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Abstract
In recent years, machine learning (ML) algorithms have been
deployed in safety-critical and high-stake decision-making,
where the fairness of algorithms is of paramount importance.
Fairness in ML centers on detecting bias towards certain demo-
graphic populations induced by an ML classifier and proposes
algorithmic solutions to mitigate the bias with respect to differ-
ent fairness definitions. To this end, several fairness verifiers
have been proposed that compute the bias in the prediction of
an ML classifier—essentially beyond a finite dataset—given
the probability distribution of input features. In the context
of verifying linear classifiers, existing fairness verifiers are
limited by accuracy due to imprecise modeling of correlations
among features and scalability due to restrictive formulations
of the classifiers as SSAT/SMT formulas or by sampling.
In this paper, we propose an efficient fairness verifier, called
FVGM, that encodes the correlations among features as a
Bayesian network. In contrast to existing verifiers, FVGM pro-
poses a stochastic subset-sum based approach for verifying
linear classifiers. Experimentally, we show that FVGM leads
to an accurate and scalable assessment for more diverse fam-
ilies of fairness-enhancing algorithms, fairness attacks, and
group/causal fairness metrics than the state-of-the-art fairness
verifiers. We also demonstrate that FVGM facilitates the com-
putation of fairness influence functions as a stepping stone to
detect the source of bias induced by subsets of features.

1 Introduction
The significant improvement of machine learning (ML) over
the decades has led to a host of applications of ML in
high-stake decision-making such as college admission (Mar-
tinez Neda, Zeng, and Gago-Masague 2021), hiring of em-
ployees (Ajunwa et al. 2016), and recidivism prediction (Tol-
lenaar and Van der Heijden 2013; Dressel and Farid 2018).
ML algorithms often have an accuracy-centric learning objec-
tive, which may cause them to be biased towards certain part
of the dataset belonging to a certain economically or socially
sensitive groups (Landy, Barnes, and Murphy 1978; Zliobaite
2015; Berk 2019). The following example illustrates a plau-
sible case of unfairness induced by ML algorithms.
Example 1.1. Following (Ghosh, Basu, and Meel 2021, Ex-
ample 1.), let us consider an ML problem where the classifier
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decides the eligibility of an individual for health insurance
given their income and fitness (Figure 1). Here, the sensitive
feature ‘age’ (A) follows a Bernoulli distribution, and income
(I) and fitness (F ) follow Gaussian distributions. We gener-
ate 1000 samples from these distributions and use them to
train a Support Vector Machine (SVM) classifier. The decision
boundary of this classifier is 9.37I + 9.75F − 0.34A ≥ 9.4,
where A = 1 denotes the sensitive group ‘age ≥ 40’. This
classifier selects an individual above and below 40 years
of age with probabilities 0.24 and 0.86, respectively. This
illustrates a disparate treatment of individuals of two age
groups by the SVM classifier.

0.0 0.5 1.0
income

0.0 0.5 1.0
fitness

age < 40 age 40

Figure 1: Age-dependent distributions of income and fitness
in Example 1.1.

In order to identify and mitigate the bias of ML classifiers,
different fairness definitions and fairness algorithms have
been proposed (Hardt, Price, and Srebro 2016; Kusner et al.
2017; Mehrabi et al. 2019). In this paper, we focus on two
families of fairness definitions: group and causal fairness.
Group fairness metrics, such as disparate impact and equal-
ized odds constrain the probability of the positive prediction
of the classifier to be (almost) equal among different sensitive
groups (Dwork et al. 2012; Feldman et al. 2015). On the other
hand, causal fairness metrics assess the difference in posi-
tive predictions if every feature in the causal relation remains
identical except the sensitive feature (Nabi and Shpitser 2018;
Zhang and Bareinboim 2018). The early works on fairness
verification focused on measuring fairness metrics of a classi-
fier for a given dataset (Bellamy et al. 2018). Naturally, such
techniques were limited in enhancing confidence of users
for wide deployment. Consequently, recent verifiers seek to
achieve verification beyond finite dataset and in turn focus
on the probability distribution of features (Albarghouthi et al.
2017; Bastani, Zhang, and Solar-Lezama 2019; Ghosh, Basu,
and Meel 2021). More specifically, the input to the verifier is

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

9539



a classifier and the probability distribution of features, and
the output is an estimate of fairness metrics that the classifier
obtains given the distribution. For Example 1.1, a fairness ver-
ifier takes the SVM classifier and the distribution of features
I, F,A as an input and outputs the probability of positive
prediction of the classifier for different sensitive groups.

In order to solve the fairness-verification problem, exist-
ing works have proposed two principled approaches. Firstly,
Ghosh, Basu, and Meel (2021) and Albarghouthi et al. (2017)
propose formal methods that reduce the problem into a solu-
tion of an SSAT or an SMT formula respectively. Secondly,
Bastani, Zhang, and Solar-Lezama (2019) propose a sampling
approach that relies on extensively enumerating the condi-
tional probabilities of prediction given different sensitive fea-
tures and thus, incurs high computational cost. Additionally,
existing works assume feature independence of non-sensitive
features and consider correlated features within a limited
scope, such as conditional probabilities of non-sensitive fea-
tures w.r.t. sensitive features and ignore correlations among
non-sensitive features. As a result, the scalability and accu-
racy of existing verifiers remains a major challenge.

