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Abstract

We present a simple and concise semantics for temporal plan-
ning. Our semantics are developed and formalised in the
logic of the interactive theorem prover Isabelle/HOL. We de-
rive from those semantics a validation algorithm for tempo-
ral planning and show, using a formal proof in Isabelle/HOL,
that this validation algorithm implements our semantics. We
experimentally evaluate our verified validation algorithm and
show that it is practical.

Introduction
Although, performance-wise, planning algorithms and sys-
tems are very scalable and efficient, as shown by different
planning competitions (Long et al. 2000; Coles et al. 2012;
Vallati et al. 2015), there is still to be desired when it comes
to their trustworthiness, which is crucial to their wide adop-
tion. Consequently, there have been substantial efforts to
improve the trustworthiness of planning systems (Howey,
Long, and Fox 2004; Fox, Howey, and Long 2005; Eriksson,
Röger, and Helmert 2017; Abdulaziz, Norrish, and Gretton
2018; Abdulaziz and Lammich 2018; Cimatti, Micheli, and
Roveri 2017; Abdulaziz, Gretton, and Norrish 2019). A ba-
sic task when it comes to the trustworthiness of planning
systems is that of plan validation. In its most basic form,
this task is solved by a plan validator, which is a program
that, given a planning problem and a candidate plan, con-
firms whether the candidate plan indeed solves the problem.
This boosts the trustworthiness of a plan chiefly because the
plan validator should be a simple piece of software that can
be more easily inspected than the planning system that com-
puted the plan and, accordingly, less likely to have mistakes.

One challenge to plan validation is that the semantics of
planning languages and formalisms can be too complicated.
This makes the validator a rather complicated piece of soft-
ware defeating the trustworthiness appeal of the whole ap-
proach. This is especially the case for advanced planning
formalisms, like temporal planning (Fox and Long 2003),
hybrid planning, and planning problems with processes and
events (Fox and Long 2002). This problem is further exacer-
bated by the low-level languages in which plan validators are
usually implemented, e.g. the plan validation system used
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for most planning competitions, VAL (Howey, Long, and
Fox 2004), is implemented in C++. Another challenge to
plan validation is that the semantics of planning languages
have ambiguities, which lead to different interpretations of
what constitutes a correct plan. E.g. there are multiple inter-
pretations of sub-typing using “Either” in PDDL.

In this work we address the aforementioned challenges
using an interactive theorem prover (ITP). In particular, we
use the ITP Isabelle/HOL (Nipkow, Paulson, and Wenzel
2002), which implements a formal mathematical system
combining higher-order logic (HOL) and simple type the-
ory. Our first contribution is that we formally specify an
abstract syntax for the temporal fragment of PDDL 2.1 in
Isabelle/HOL and, based on that, formalise its semantics.
Compared to a pen-and-paper semantics, this has the advan-
tage that it removes any room for ambiguity. Furthermore,
during formalising this fragment of PDDL, we found that
certain parts of the semantics as specified by Fox and Long
could be simplified. As our second contribution, we imple-
ment an executable plan validator for the temporal part of
PDDL2.1 and we formally verify, using Isabelle/HOL, that
it correctly implements the semantics which we formalised.
Our validator checks (i) if a given problem and the candidate
plan are well-formed, and (ii) if the candidate plan is indeed
a solution to the problem. Lastly, we experimentally show
that this validator is practical and compare it with VAL.

Background
In this work we build upon previous work by Abdulaziz and
Lammich. In their work, they formalised the syntax and se-
mantics of the STRIPS fragment of PDDL in Isabelle/HOL.
The syntax was based on a grammar by Kovacs. Their se-
mantics have two parts: (i) a part defining what it means for a
PDDL domain, instance or plan to be well-formed and (ii) a
part defining the execution semantics of PDDL. The most
interesting aspect of well-formedness has to do with typ-
ing: since the grammar of PDDL allows for Either-supertype
specifications of the form ‘obj - Either obj1 obj2· · · ’, this
leads to ambiguities in interpreting the sub-typing relation
when, for instance, instantiating a parameter with an Either-
type by an object of an Either-type. In this situation, they
took the interpretation that this is a valid substitution if each
of the object types is reachable, in the sub-typing relation,
from at least one of the parameter types. For the execution
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semantics, they formalised execution semantics of grounded
STRIPS in Isabelle/HOL and, based on that, specified the
execution semantics of PDDL by instantiating PDDL action
schemata into STRIPS ground actions.

