linking
Sensitivity to the size of training data. The original train-
ing and test splits in Hollywood2 dataset contain 823 video
clips (around 48%) and 884 video clips, respectively. To test
the performance of the model linking with different sizes of
training data, we further randomly sampled four subsets of
training data with 1%, 5%, 10%, 20% ratios, with respect
to the total dataset. We trained pairwise model links with
the RMSprop (Tieleman and Hinton 2012) optimizer and the
same hyper-parameters (0.01 learning rate, 100 epochs, 32
batch size). As a fair comparison, we adopt a knowledge
distillation (Hinton, Vinyals, and Dean 2015) method for
some target models (Action, Age, Gender) where the student
model has two convolutional layers. We repeated the exper-
iments three times and reported the mean and standard devi-
ation of performance. As shown in Fig. 2, using all training
data, the Caption-to-Action model link can achieve 31.7%
mAP. And the model links between the two detection mod-
els, Face-to-Person and Person-to-Face model links, achieve
59% and 32% IoU, respectively. Even with very limited
training samples, 1%, some model links achieve high per-
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Figure 2: Performance of model links from different source
models on four targets. KD-Student: student model trained
via knowledge distillation on the target model.

Source Action Age Face Gender

IoU (%) 39.4 (±0.1) 38.9 (±0.1) 58.5 (±1.3) 39.0 (±0.1)

Corr. 0.123 0.042 0.244 -0.053

Table 2: IoU scores of model links targeted to the Person
model and the Pearson correlations.

formance. The model link from Face to Gender achieves
92.1% accuracy. And for model links Gender-to-Age model
achieves 3.0 MAE. Compared with student models trained
via knowledge distillation on the target models, model links
achieves higher prediction performance, especially when the
amount of training data is small. But for speech recognition
and video caption models, model links targeted to them can-
not be effectively built and have around one WER score.

Discussions. We calculated the Pearson correlation co-
efficients between inference outputs of different models on
the training split. For single-label and multi-label classifica-
tion models, we used the index with the highest confidence
as the label. For localization models, we checked whether
the bounding box is empty, and assign 0 or 1 as the label.
We used the regression scalar as the label and skipped the
two sequence generation models. Tab. 2 shows the results of
model links targeted to the Person model, and we can see
a positive correlation between the model link performance
and Pearson correlation coefficient.

Model link ensemble. For one target model, we have
built multiple model links from different source models.
Then we trained the ensemble models with all sources, us-
ing the same optimizer as model links and same hyper-
parameters. Tab. 3 shows the results on five target models,
both model links and ensemble models were trained using
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Figure 3: MLink’s overheads on servers and mobile phones.

all training samples (48% ratio). The model link ensemble
outperforms every single source model. We can see there are
two typical cases: dominance and mutual assistance. For Ac-
tion, Face, Person targets, the Caption, Person, Face sources
dominate the ensemble performance, respectively. But for
Age and Gender targets, source models mutually assist and
achieve performance improvement by ensemble.

Video Analytics with Model Links

We test MLink on 48-hour videos of 58 cameras in a smart
building system and 48-hour videos of 10 cameras on a city
traffic monitoring platform. We leveraged the first 10% in
time of data for training model links and ensembles. We set
the period length as one hour and use initial 1% data for
profiling activation probabilities. For the counting models,
the output accuracy is calculated by checking whether the
absolute error of the predicted number is less than 0.5. The
time costs of each ML model were the average inference
time offline profiled by the training data. In the smart build-
ing system, the action/person/object models cost 30/44/60
ms per frame. In the traffic monitoring system, the traf-
fic/person/vehicle models cost 55/66/70 ms per frame. The
GPU memory costs of each ML model were the peak us-
age: 4.6 GB for person counting, 1.5 GB for action/traffic
classification, and 3.7 GB for object/vehicle counting. We
set the budget B as the maximal GPU memory allocated
for ML models to evaluate how MLink improves the re-
source efficiency of multi-model inference. We treat every
ML model’s output accuracy equally and report their aver-
age output accuracy. Under GPU memory budget, the base-
line “Standalone” simply selects the model with minimal
average time cost. We repeated the scheduling experiments
three times and reported the results in Tab. 4. Since the stan-
dard deviations are small (< 0.1), we did not present them
for simplicity. In both systems, MLink outperforms alterna-
tives in output accuracy. Compared with “Standalone”, in
the smart building system, MLink saves 66.7% inference ex-
ecutions, while preserving 94.1% output accuracy.