In this work, we seek to remedy the aforementioned situa-
tion. As a first step, we focus on linear classifiers, which has
attracted significant attention from researchers in the context
of fair algorithms (Pleiss et al. 2017; Zafar et al. 2017; Dressel
and Farid 2018; John, Vijaykeerthy, and Saha 2020). At this
point, it is worth highlighting that our empirical evaluation
demonstrates that the existing techniques fail to scale beyond
small examples or provide highly inaccurate estimates for
comparatively small linear classifiers.

Our Contributions. In this paper, we propose a fairness
verification framework, namely FVGM (Fairness Verification
with Graphical Models), for accurately and efficiently ver-
ifying linear classifiers. FVGM proposes a novel stochastic
subset-sum encoding for linear classifiers with an efficient
pseudo-polynomial solution using dynamic programming.
To address feature-correlations, FVGM considers a graphical
model, particularly a Bayesian Network that represents condi-
tional dependence (and independence) among features in the
form of a Directed Acyclic Graph (DAG). Experimentally,
FVGM is more accurate and scalable than existing fairness
verifiers; FVGM can verify group and causal fairness met-
rics for multiple fairness algorithms. We also demonstrate
two novel applications of FVGM as a fairness verifier: (a)
detecting fairness attacks, and (b) computing Fairness Influ-
ence Functions (FIF) of features as a mean of identifying
(un)fairness contribution of a subset of features.

2 Background
In this section, we define different fairness metrics proposed
for classification. Following that, we state basics of stochastic
subset sum and Bayesian networks that are the main compo-
nents of our methodology.

Fairness in ML. We consider1 a dataset D as a collec-
tion of triples (X,A, Y ) generated from an underlying dis-

1We represent sets/vectors by bold letters, and the corresponding
distributions by calligraphic letters. We express random variables in
uppercase, and an assignment of a random variable in lowercase.

tribution D. X , {X1, . . . , Xm1} are non-sensitive fea-
tures whereas A , {A1, . . . , Am2

} are categorical sensi-
tive features. Y ∈ {0, 1} is the binary label (or class) of
(X,A). Each non-sensitive feature Xi is sampled from a
continuous probability distribution Xi, and each sensitive
feature Aj ∈ {0, . . . , Nj} is sampled from a discrete prob-
ability distribution Aj . We use (x, a) to denote the feature-
values of (X,A). For sensitive features, a valuation vector
a = [a1, .., am2

] is called a compound sensitive group. For
example, consider A = {race, sex} where race ∈ {Asian,
Color, White} and sex ∈ {female, male}. Thus a = [Asian,
female] is a compound sensitive group. We represent a binary
classifier trained on the dataset D as M : (X,A) → Ŷ .
Here, Ŷ ∈ {0, 1} is the predicted class of (X,A).

We now discuss different fairness metrics in the literature
based on the prediction of a classifier (Feldman et al. 2015;
Hardt, Price, and Srebro 2016; Nabi and Shpitser 2018). In
this paper, FVGM verifies two families of fairness metrics:
group fairness (first three in the following) and path-specific
causal fairness.

1. Disparate Impact (DI): A classifier satisfies (1 − ε)-
disparate impact if for ε ∈ [0, 1], mina Pr[Ŷ = 1|A =

a] ≥ (1− ε) maxa Pr[Ŷ = 1|A = a].

2. Statistical Parity (SP): A classifier satisfies ε-statistical
parity if for ε ∈ [0, 1], maxa Pr[Ŷ = 1|A = a] −
mina Pr[Ŷ = 1|A = a] ≤ ε.

3. Equalized Odds (EO): A classifier satisfies ε-equalized
odds if for ε ∈ [0, 1], maxa Pr[Ŷ = 1|A = a, Y = 0]−
mina Pr[Ŷ = 1|A = a, Y = 0] ≤ ε, and maxa Pr[Ŷ =

1|A = a, Y = 1]−mina Pr[Ŷ = 1|A = a, Y = 1] ≤ ε.
4. Path-specific Causal Fairness (PCF): Let amax ,

arg maxa Pr[Ŷ = 1|A = a]. We consider mediator fea-
tures Z ⊆ X sampled from the conditional distribution
Z|A=amax

. This emulates the fact that mediator variables
have the same sensitive features amax. For ε ∈ [0, 1],
path-specific causal fairness is defined as maxa Pr[Ŷ =

1|A = a,Z]−mina Pr[Ŷ = 1|A = a,Z] ≤ ε.

For all of the above metrics, lower value of ε indicates
higher fairness demonstrated by the classifier M. Follow-
ing the observation of (Ghosh, Basu, and Meel 2021), com-
puting all of the aforementioned fairness metrics is equiva-
lent to computing the maximum and minimum of the prob-
ability of positive prediction of the classifier, denoted as
Pr[Ŷ = 1|A = a], for all compound sensitive groups a
from A. Thus, in Section 3, we focus on computing the max-
imum and minimum probability of positive prediction of the
classifier and then extend it to assess corresponding fairness
metrics. We call the group for which the probability of pos-
itive prediction is maximum (minimum) as the most (least)
favored group of the classifier.