Since most of our work here concerns action execution,
which is defined at the level of ground actions, this entire
paper discusses ground actions and grounded planning prob-
lems. The main change we made at the lifted action/problem
level to the formalisation by Abdulaziz and Lammich is that
we add an action duration constraints as a syntactic element
to the abstract syntax element modelling action schemata.
We skip here those (modified) definitions and assume that
the ground problems and plans were obtained from well-
formed PDDL problems and plans, e.g. all parameters to
predicates and action schemata are well-typed and action
durations in the plan respect the duration constraints in the
action schemata. Interested readers should consult the for-
malisation scripts.
Definition 1 (Propositional Formulae). A propositional for-
mula ϕ defined over a set of atoms V is either (i) the verum
⊤, (ii) an atom v, s.t. v ∈ V , (iii) a negated propositional
formula ¬ϕ, (iv) a conjunction of two propositional formu-
lae ϕ1 ∧ ϕ2, or (v) a disjunction of propositional formulae
ϕ1 ∨ ϕ2. A valuation A is a mapping of V to the set {0, 1}.
A valuation A is a model for a formula ϕ, written A |= ϕ,
iff (i) ϕ is the verum, (ii) if ϕ is an atom, then A(v) = 1,
(iii) if ϕ a negated formula ¬ϕ, then A ̸|= ϕ, (iv) if ϕ is a
conjunction ϕ1 ∧ ϕ2, then A |= ϕ1 and A |= ϕ2, and (v) if
ϕ is a disjunction of propositional formulae ϕ1 ∨ ϕ2, then
A |= ϕ1 or A |= ϕ2.
Note: sometimes, for notational economy, we treat a valua-
tion as a set. In such cases, a valuation A : V → {0, 1} is
interpreted as the set {v | A(v) = 1} and a set of atoms V
is interpreted as a valuation which maps any v ∈ V to 1, and
everything else to 0. Also, in the rest of this paper a state is
synonymous with a valuation.1

Definition 2 (Planning Problem). A planning problem Π is a
tuple ⟨P, δ, I,G⟩, where (i) P is a set of atoms, each of which
is a state characterising proposition, (ii) δ: set of actions,
each of which is a tuple ⟨πstart, πend, πinv⟩ where • πstart, πend
are start and end snap actions, and • πinv is a formula de-
fined over the propositions P . A snap action π is a tuple
⟨πpre, πadd, πdel⟩ where • πpre is its precondition, a formula
using propositions P , • πadd ⊆ P are its positive effects, and
• πdel ⊆ P are its negative effects. (iii) I is a valuation over
P , modelling the initial state, and (iv) G is the goal state
condition, which is a propositional formula defined over P .

As a running example we use a planning problem,
which models an elevator control situation. There are
two passengers (p0 and p1), who want to use two el-
evators (e0 and e1) to change floors (f 0 and f 1). The
set of state characterising propositions for this planning
problem is P ≡

⋃
{{(el-at ei fj), (p-at pk fj), (in-el pk ei),

(el-op ei)} | 0 ≤ i, j, k ≤ 1}. The propositions (el-at ei fj)

1In the formalisation by Abdulaziz and Lammich, on which we
base our work, there is support for equalities. This is done by mod-
elling states as sets of formulae. We omit these details here since
they are orthogonoal to the the semantics of durative actions.

and (p-at pk fj) encode at which floor an elevator or a passen-
ger currently is. The proposition (in-el pk ei) encodes whether
a passenger is in an elevator or not. The proposition (el-op ei)
encodes whether an elevator door is open. The initial state
is I ≡ {(el-at e0 f0), (el-at e1 f1), (p-at p0 f1), (p-at p1 f0),
(el-op e0)} and its goal is G ≡ (p-at p0 f0) ∧ (p-at p1 f1). In
the initial state passenger p0 is on floor f 1 and passenger
p1 is on floor f 0. Both passengers want to change floors:
passenger p0 want to move to floor f 0 and passenger p1