Overheads of MLink. We deployed MLink on four dif-
ferent devices (a cloud server, an edge server, a laptop, and a
mobile phone) and tested its latency and memory footprint.
As shown in Fig. 3, MLink only introduces negligible addi-
tional overheads.
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Target \ Source Action Age Caption Face Gender Person Speech Ensemble

Action mAP(%) - 12.8(±1.3) 29.7(±1.4) 10.1(±1.3) 9.3(±0.3) 9.9(±1.2) 8.5(±3.1) 30.8(±1.1)
Face IoU(%) 11(±1.3) 11.2(±1.0) 0 (±0) - 10.3(±0.9) 31.9(±0.3) 0 (±0) 32.2(±0.2)
Person IoU(%) 39.4(±0.1) 38.9(±0.1) 0(±0) 58.5(±1.3) 39.0(±0.1) - 0(±0) 59.2(±1.2)

Age MAE 3.04(±0.01) - 3.02(±0.01) 3.07(±0.02) 3.0(±0.01) 3.03(±0.01) 3.0(±0.01) 2.98(±0)
Gender Acc.(%) 92(±0.1) 92.1(±0.2) 92(±0.1) 92.1(±0.1) - 92(±0.1) 92(±0.1) 92.3(±0)

Table 3: Dominance and mutual assistance cases in model link ensemble. Column titles are source models and row titles are
target models. The dominant source’s performance is in bold.

Method Building (5/9GB Mem.) City (5/9GB Mem.)

Acc. (%) Time (ms) Acc. (%) Time (ms)

Standalone 33.3/66.7 30/74 33.3/66.7 55/121

MTL 53.3 32.8 61.3 32.5
DRLS 45.7/81.3 58.7/107 39.5/77.6 102/188
Reducto 91.8/96.9 45.7/89 84.1/95.3 64/127

MLink 94.1/97.9 39.3/84 94/97.4 62/125

Table 4: Comparisons of MLink, MTL, Reducto, DRLS, and
Standalone methods on two video analytics systems.

Related Work
Multi-task learning and zipping. One straightforward way
to optimize multiple standalone ML models is multi-task
learning (Sanh, Wolf, and Ruder 2019; Zhang and Yang
2021; Crawshaw 2020) and zipping (He, Zhou, and Thiele
2018). By sharing the same backbone neural networks
among different tasks, multi-task models can provide richer
inference results than standalone models under the same cost
budget. However, multi-task learning approaches lack flexi-
bility and scalability, i.e., we need to tailor multi-task solu-
tions case by case and re-design once the set of tasks change.
In contrast, although there exists parameter redundancy be-
tween different black-box ML models, MLink approach can
be flexibly extended. And experiments show that the accu-
racy of model linking is higher when given a small amount
of training data.

Knowledge distillation. Following the taxonomy in the
recent survey (Gou et al. 2021), knowledge distillation has
three main sources of knowledge: (1) response (Ba and
Caruana 2014; Hinton, Vinyals, and Dean 2015): the output
of the “teacher” model; (2) feature (Chen et al. 2021): the in-
termediate feature maps; (3) relation (Passalis, Tzelepi, and
Tefas 2020): the relations of feature maps. Mutual distilla-
tion (Zhang et al. 2018; Yao and Sun 2020) was proposed to
train an ensemble of “student” models and let them learn
from each other mutually. Cross-task distillation (Ye, Lu,
and Zhan 2020) was proposed to train a “student” model by
a “teacher” model pre-trained for another task. Model link-
ing is complementary to knowledge distillation, i.e. model
links can be built among distilled “student” models.

Redundancy filtering. Filtering redundant computation
or communication is a promising way towards cost-efficient
inference. Yuan et al. (Yuan et al. 2020a) proposed a rein-

forcement learning-based scheduler for multi-model data la-
belling tasks, which leverages the executed models’ outputs
as the hint information to schedule remaining models. Re-
ducto (Li et al. 2020) filters out video frames by setting a
threshold on feature difference between successive frames.
DNNs-aware video streaming (Xie and Kim 2019; Du et al.
2020) was proposed to compress the pixels less related with
inference accuracy for communication-efficient inference.
FoggyCache (Guo et al. 2018) reuses cached inference re-
sults by adaptive hashing input values. Our proposed MLink
scheduler optimizes the cost-efficiency in a novel and more
direct way: predict inference results of unexecuted ML mod-
els by executed models’ outputs.

Conclusion and Discussion

In this work, we propose to link black-box ML models and
present the designs of model links and a collaborative multi-
model inference algorithm. The comprehensive evaluations
show the effectiveness of black-box model linking and the
superiority of the MLink compared to other alternative meth-
ods. We summarize limitations and future work as follows:
(1) When the semantic correlations between source and tar-
get models are low, model linking has poor output accu-
racy. (2) When the number of joined models is very large,
pairwise model linking will become unpractical. So we will
study how to smartly select models to build model links in
the future. (3) Due to the small amount of parameters, the
retraining cost is quite small (e.g., a vec-to-vec model link
with 100-dimension input and output lengths costs 12.9s for
training 100 epochs using 1k samples), so periodic retraining
policy for updating MLink is feasible. We will study online
learning and active learning mechanisms to further improve
MLink’s adaptation to the input dynamics and reduce the up-
dating overheads.
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