Stochastic Subset Sum Problem (S3P). Let B ,
{Bi}|B|i=1 be a set of Boolean variables and wi ∈ Z be the
weight ofBi. Given a constraint of the form

∑|B|
i=1 wiBi = τ ,

for a constant threshold τ ∈ Z, the subset-sum problem seeks
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to compute an assignment b ∈ {0, 1}|B| such that the con-
straint evaluates to true when B is substituted with b. Subset
sum problem is known to be a NP-complete problem and
well-studied in theoretical computer science (Kleinberg and
Tardos 2006). The counting version of the subset-sum prob-
lem counts all b’s for which the above constraint holds; and
this problem belongs to the complexity class #P. In this
paper, we consider the counting problem for the constraint∑|B|

i=1 wiBi ≥ τ where variables Bi’s are stochastic. More
precisely, we define a stochastic subset-sum problem, namely
S3P, that computes Pr[

∑|B|
i=1 wiBi ≥ τ ]. Details of S3P are

in Section 3.1.
Bayesian Network. In general, a Probabilistic Graphi-

cal Model (Koller and Friedman 2009), and specifically a
Bayesian network (Pearl 1985; Chavira and Darwiche 2008),
encodes the dependencies and conditional independence be-
tween a set of random variables. In this paper, we leverage an
access to a Bayesian network on X ∪A that represents the
joint distribution on them. A Bayesian network is denoted by
a pair (G, θ), whereG , (V,E) is a DAG (Directed Acyclic
Graph), and θ is a set of parameters encoding the conditional
probabilities induced by the joint distribution under investiga-
tion. Each vertex Vi ∈ V corresponds to a random variable.
Edges E ∈ V ×V imply conditional dependencies among
variables. For each variable Vi ∈ V, let Pa(Vi) ⊆ V \ {Vi}
denote the set of parents of Vi. Given Pa(Vi) and parameters
θ, Vi is independent of its other non-descendant variables in
G. Thus, for the assignment vi of Vi and u of Pa(Vi), the
aforementioned semantics of a Bayesian network encodes
the joint distribution of V as:

Pr[V1 = v1, . . . ,V|V| = v|V|] =

|V|∏
i=1

Pr[Vi = vi|Pa(Vi) = u; θ].
(1)

3 FVGM: Fairness Verification with
Graphical Models

In this section, we present FVGM, a fairness verification
framework for linear classifiers that accounts for correlated
features represented as a graphical model. The core idea of
verifying fairness of a classifier is to compute the proba-
bility of positive prediction of the classifier with respect to
all compound sensitive groups. To this end, FVGM solves
a stochastic subset sum problem, S3P, that is equivalent to
computing the probability of positive prediction of the clas-
sifier for the most (and the least) favored sensitive group.
In this section, we first define S3P and present an efficient
dynamic programming solution for S3P. We then extend S3P
to consider correlated features as input. Finally, we conclude
by discussing fairness verification based on the solution of
S3P.

Problem Formulation. Given a linear classifier M :
(X,A) → Ŷ and a probability distribution D of X ∪ A,
our objective is to compute maxa Pr[Ŷ = 1|A = a] and
mina Pr[Ŷ = 1|A = a] with respect to D. In this study, we
express a linear classifierM as

Ŷ = 1
[∑

i

wXi
Xi +

∑
j

wAj
Aj ≥ τ

]
.

Here, w denotes the weight (or coefficients) of a feature, τ
denotes the bias or the offset parameter of the classifier, and
1 is an indicator function. Hence, the prediction Ŷ = 1 if and
only if the inner inequality holds. Thus, computing the maxi-
mum (resp. minimum) probability of positive prediction is
equivalent to finding out the assignment ofAj’s for which the
probability of satisfying the inner inequality is highest (resp.
lowest). We reduce this computation into an instance of S3P.
To perform this reduction, we assume weights w and bias τ
as integers, and features X ∪A as Boolean. In Sec. 3.5, we
relax these assumptions and extend to the practical settings.

3.1 S3P: Stochastic Subset Sum Problem
Now, we formally describe the specification and semantics
of S3P. S3P operates on a set of Boolean variables B =
{Bi}ni=1 ∈ {0, 1}n, where wi ∈ Z is the weight of Bi, and
n , |B|. Given a constant threshold τ ∈ Z, S3P computes
the probability of a subset of B with sum of weights of non-
zero variables to be at least τ . Formally,

S(B, τ) , Pr
[∑

i

wiBi ≥ τ
]
∈ [0, 1].

Aligning with terminologies in stochastic satisfiability
(SSAT) (Littman, Majercik, and Pitassi 2001), we catego-
rize the variables B into two types: (i) chance variables that
are stochastic and have an associated probability of being
assigned to 1 and (ii) choice variables that we optimize while
computing S(B, τ). To specify the category of variables, we
consider a quantifier qi ∈ {

Rpi , ∃, ∀} for each Bi. Elabo-
rately,

Rp is a random quantifier corresponding to a chance
variable B ∈ B, where p , Pr[B = 1]. In contrast, ∃ is
an existential quantifier corresponding to a choice variable
B such that a Boolean assignment of B maximizes S(B, τ).
Finally, ∀ is an universal quantifier for a choice variable B
that fixes an assignment to B that minimizes S(B, τ).