wants to move to floor f 1. This is specified in the goal state
formula. Among many actions, the problem has actions to
open one elevator’s door (op e1) ≡ ⟨⟨¬(el-op e1), ∅, ∅⟩, ⟨⊤,
{(el-op e1)}, ∅⟩,⊤⟩, to have each of the passengers enter one
of the elevators (en p0 e1 f1) ≡ ⟨⟨(p-at p0 f1) ∧ (el-at e1 f1),
∅, ∅⟩, ⟨⊤, {(in-el p0 e1)}, {(p-at p0 f1)}⟩, (el-op e1)⟩ and
(en p1 e0 f0) ≡ ⟨⟨(p-at p1 f0) ∧ (el-at e0 f0), ∅, ∅⟩, ⟨⊤,
{(in-el p1 e0)}, {(p-at p1 f0)}⟩, (el-op e0)⟩, and to close
an elevator’s door (cl e0) ≡ ⟨⟨(el-op e0), ∅, ∅⟩, ⟨⊤, ∅,
{(el-op e0)}⟩,⊤⟩. Each one of the actions has the expected
preconditions and effects; e.g. moving the elevator requires
its door to be closed during the entire move action.
Definition 3 (Plan). A plan is a sequence of tuples
⟨π0, t0, d0⟩, . . . , ⟨πn, tn, dn⟩, where, for 1 ≤ i ≤ n, πi ∈ δ
is an action, ti ∈ Q≥0 and di ∈ Q≥0 are rational numbers,
to which we refer as the starting time point and the dura-
tion, respectively. For a plan →π , we call a sorted sequence
t0, . . . , tn of the set of rational numbers {t | ⟨a, t, d⟩ ∈
→π} ∪ {t + d | ⟨a, t, d⟩ ∈ →π} the happening time points
of the plan, and we denote it by htps(→π ).

A valid plan for the elevator running exam-
ple starts with the following four plan actions:
⟨(op e1), 0, 1⟩, ⟨(en p0 e1 f1), 1.25, 0.5⟩, ⟨(en p1 e0 f0), 2, 1⟩,
and ⟨(cl e0), 3, 1⟩.

A central question when it comes to the semantics of tem-
poral planning is that of plan validity. A central notion for
defining plan validity is that of action non-interference.
Definition 4 (Non-interference). Snap actions π1 and π2

are non-interfering iff (i) atoms(π1
pre)∩ (π2

add∪π2
del) = ∅,

(ii) atoms(π2
pre)∩(π1

add∪π1
del) = ∅, (iii) π1

add∩π2
del = ∅,

and (iv) π2
add ∩ π1

del = ∅.
The first definition of PDDL 2.1 temporal plan validity

was posed by Fox and Long 2003. Here we outline their
definitions informally, due to lack of space. In their defi-
nitions, a central notion was that of a simple plan, which
can be thought of as a temporal plan whose actions all have
zero duration. Execution semantics of simple plans are sim-
ilar to the semantics of ∀-step parallel plans (Rintanen, Hel-
janko, and Niemelä 2006): more than one action can execute
at the same time, given that the actions are non-interfering.
A valid temporal plan is defined one that can be compiled
into a valid simple plan. In this compilation, each durative
action π starting at a time point t and which has duration
d is compiled to three snap actions with duration zero. The
first action is πstart and it is scheduled to execute at t in the
simple plan. The second action is πend and it is scheduled to
execute at t + d in the simple plan. The third is an action
with precondition πinv and no effects, which is scheduled to
execute in the simple plan multiple times. It executes once
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between every two happening time points of the plan iff the
two happening time points are between t and t+d, inclusive.

Isabelle/HOL
An ITP is a program which implements a formal mathe-
matical system, i.e. a formal language, in which definitions
and theorem statements are written, and a set of axioms
or derivation rules, using which proofs are constructed. To
prove a fact in an ITP, the user provides high-level steps of a
proof, and the ITP fills in the details, at the level of axioms,
culminating in a formal proof.

We performed the formalisation and the verification using
the interactive theorem prover Isabelle/HOL (Nipkow, Paul-
son, and Wenzel 2002), which is a theorem prover for HOL.
Roughly speaking, HOL can be seen as a combination of
functional programming with logic. Isabelle/HOL supports
the extraction of the functional fragment to actual code in
various languages (Haftmann and Nipkow 2007).

Isabelle is designed for trustworthiness: following the
Logic for Computable Functions approach (LCF) (Milner
1972), a small kernel implements the inference rules of the
logic, and, using encapsulation features of ML, it guaran-
tees that all theorems are actually proved by this small ker-
nel. Around the kernel there is a large set of tools that im-
plement proof tactics and high-level concepts like algebraic
datatypes and recursive functions. Bugs in these tools can-
not lead to inconsistent theorems being proved, but only to
error messages when the kernel refuses a proof.

All the definitions, theorems and proofs in this paper have
been formalised in Isabelle/HOL. The formalisation can be
found online2. Usually, some definitions are best represented
formally in a way which is different from how they repre-
sented informally. For instance, a for-loop or a function ap-
plied to an indexed sequence in the informal definition are
formalised in Isabelle/HOL as recursions over lists. How-
ever, there is always a clear resemblance between the formal
and the informal definitions and we provide a description
associated with the formal definitions.