Now, we formally present the semantics of S(B, τ) pro-
vided that each variable Bi has weight wi and quantifier qi.
Let B[2 : n] , {Bj}nj=2 be the subset of B without the first
variable B1. Then S(B, τ) is recursively defined as:

S(B, τ) =



1[τ ≤ 0], if B = ∅
S(B[2 : n], τ −max{w1, 0}), if q1 = ∃
S(B[2 : n], τ −min{w1, 0}), if q1 = ∀
p1 × S(B[2 : n], τ − w1)+

(1− p1)× S(B[2 : n], τ), if q1 =

Rp1

(2)

Observe that when B is empty, S is computed as 1 if τ ≤ 0,
and S = 0 otherwise. For existential and universal quantifiers,
we compute S based on the weight. Specifically, if q1 = ∃,
we decrement the threshold τ by the maximum between
w1 and 0. For example, if w1 > 0, B1 is assigned 1, and
assigned 0 otherwise. Therefore, by solving for an existential

9541



variable, we maximize S. In contrast, when if q1 = ∀, we fix
an assignment of B1 that minimizes S by choosing between
the minimum of w1 and 0. Finally, for random quantifiers,
we decompose the computation of S into two sub-problems:
one sub-problem where B1 = 1 and the updated threshold
becomes τ −w1 and another sub-problem where B1 = 0 and
the updated threshold remains the same. Herein, we compute
S as the expected output of both sub-problems.
Remark. S(B, τ) does not depend on the order of B.

Computing Minimum and Maximum probability of
positive prediction of Linear Classifiers Using S3P. For
computing maxa Pr[Ŷ = 1|A = a] of a linear classi-
fier, we set existential quantifiers ∃ to sensitive features
Aj , randomized quantifiers

R

to non-sensitive features Xi

and construct a set B = A ∪ X. The coefficients wAj

and wXi of the classifier become weights of B. Also, we
get n = m1 + m2. For non-sensitive variables Xi, which
are chance variables, we derive their marginal probability
pi = Pr[Xi = 1] from the distribution D. According to
semantic of S3P, setting ∃ quantifiers on A computes the
maximum value of S(B, τ) that equalizes the maximum
probability of positive prediction of the classifier. In this
case, the inferred assignment of A implies the most favored
group amax = arg maxa Pr[Ŷ = 1|A = a]. In contrast,
to compute the minimum probability of positive prediction,
we instead assign each variable Aj a universal quantifier
while keeping random quantifiers over Xi, and infer the least
favored group amin = arg mina Pr[Ŷ = 1|A = a].

3.2 A Dynamic Programming Solution for S3P

We propose a dynamic programming approach (Pisinger
1999; Woeginger and Yu 1992) to solve S3P as the prob-
lem has overlapping sub-problem properties. For example,
S(B, τ) can be solved by solving S(B[2 : n], τ ′), where
the updated threshold τ ′, called the residual threshold, de-
pends on the original threshold τ and the assignment of B1

as shown in Eq. (2). Building on this observation, we pro-
pose the recursion and terminating condition leading to our
dynamic programming algorithm.

Recursion. We consider a function dp(i, τ ) that solves the
sub-problem S(B[i : n], τ), for i ∈ {1, . . . , n}. The seman-
tics of S(B, τ) in Eq. (2) induces the recursive definition of
dp(i, τ ) as:

dp(i, τ ) =


dp(i+ 1, τ −max{wi, 0}), if qi = ∃
dp(i+ 1, τ −min{wi, 0}), if qi = ∀
pi × dp(i+ 1, τ − wi)+

(1− pi)× dp(i+ 1, τ), if qi =

Rpi

(3)

Eq. (3) shows that S(B, τ) can be solved by instantiating
dp(1, τ), which includes all the variables in B.

Terminating Condition. Let wneg, wpos, and wall be the
sum of negative, positive, and all weights of B, respectively.
We observe that wneg ≤ wall ≤ wpos. Thus, for any i, if
the residual threshold τ ≤ wneg, there is always a subset of
B[i : n] with sum of weights at least τ . Conversely, when
τ > wpos, there is no subset of B[i : n] with sum of weights

at least τ . We leverage this bound and tighten the terminating
conditions of dp(i, τ ) in Eq. (4).

dp(i, τ ) =


1 if τ ≤ wneg

0 if τ > wpos

1[τ ≤ 0] if i = n+ 1

(4)

Eq. (3) and (4) together define our dynamic programming
algorithm. While deploying the algorithm, we store dp(i, τ )
in memory to avoid repetitive computations. This allows
us to achieve a pseudo-polynomial algorithm (Lemma 1)
instead of a naı̈ve exponential algorithm enumerating all
possible assignments. In particular, the time complexity is
pseudo-polynomial for chance (random) variables and linear
for choice (existential and universal) variables.

Lemma 1. Let n′ be the number of existential and univer-
sal variables in B. Let w∃ =

∑
Bi∈B|qi=∃max{wi, 0} and

w∀ =
∑

Bi∈B|qi=∀min{wi, 0} be the considered sum of
weights of existential and universal variables, respectively.
We can exactly solve S3P using dynamic programming with
time complexity O((n− n′)(τ + |wneg| − w∃ − w∀) + n′).
The space complexity isO((n−n′)(τ + |wneg|−w∃−w∀)).