Semantics of Temporal Planning
One issue with Fox and Long’s definition of plan validity
is that it is too close to an operational specification of a
validation algorithm for temporal plans. A negative conse-
quence of that becomes evident when trying to formalise
the semantics and pin down all the details: the definitions
then become very complicated and unreadable. Although
the need for simplifying definitions is generally evident, that
need is exacerbated when the definitions are used as specifi-
cations against which we formally verify a validator. In that
scenario, the semantics should also provide a description of
what the validator should do and they should be easily un-
derstandable through visual inspection. We resolve that by
providing a description of the semantics that abstractly de-
scribes what a valid plan is, without appealing to algorithmic
constructions like the one of induced happening sequences.
We then show that our new definitions are equivalent to the
operational definitions of Fox and Long.

2DOI:10.5281/zenodo.5784579

0 0.75 1 1.25 1.5

(op e1) (en p0 e1 f1)

(en p1 e0 f0) (cl e0)

I1.5I1.25I1I0.75I0

B1.5B1.25B1B0.75B0

I0 = {}
I0.75 = {(op e1)inv}
I1 = {(op e1)inv, (en p1 e0 f0)inv}
I1.25 = {(en p1 e0 f0)inv}
I1.5 = {(en p0 e1 f1)inv}

B0 = {(op e1)start}
B0.75 = {(en p1 e0 f0)start}
B1 = {(op e1)end}
B1.25 = {(en p1 e0 f0)end,

(en p1 e0 f0)start}
B1.5 = {(cl e0)start}

Figure 1: Concepts from Def. 5 for the elevator example.

Definition 5 (Valid State Sequence). For t ∈ Q≥0 and
a plan →π , let Bt ≡ {πstart | ⟨π, t, d⟩ ∈ →π} ∪ {πend |
⟨π, t − d, d⟩ ∈ →π} and It ≡ {πinv | ⟨π, t′, d⟩ ∈ →π ∧
t′ < t < t′ + d}. Also, let t0, . . . , tn be the happening
time points of →π . For a sequence of states M0, . . . ,Mn+1,
we say the sequence of states is valid wrt a plan →π
iff, for every happening time point ti of →π , we have:
(i) Mi |= πinv, for every πinv ∈ Iti , (ii) Mi |= πpre, for
every π ∈ Bti , (iii) Bti is pairwise non-interfering, and
(iv) Mi+1 = (Mi −

⋃
π∈Bti

πdel) ∪
⋃

π∈Bti
πadd.

Definition 6 (Valid Plan). Plan →π is a valid plan for a
problem Π iff there is a state sequence M1, . . . ,Mn+1 s.t.
I,M1, . . . ,Mn+1 is valid wrt →π and Mn+1 |= G.

Note: above, simultaneous execution of instantaneous
ground actions is only allowed for non-interfering ground
actions. Otherwise, simultaneous execution might result in a
not well-defined state. We also use the same ground action
interference condition defined by Fox and Long.

Figure 1 illustrates the beginning of the instantiation of
the elevator running example for Def. 5. At the top of the il-
lustration a timeline is depicted. Below the timeline the first
four actions from the valid plan are shown. At the bottom
of the illustration the individual sets needed for the state se-
quence are shown.

Refining the Semantics Towards Executability
A main goal of this paper is to construct a plan valida-
tor which is formally verified wrt the semantics. We do
that by following a step-wise refinement approach (Wirth
1971), where we start from the abstractly specified seman-
tics and refine that specification towards an executable pro-
gram which fulfils those abstractly specified semantics. The
next step to refine our semantics is to obtain a version that is
closer to the executable program. In this version, we closely
follow the semantics given by Fox and Long. A central con-
cept in defining the semantics of temporal plans is that of
happening sequences. Intuitively, these are the instantaneous
changes that happen over the course of plan execution.
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0 0.75 1 1.25 1.5

(op e1) (en p0 e1 f1)

(en p1 e0 f0) (cl e0)

h9h8h7h6h5h4h3h2h1

h1 ≡ ⟨{(op e1)start}, 0.0⟩
h2 ≡ ⟨{(op e1)inv}, 0.375⟩
h3 ≡ ⟨{(en p1 e0 f0)start}, 0.75⟩
h4 ≡ ⟨{(op e1)inv, (en p1 e0 f0)inv}, 0.875⟩
h5 ≡ ⟨{(op e1)end}, 1.0⟩

h6 ≡ ⟨{(en p1 e0 f0)inv}, 1.125⟩
h7 ≡ ⟨{(en p1 e0 f0)end,

(en p1 e0 f0)start}, 1.25⟩
h8 ≡ ⟨{(en p0 e1 f1)inv}, 1.375⟩
h9 ≡ ⟨{(cl e0)start}, 1.5⟩

Figure 2: Illustration for the beginning of an induced hap-
pening sequence (Def. 8) for the elevator-running example.