A Heuristic for Faster Computation. We propose two
improvements for a faster computation of the dynamic pro-
gramming solution. Firstly, we observe that in Eq. (3), ex-
istential/universal variables are deterministically assigned
based on their weights. Hence, we reorder B such that exis-
tential/universal variables appear earlier in B than random
variables. This allows us to avoid unnecessary repeated ex-
ploration of existential/universal variables in dp. Moreover,
according to the remark in Section 3.1, reordering B still pro-
duces the same exact solution of S3P. Secondly, to reach the
terminating condition of dp(i, τ ) more frequently, we sort
B based on their weights—more specifically, within each
cluster of random, existential, and universal variables. In par-
ticular, if τ ≤ 0.5(wpos − wneg), τ is closer to wpos than
wneg. Hence, we sort each cluster in descending order of
weights. Otherwise, we sort in ascending order. We illustrate
our dynamic programming approach in Example 3.1.

Example 3.1. We consider a linear classifier P + Q +
R − S ≥ 2. Herein, P is a Boolean sensitive feature, and
Q,R, S are Boolean non-sensitive features with Pr[Q] =
0.4,Pr[R] = 0.5, and Pr[S] = 0.3. To compute the maxi-
mum probability of positive prediction of the classifier, we
impose an existential quantifier on P and randomized quan-
tifiers on others. This leads us to the observation that P = 1
is the optimal assignment as wP = 1 > 0. We now require to
compute Pr[Q+R−S ≥ 1], which by dynamic programming,
is computed as 0.55. The solution is visualized as a search
tree in Figure 2a, where we observe that storing the solution
of sub-problems in the memory avoids repetitive computation,
such as exploring the node (4, 0). Similarly, the minimum
probability of positive prediction of the classifier is 0.14 (not
shown in Figure 2a) where we impose a universal quantifier
on P to obtain P = 0 as the optimal assignment.
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(a) Known marginal probabilities.
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(b) Probabilities computed with a Bayesian network.

Figure 2: Search tree representation of S3P for computing the maximum probability of positive prediction of the classifier
on variables B = {P,Q,R, S} with weights {1, 1, 1,−1} and threshold τ = 2 . Each node is labeled by (i, τ ′), where i is
the index of B and τ ′ is the residual threshold. The tree is explored using Depth-First Search (DFS) starting with left child.
Within a node, the value in the bottom denotes dp(i, τ ′) that is solved recursively based on sub-problems dp(i+ 1, ·) in child
nodes. Yellow nodes denote existential variables and all other nodes are random variables. Additionally, a green node denotes a
collision, in which case a previously computed dp solution is returned. Leaf nodes (gray) are computed based on terminating
conditions in Eq. 4. In Figure 2b, nodes with double circles, such as {(1, 2), (2, 1), (2, 2)}, are enumerated exponentially to
compute conditional probabilities from the Bayesian network.

3.3 S3P with Correlated Variables
In S3P presented in Section 3.1, we consider all Boolean
variables to be probabilistically independent. This indepen-
dence assumption often leads to an inaccurate estimate of
the probability of positive prediction of the classifier because
both sensitive and non-sensitive features can be correlated
in practical fairness problems. Therefore, we extend S3P to
include correlations among variables.

We consider a Bayesian network BN = (G, θ) to represent
correlated variables, where G , (V,E), V ⊆ B, E ⊆
V × V, and θ is the parameter of the network. In BN, we
constrain that there is no conditional probability of choice
(i.e., existential and universal) variables as we optimize their
assignment in S3P. Choice variables, however, can impose
conditions on chance (i.e., random) variables. In practice,
we achieve this by allowing no incoming edge on choice
variables while learning BN (ref. Section 4).

For a chance variable Bi ∈ V, let Pa(Bi) denote its par-
ents. According to Eq. (1), for an assignment u of Pa(Bi),
BN ensures Bi to be independent of other non-descendant
variables in V. Hence, in the recursion of Eq. (3), we substi-
tute pi with Pr[Bi = 1|Pa(Bi) = u]. In order to explicate
the dependence on u, we denote the expected solution of
S(B[i : n], τ) as dp(i, τ,u), which for Bi ∈ V is modified
as follows:

dp(i,τ,u) = Pr[Bi = 0|Pa(Bi) = u]dp(i+ 1, τ,u ∪ {0})
+ Pr[Bi = 1|Pa(Bi) = u]dp(i+ 1, τ − wi,u ∪ {1}).

Since dp(i, τ,u) involves u, we initially perform a topo-
logical sort of V to know the assignment of parents before

computing dp on the child. Moreover, there are 2|Pa(Bi)|

assignments of Pa(Bi), and we compute dp(i, τ,u) for
u ∈ {0, 1}|Pa(Bi)| to incorporate all conditional probabilities
into S3P. For this enumeration, we do not store dp(i, τ,u)
in memory. However, for Bi 6∈ V that does not appear in the
network, we instead compute dp(i, τ ) and store it in memory
as in Section 3.2, because Bi is not correlated with other
variables. Lemma 2 presents the complexity of solving S3P
with correlated variables, wherein unlike Lemma 1, the com-
plexity differentiates based on variables in V (exponential)
and B \V (pseudo-polynomial).
Lemma 2. Let V ⊆ B be the set of vertices in the Bayesian
network and n′′ be the number of existential and universal
variables in B \V. Let w′∃ =

∑
Bi∈B\V|qi=∃max{wi, 0}

and w′∀ =
∑

Bi∈B\V|qi=∀min{wi, 0} be the sum of con-
sidered weights of existential and universal variables, re-
spectively that only appear in B \ V. To exactly compute
S3P with correlated variables in the dynamic program-
ming approach, time complexity is O(2|V| + (n − n′′ −
|V|)(τ + |wneg| −w′∃ −w′∀) + n′′) and space complexity is
O((n− n′′ − |V|)(τ + |wneg| − w′∃ − w′∀)).

A Heuristic for Faster Computation. We observe that to
encode conditional probabilities, we enumerate all assign-
ments of variables in V. For computing the probability of pos-
itive prediction of a linear classifier with correlated features,
we consider a heuristic to sort variables in B = A ∪X. Let
V ⊆ B be the set of vertices in the network and Vc = B\V.
In this heuristic, we sort sensitive variables A by positioning
A∩V in the beginning followed by A∩Vc. Then we order
the variables B such that variables in A precedes those in
X ∩ V, and the variables in X ∩ Vc follows the ones in
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X∩V. This sorting allows us to avoid repetitive enumeration
of variables in V ⊆ B as they are placed earlier in B.

Example 3.2. We extend Example 3.1 with a Bayesian Net-
work (G, θ) with V = {P,Q} and E = {(P,Q)}. Param-
eters θ imply conditional probabilities Pr[Q|P ] = 0.6 and
Pr[Q|¬P ] = 0.3. In Figure 2b, we enumerate all assignment
of P and Q to incorporate all conditional probabilities of Q
given P . We, however, observe that the dynamic programming
solution in Section 3.2 still prunes search space for variables
that do not appear in V, such as {R,S}. Hence following the
calculation in Figure 2b, we obtain the maximum probability
of positive prediction of the classifier as 0.65 for P = 1. The
minimum probability of positive prediction (not shown) is
similarly calculated as 0.11 for P = 0.

3.4 Fairness Verification with Computed
Probability of Positive Prediction

Given a classifierM, a distributionD, and a fairness metric f ,
verifying whether a classifier is ε-fair (ε ∈ [0, 1]) is equivalent
to computing 1[f(M|D) ≤ ε]. We now compute f(M|D)
based on the maximum probability of positive prediction
maxa Pr[Ŷ = 1|A = a] and the minimum probability of
positive prediction mina Pr[Ŷ = 1|A = a] of a classifier.

For measuring fairness metric SP, we compute the differ-
ence maxa Pr[Ŷ = 1|A = a] − mina Pr[Ŷ = 1|A = a].
We, however, deploy FVGM twice while measuring EO: one
for the distribution D conditioned on Y = 1 and another
for Y = 0. In each case, we compute maxa Pr[Ŷ = 1|A =

a, Y = y]−mina Pr[Ŷ = 1|A = a, Y = y] for y ∈ {0, 1}
and take the maximum difference as the value of EO. For mea-
suring causal metric PCF, we compute maxa Pr[Ŷ = 1|A =

a,Z] and mina Pr[Ŷ = 1,Z|A = a,Z] conditioned on me-
diator features Z and take their difference. To measure DI, we
compute the ratio maxa Pr[Ŷ = 1|A = a]/mina Pr[Ŷ =
1|A = a]. In contrast to other fairness metrics, DI closer to 1
indicates higher fairness level. Thus, we verify whether a clas-
sifier achieves (1− ε)-DI by checking 1[DI(M|D) ≥ 1− ε].

3.5 Extension to Practical Settings

For verifying linear classifiers with real-valued features and
coefficients, we preprocess them so that FVGM can be in-
voked. Let Xc ∈ R be a continuous real-valued feature with
coefficient wc ∈ R in the classifier. We discretize Xc to a set
Bc of k Boolean variables using binning-based discretization
and assign a Boolean variable to each bin. Hence, Bi ∈ Bc

becomes 1, when Xc belongs to the ith bin. Let µi denote the
mean of feature-values within ith bin. We then set the coeffi-
cient ofBi aswcµi. By law of large numbers,Xc ≈

∑
i µiBi

for infinitely many bins (Grimmett and Stirzaker 2020). Fi-
nally, we multiply the coefficients of discretized variables by
l ∈ N \ {0} and round to an integer. Accuracy of the prepro-
cessing step relies on the number of bins k and the multiplier
l. Therefore, we empirically fine-tune both k and l by com-
paring the processed classifier with the initial classifier on a
validation dataset.
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Figure 3: A cactus plot to present the scalability of different
fairness verifiers. The number of solved benchmarks are on
the X-axis and the required time is on the Y -axis; a point
(x, y) implies that a verifier takes less than or equal to y
seconds to compute fairness metrics of x many benchmarks.
We consider 100 benchmarks generated from 5 real-world
datasets using 5-fold cross-validation. In each fold, we con-
sider {25, 50, 75, 100} percent of non-sensitive features.

4 Empirical Performance Analysis
In this section, we empirically evaluate the performance of
FVGM. We first present the experimental setup and the ob-
jective of our experiments, followed by experimental results.