Definition 7 (Valid Happening Sequence). A happening h
is a pair ⟨A, r⟩, where A is a set of snap actions and
r ∈ Q≥0 is the starting time point. For a happening se-
quence ⟨A0, r0⟩, . . . , ⟨An, rn⟩ and a state M0, we call a
state sequence M1, . . . ,Mn+1 to be induced by M0 and the
happening sequence iff for every 0 ≤ i < m (i) Mi |= πpre,
for every π ∈ Ai, (ii) Ai is pairwise non-interfering,
and (iii) Mi+1 =

(
Mi −

⋃
π∈Ai

πdel
)
∪

⋃
π∈Ai

πadd, for
0 ≤ i ≤ n. A happening sequence is valid wrt some state iff
they induce a valid state sequence.

A happening sequence which models the effects and exe-
cutability of a temporal plan is called an induced happening
sequence. The validity of a temporal plan is defined as the
validity of the induced happening sequence.
Definition 8 (Induced Happening Sequence). A happen-
ing sequence ⟨A0, r0⟩, . . . , ⟨Am, rm⟩ is an induced hap-
pening sequence for a plan →π with happening time points
t0, . . . , tn iff, for all 0 ≤ i ≤ m, we have that Ai ⊆⋃
{{⟨πinv, ∅, ∅⟩, πstart, πend} | ⟨π, t, d⟩ ∈ →π} and, for all

⟨π, t, d⟩ ∈ →π , (i) there is a happening ⟨Ai, ri⟩ with ri = t
and πstart ∈ Ai, (ii) there is a happening ⟨Aj , rj⟩ with
rj = t + d and πend ∈ Aj , (iii) for each 0 ≤ l < n with
t ≤ tl < t + d there is ⟨Ak, rk⟩ with tl < rk < tl+1 and
⟨πinv, ∅, ∅⟩ ∈ Ak, and (iv) the starting time points r0, . . . , rm
are strictly sorted in an ascending order.

Figure 2 illustrates the beginning of an induced happen-
ing sequence for the elevator running example. At the top of
the illustration, a timeline with the happening time points is
shown. Every start- or end-point of a plan action is a hap-
pening time point. In this example, the first five happening
time points are: 0, 0.75, 1, 1.25, and 1.5. Below the timeline
the first four actions from the valid plan are shown. For each
plan action, the snap actions are placed along the timeline
and collected in the happenings, which are symbolized as
red squares in the illustration. E.g. for the first plan action
⟨(op e1), 0, 1⟩, the start snap action (op e1)start is placed at
the start of the action, at time point 0 and collected in hap-
pening h1, whereas the end snap action (op e1)end is placed
at the end of the action, at time point 1 and collected in
happening h5. For every two consecutive happening time
points the invariants of all currently running actions need

to be checked. Therefore, happening h2 contains the invari-
ant snap action for the first plan action (op e1). In between
the consecutive happening time points 0.75 and 1 the action
(op e1) is running as well as the action (en p1 e0 f0), hence
the happening h4 contains the invariant snap actions for both
(op e1) and (en p1 e0 f0).

The illustration in Figure 2 only shows one possible in-
duced happening sequence for the valid plan. Def. 8 allows
invariant snap actions to be placed arbitrarily in between
consecutive happening time points. This is more general
than the definition of Fox and Long, which arbitrarily re-
stricts the placement of invariant snap actions to be exactly
in the middle of happening time points. We use this place-
ment of invariant actions in the next section, where we give
an executable definition of plan validity. Based on the notion
of valid happening we define the following notion of plan
validity, which is closer to the definition of Fox and Long
and to executability.

Definition 9 (Valid Plan II). Plan →π is valid for a plan-
ning problem Π iff →π has an induced happening sequence
h0 . . . , hn s.t. the happening sequence is valid wrt I and
Mn+1 |= G, where Mn+1 is the last state in the induced
state sequence.

At a higher-level, the contrast between Def. 9 and 6 boils
down to that the former specifies plan validity in terms of
a happening sequence that should be computed, while the
latter specifies validity more abstractly. More specifically,
instead of referring to happening sequences, Def. 6 uses Bt

and It, which denote the snap actions executing at time t
and the set of invariants which should hold at time t, respec-
tively. Accordingly, for Def. 9 we only assert the existence
of a sequence of valid states, which can be formalised, in
Isabelle/HOL, as a simple recursion on the happening time
points of a plan, instead of asserting the existence of an in-
duced happening sequence as in the case of Def. 9. The two
definitions are equivalent as shown below.