Experimental Setup. We implement a prototype of
FVGM in Python (version 3.8). We deploy the Scikit-learn
library for learning linear classifiers such as Logistic Re-
gression (LR) and Support Vector Machine (SVM) with
linear kernels. We perform five-fold cross-validation on a
dataset. While the classifier is trained on continuous fea-
tures, we discretize them to Boolean features to be invoked
by FVGM. During discretization, we apply a gird-search
to estimate the best bin-size within a maximum bin of 10.
To convert the coefficients of features into integers, we em-
ploy another grid-search to choose the best multiplier within
{1, 2, . . . , 100}. For learning a Bayesian network on the con-
verted Boolean data, we deploy the PGMPY library (Ankan
and Panda 2015). For network learning, we apply a Hill-
climbing search algorithm that learns a DAG structure by
optimizing K2 score (Koller and Friedman 2009). For estimat-
ing parameters of the network, we use Maximum Likelihood
Estimation (MLE) algorithm.

We compare FVGM with three existing fairness verifiers:
Justicia (Ghosh, Basu, and Meel 2021), FairSquare (Albargh-
outhi et al. 2017), and VeriFair (Bastani, Zhang, and Solar-
Lezama 2019).

4.1 Scalability Analysis
Benchmarks. We perform the scalability analysis on five
real-world datasets studied in fair ML literature: UCI
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Figure 4: Comparing the average accuracy of different veri-
fiers over 100 synthetic benchmarks while varying the num-
ber of features. FVGM yields the closest estimation of the
analytically calculated Exact values of DI for LR and SVM
classifiers.

Adult, German-credit (Doshi-Velez and Kim 2017), COM-
PAS (Angwin et al. 2016), Ricci (McGinley 2010), and Ti-
tanic (https://www.kaggle.com/c/titanic). We consider 100
benchmarks generated from 5 real-world datasets and report
the computation times (for DI and SP) of different verifiers.

Results. In Figure 3, we present the scalability results of
different verifiers. First, we observe that FairSquare often
times out (= 900 seconds) and can solve ≤ 5 benchmarks.
This indicates that SMT-based reduction for linear classi-
fiers cannot scale. Similarly, SSAT-based verifier Justicia
that performs pseudo-Boolean to CNF translation for linear
classifiers, times out for around 20 out of 100 benchmarks.
Sampling-based framework, VeriFair, has comparatively bet-
ter scalability than SMT/SSAT based frameworks and can
solve more than 90 benchmarks. Finally, FVGM achieves
impressive scalability by solving all 100 benchmarks with 1
to 2 orders of magnitude runtime improvements than existing
verifiers. Therefore, S3P-based framework FVGM proves to
be highly scalable in verifying fairness properties of linear
classifiers than the state-of-the-art.

4.2 Accuracy Analysis
Benchmark Generation. To perform accuracy analysis, we
require the ground truth, which is not available for real-world
instances. Therefore, we focus on generating synthetic bench-
marks for analytically computing the ground truth of different
fairness metrics, such as DI, from the known distribution of
features. In each benchmark, we consider n ∈ {2, 3, 4, 5}
features including one Boolean sensitive feature, say A, gen-
erated from a Bernoulli distribution with mean 0.5. We gen-
erate non-sensitive features Xi from Gaussian distributions
such that Pr[Xi|A = 1] ∼ N (µi, σ

2) and Pr[Xi|A = 0] ∼
N (µ′i, σ

2), where µi, µ
′
i ∈ [0, 1], σ = 0.1, and µi, µ

′
i are

chosen from a uniform distribution in [0, 1]. Finally, we cre-

Dataset A Algo. ∆DI ∆PCF ∆SP ∆EO

Adult
race RW 0.53 -0.06 -0.06 -0.02

OP 0.57 -0.07 -0.07 -0.02

sex RW 0.96 -0.16 -0.15 -0.08
OP 0.43 -0.08 -0.08 0.03

COMPAS
race RW 0.13 -0.07 -0.07 -0.06

OP 0.15 -0.08 -0.08 -0.05

sex RW 0.1 -0.04 -0.04 0.04
OP 0.09 -0.04 -0.04 -0.03

German
age RW 0.52 -0.53 -0.52 -0.47

OP 0.53 -0.53 -0.53 -0.51

sex RW −0.06 0.06 0.06 0.02
OP −0.12 0.12 0.12 0.07

Table 1: Verification of fairness algorithms using FVGM. A
denotes sensitive features. RW and OP refer to reweighing
and optimized-preprocessing algorithms. Numbers in bold
refer to fairness improvement.

ate label Y = 1[
∑n−1

i=1 Xi ≥ 0.5
∑n−1

i=1 (µi + µ′i)] such that
Y does not directly depend on the sensitive feature. For each
n, we generate 100 random benchmarks, learn LR and SVM
classifiers on them, and compute DI2 using different verifiers.

Results. We assess the accuracy of the competing verifiers
in estimating fairness metrics, specifically DI with LR and
SVM classifiers. In Figure 4, FVGM computes DI closest to
the Exact value for different number of features and both type
of classifiers. In contrast, Justicia, FairSquare, and VeriFair
measure DI far from the Exact because of ignoring correla-
tions among the features. For example, for SVM classifier
with n = 5 (right plot in Figure 4), Exact DI is 0.089 (average
over 100 random benchmarks). Here, FVGM computes DI as
0.094, while all other verifiers compute DI as at least 0.233.
Therefore, FVGM is more accurate than existing verifiers as
it explicitly considers correlations among features.

5 Applications of FVGM
In this section, we apply FVGM for verifying fairness-
enhancing algorithms and depreciation attacks. We also
demonstrate that FVGM facilitates computation of fairness
influence functions by enabling the detection of bias due to
individual features.

Verifying Fairness-enhancing Algorithms. We deploy
FVGM in verifying the effectiveness of fairness-enhancing

2To analytically compute DI, let the coefficients of the classifier
be wi for Xi and wA for A, and bias be τ . Since all non-sensitive
features are from Gaussian distributions, we compute the probability
of the predicted class Pr[Ŷ |A = 1] ∼ N (

∑n−1
i=1 wiµi, σ

2
Ŷ
) and

Pr[Ŷ |A = 0] ∼ N (
∑n−1

i=1 wiµ
′
i, σ

2
Ŷ
) with σ2

Ŷ
= (

∑n−1
i=1 w

2
i )σ

2.
Hence, the probability of positive prediction of the classifier is
1−CDFŶ |A=1(τ−wA) forA = 1 and 1−CDFŶ |A=0(τ) forA =

0, where CDF is the cumulative distribution function. Finally, we
compute DI by taking the ratio of the minimum and the maximum
of the probability of positive prediction of the classifier.
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Figure 5: Verifying poisoning attack against fairness using
FVGM. The red line denotes the safety margin of the ML
model against the attack.

algorithms designed to ameliorate bias. For example, fair-
ness pre-processing algorithms can be validated by applying
FVGM on the unprocessed and the processed data separately
and comparing different fairness metrics. In Table 1, we
report the effect of fairness algorithms w.r.t. four fairness
metrics: disparate impact (DI), path-specific causal fairness
(PCF), statistical parity (SP), and equalized odds (EO). Note
that, fairness is improved if DI increases and the rest of the
metrics decrease. For instance, in most instances for Adult
dataset, reweighing (RW) (Kamiran and Calders 2012) and
optimized pre-processing (OP) (Calmon et al. 2017) algo-
rithms are successful in improving fairness. The exceptional
case is the unfairness regarding the sensitive feature ‘sex’,
where OP algorithm fails in improving fairness metric EO.
Thus, FVGM verifies the enhancement and decrement in fair-
ness by fairness-enhancing algorithms.

Verifying Fairness Attacks. We apply FVGM in verifying
a fairness poisoning-attack algorithm. This algorithm injects
a small fraction of poisoned samples into the training data
such that the classifier becomes relatively unfair (Solans,
Biggio, and Castillo 2020). We apply this attack to add
{1, 5, . . . , 160} poisoned samples and measure the corre-
sponding disparate impact and statistical parity. In Figure 5,
FVGM verifies that the disparate impact of the classifier
decreases and statistical parity increases, i.e. the classifier
becomes more unfair, as the number of poisoned samples
increases. Therefore, FVGM shows the potential of being de-
ployed in safety-critical applications to detect fairness attacks.
For example, if we set 0.9 as an acceptable threshold of dis-
parate impact, FVGM can raise an alarm once 160 poisoned
samples are added.

Fairness Influence Function (FIF): Tracing Sources of
Unfairness. Another application of FVGM as a fairness
verifier is to quantify the effect of a subset of features on
fairness. Thus, we define fairness influence function (FIF)
that computes the effect of a subset of non-sensitive fea-
tures S ⊆ X on the probability of positive prediction
of a classifier given a specific sensitive group A = a,
FIF(S) , Pr[Ŷ = 1|A = a,D]− Pr[Ŷ = 1|A = a,D−S].
FIF allows us to explain the sources of unfairness in the
classifier. In practice, we compute FIF of S by replacing the
probability distribution of S with a uniformly random distri-
bution, referred to as D−S, and reporting differences in the
conditional probability of positive prediction of the classifier.
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Figure 6: FIF computation for COMPAS dataset. For Female
(left plot) and Male, influence of ‘age’ decreases and the
probability of positive prediction of the classifier increases
by different magnitudes.

In Figure 6, we compute FIF for all features in COMPAS
dataset, separately for two sensitive groups: Female (‘sex’
= 1) and Male. This dataset concerns the likelihood of a
person of re-offending crimes within the next two years. We
first observe that the base values of the probability of positive
prediction are different for the two groups (0.46 vs 0.61 for
Female and Male), thereby showing Male as more proba-
ble to re-offend crimes than Female. Moreover, FIF of the
feature ‘age’ is comparatively higher in magnitude for Male
than Female. This implies that while deciding recidivism the
algorithm assumes that Female individuals across different
ages re-offend crimes with almost the same probability and
the probability of re-offending for Male individuals highly
depends on age. Thus, applying FVGM to compute FIF pro-
vides us insights about sources of bias and thus, indicators to
improve fairness. Pr[Ŷ = 1|age 0 ≥ 0.5]

6 Conclusion
In this paper, we propose FVGM, an efficient fairness verifica-
tion framework for linear classifiers based on a novel stochas-
tic subset-sum problem. FVGM encodes a graphical model
of feature-correlations, represented as a Bayesian Network,
and computes multiple group and causal fairness metrics ac-
curately. We experimentally demonstrate that FVGM is not
only more accurate and scalable than the existing verifiers but
also applicable in practical fairness tasks, such as verifying
fairness attacks and enhancing algorithms, and computing
the fairness influence functions. As a future work, we aim
to design fairness-enhancing algorithms certified by fairness
verifiers, such as FVGM. Since FVGM serves as an accurate
and scalable fairness verifier for linear classifiers, it will be
interesting to design such verifiers for other ML models.
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