Theorem 1. For a planning problem Π, a plan →π is valid
according to Def. 9 iff it is valid according to Def. 6.

Proof sketch. Let t0, . . . , tn be the happening time points of
→π after being sorted in ascending order.
(⇒) From Def. 9, →π has an induced happening sequence
⟨A0, r0⟩, . . . , ⟨Am, rm⟩, and that happening sequence is
valid wrt I. Note that m ≥ n. Our goal here is to show
that the induced state sequence of this happening sequence
is a valid state sequence, according to Def. 5. Since the in-
duced happening sequence is strictly sorted according to the
starting time of the happenings, we know that the different
happenings have different starting points. Accordingly, we
have, for each ti, where 0 ≤ i ≤ n, there is a happening
⟨Aj , rj⟩, s.t. Bti = Aj and ti = rj . Since this induced
happening sequence is also a valid happening sequence, the
conjuncts (ii), (iii), and (iv) of Def. 5 hold for the induced
state sequence. What remains is to show that conjunct (i)
holds for the induced state sequence, which states that all
action invariants hold during action execution. Observe that
conjunct (iii) of Def. 8 asserts that, for each ⟨π, t, d⟩ ∈ →π ,
there is an action ⟨πinv, ∅, ∅⟩ between each two happenings
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that happen during the execution of an action π. The precon-
ditions of this action ensure that the invariants of the action π
are not violated during its execution. Accordingly, conjunct
(i) holds for the induced state sequence.
(⇐) To prove this direction, we need to show that →π has
an induced happening sequence, which is valid wrt I, from
a given valid state sequence I,M1, . . . ,Mn+1. Consider
the happening sequence ⟨Bt0 , t0⟩, ⟨It1 , t0+t1

2 ⟩, ⟨Bt1 , t1⟩,
⟨It2 , t1+t2

2 ⟩, . . . , ⟨Btn−1 , tn−1⟩, ⟨Itn ,
tn−1+tn

2 ⟩, ⟨Btn , tn⟩.
We now need to show that this happening sequence
is a valid one, according to Def. 7. It is easy to see
that conjunct (ii) of Def. 7 holds for this happening se-
quence. To show that the other two conjuncts of Def. 7
hold, we first need to provide a witness state sequence
to which those conjuncts apply. The state sequence
I,M1,M1, . . . ,Mn+1,Mn+1

3 is the witness: • Conjunct (i)
of Def. 7 holds for I,M1,M1, . . . ,Mn+1,Mn+1 because
conjunct (i) of Def. 5 holds for I,M1, . . . ,Mn+1, which
implies that the preconditions in each action in a happening
⟨Bti , ti⟩ are entailed by the state Mi, and conjunct (ii)
of Def. 5 also holds for I,M1, . . . ,Mn+1, which implies
that the preconditions of each happening ⟨Iti ,

ti−1+ti
2 ⟩ are

entailed by the state Mi−1. • Conjunct (iii) of Def. 7 holds
for I,M1,M1, . . . ,Mn+1,Mn+1 because conjunct (iii)
of Def. 7 holds for I,M1, . . . ,Mn+1. The last remaining
thing is to show that the happening sequence we constructed
is an induced happening sequence for →π , according to
Def. 8: • The first two conjuncts of Def. 8 hold for this
happening sequence because from the definition of B and I .
• The third conjunct holds due to the way we construct the
happening sequence. • The fourth conjunct holds because
we have the happening time points already sorted and the
way we construct our happening sequence. This finishes our
proof.

An Executable Verified Validator
The last part of our work is regarding implementing an ex-
ecutable specification of the semantics, i.e. a plan valida-
tion algorithm, and formally proving that it is equivalent to
the unexecutable specification of the semantics in Def. 6.
The formalized semantics are defined with unexecutable ab-
stract mathematical types and depend on several mathemat-
ical concepts, e.g. sets and quantifiers. To obtain an ex-
ecutable validator these mathematical types and concepts
need to be replaced with efficient algorithms. We use step-
wise refinement to replace the abstract specifications in the
semantics with algorithms. With step-wise refinement effi-
cient implementations of algorithms can be proven correct
by using multiple correctness preserving steps to refine an
abstract version of the algorithm towards the efficient im-
plementation. This allows us to formalize concise semantics
and implement an efficient validator wrt. those semantics.

We do two main refinement steps: first, we replace the ab-
stract specifications of the semantics with algorithms defined

3This repetition of states is intended: each state Mi occurs first
as a result of executing the happening ⟨Bti , ti⟩ at state Mi−1 and
then second as a result of executing the happening ⟨Iti ,

ti−1+ti
2

⟩,
which has no effects, at state Mi.

Algorithm 1: The executable specification of plan
validity, check-plan, as pseudo-code. In this pseudo-
code, Π denotes a planning problem, →π a plan to be
checked, H a sequence of happenings, Ai a set of
snap actions, ri a happening starting time point, and
t a happening time point.

function insert-action(⟨A0, r0⟩, . . . , ⟨Am, rm⟩, t, π)
for each 0 ≤ i < m
if ri = t

ret ⟨A0, r0⟩, . . . , ⟨Ai ∪ {π}, ri⟩, . . . , ⟨Am, rm⟩
if ri+1 = t

ret ⟨A0, r0⟩, . . . , ⟨Ai+1 ∪ {π}, ri+1⟩, . . . ,
⟨Am, rm⟩

if ri < t < ri+1

ret ⟨A0, r0⟩, . . . , ⟨Ai, ri⟩, ⟨{π}, r⟩,
⟨Ai+1, ri+1⟩, . . . , ⟨Am, rm⟩

function simplify-action(t0, . . . tn, ⟨π, t, d⟩, H)
H := insert-action(H, t, πstart)
H := insert-action(H, t+ d, πend)
for each 0 ≤ i < n
if t ≤ ti < ti+1 ≤ t+ d

H := insert-action(H,
ri+rj

2 , ⟨πinv, ∅, ∅⟩)
ret H

function simplify-plan(→π )
H := ∅
for each ⟨π, t, d⟩ ∈ →π
simplify-action(htps(→π ), ⟨π, t, d⟩, H)

ret H
function valid-hap-seq(⟨A0, r0⟩, . . . , ⟨Am, rm⟩,Π)
M := I
for each 0 ≤ i ≤ m
if ∃π1, π2 ∈ Ai and they are interfering

ret False
if ∃π ∈ Ai.M ̸|= πpre

ret False
M :=

(
M −

⋃
π∈Ai

πdel
)
∪
⋃

π∈Ai
πadd

if M |= G
ret True

ret False
function check-plan(Π,→π )
H := simplify-plan(→π )
if valid-hap-seq(H,Π)
ret “valid Plan”

ret “error”

on abstract mathematical types like sets. This is shown in
the pseudo-code of our validation algorithm in Algorithm 1,
where check-plan is the top-level routine. We then prove the
following theorem about it.
Theorem 2. check-plan(Π,→π ) = ”valid Plan” iff →π is
valid for the planning problem Π according to Def. 6.
Lemma 1. Let →π be a plan and H and H ′ be induced hap-
pening sequences for →π . If a state sequence is an induced
state sequence by a state M0 and H , then there is a state
sequence induced by M0 and H ′, where the last state of the
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two sequences is the same.

Proof sketch. Firstly, let H (H ′) be (A0, r0), (A1, r1), . . . ,
(Am, rm) ((A′

0, r0), (A
′
1, r

′
1), . . . , (Am′ , rm′)), let

t0, t1, . . . , tn be the happening time points of →π , and let
M1,M2, . . . ,Mm+1 (M ′

1,M
′
2, . . . ,Mm′+1) be the induced

state sequences of I and H (H ′). Because of the fourth con-
junct of Def. 8, we have a monotonically increasing mapping
f (f ′) from {0, 1, . . . , n} to {0, 1, . . . ,m} ({0, 1, . . . ,m′}),
such that, for 0 ≤ i ≤ n, ti = rf(i) (ti = rf ′(i)) and
f(n) = m (f ′(n) = m′). Also, from the third conjunct of
Def. 8 we have that, for 0 ≤ i ≤ n, Af(i) (Af ′(i)) has no
invariant snap actions and, accordingly, Af(i) = Af ′(i),
and for j ∈ {0, 1, . . . ,m} \ {f(0), f(1), . . . , f(n)}
(j ∈ {0, 1, . . . ,m} \ {f(0), f(1), . . . , f(n)}), Aj has
only invariant snap actions, i.e. Aj ⊆ {⟨ϕ, ∅, ∅⟩ | ϕ is
propositional formula}. From the two previous statements,
we conclude that Mf(i) = Mf ′(i), for 0 < i ≤ n, which
finishes our proof.

Lemma 2. For any plan →π , simplify-plan(→π ) is an induced
happening sequence for the plan →π .

Proof sketch. This follows from Def. 8.

Lemma 3. For any happening sequence H and planning
problem Π, valid-hap-seq(H,Π) is true iff H is a valid hap-
pening sequence wrt. I.

Proof sketch. This follows from Def. 7.

Proof of Theorem 2. The theorem follows from Lem-
mas 2, 3 and 1, and Theorem 1.

A validator has to be executable and efficient and thus the
implementation of a validator is more complicated than the
formalisation of the semantics.

In the next step-wise refinement step, the abstract math-
ematical types, like the set operations in valid-hap-seq, are
replaced with efficient implementation using balanced trees.
Since this step is completely automated with the Contain-
ers Framework in Isabelle/HOL (Lochbihler 2013), we do
not describe the resulting pseudo-code or the proofs of its
equivalence to the pseudo-code from Algorithm 1.

Before we close this section we would like to note two
points. First, the formal version of Algorithm 1 includes
checks related to PDDL-level well-formedness, like the cor-
rectness of typing of action arguments, etc. These details are
similar to what was done by Abdulaziz and Lammich and
we ignore them here as we only focus on grounded prob-
lems. Readers interested in the PDDL-level reasoning can
consult the associated formalisation. Second, as one of our
goals was to simplify the semantics, we do not assert the
presence of a concrete minimum separation, ϵ, between plan
actions. In our refinement steps, we are able to derive a vali-
dation algorithm which uses arbitrary arithmetic on rational
numbers and it is formally proved to implement Def. 6. This
is an improvement over the approach of Fox and Long, who
claimed in their paper that it is necessary to accept that nu-
meric conditions, including time, will have to be evaluated
to a certain tolerance. Indeed, VAL (Howey, Long, and Fox
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Figure 3: Validation running times for IPC 2014 domains.

2004) implements this ϵ and thus requires the ϵ as an extra
parameter. This leads to rejecting, otherwise valid, plans if a
too large ϵ is given to VAL.

Parsing Problems and Code Generation For parsing, we
use an open source parser combinator library written in Stan-
dard ML. We note that parsing is a trusted part of our val-
idator, i.e. we have no formal proof that the parser actually
recognises the desired grammar and produces the correct
abstract syntax tree. However, the parsing combinator ap-
proach allows to write concise, clean, and legible parsers,
which can be relatively easily checked.

Experimental Evaluation Our validator supports the
following PDDL requirements: :strips, :equality, :typ-
ing, :negative-preconditions, :disjunctive-preconditions,
:durative-actions, and :duration-inequalities. For the eval-
uation of our validator, we compare the validation results
and running time of our validator to those of VAL (Howey,
Long, and Fox 2004). We use IPC 2014 domains. We used
the temporal planners ITSAT (Rankooh and Ghassem-Sani
2015) and Temporal Fast Downward (TFD) (Eyerich,
Mattmüller, and Röger 2009) to generate plans for the
domains and problems. In all test cases, the validation
outcome between our validator and VAL is the same.
Our validator is consistently slower than VAL, as can be
seen in Figure 3. However, it never needs more than one
second to validate any plan. This is a practically acceptable
performance, escpecially since our validator uses arbitrary
precision arithmetic. We also note that formally verified
code is usually orders of magnitude slower than unverified
code due to the difficulty of verifying all code optimisations
which are liberally used in unverified code.

Discussion
In this work we presented the first specification of the se-
mantics of the temporal part of PDDL2.1 in a formal mathe-
matical system, namely, Isabelle/HOL. Specifying language
semantics in formal mathematical systems has the advan-
tages of removing any ambiguities and providing the ba-
sis to build formally verified tool chains to reason about
these languages. These advantages of formalising language
semantics have been reported by researchers who use ITPs
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to formalise programming language semantics, e.g. C (Nor-
rish 1998), SML (Kumar et al. 2014), and Rust (Jung et al.
2018). One main purpose of our work was to showcase the
merits of this methodology to the planning community.

The semantics and validation of the temporal fragment of
PDDL have been studied by multiple authors. We believe
our work improves over all the previous approaches in two
aspects: the succinctness of our semantics specificaiton and
the trusworthiness of our executable validator.

PDDL2.1 was first introduced during the second inter-
national planning competition and its semantics were most
comprehensively defined by Fox and Long 2003. We base
our work on the semantics of Fox and Long. One issue
with their semantics noted by earlier authors Claßen, Hu,
and Lakemeyer is that it defines plan validity using an ex-
ecutable plan validation algorithm, which is more compli-
cated than what a specification of semantics ought to be. We
address that by providing simpler semantics and showing it
is equivalent to an executable validator. Our semantics are
simpler because they (i) remove the need for a fixed “ϵ” sep-
aration between interfering actions, requiring only an arbi-
trary non-zero separation, (ii) bypass the concept of induced
happening sequences, and (iii) do not require that snap ac-
tions representing invariants occur exactly between each two
happenings which occur while the invariant has to hold. An-
other difference between our work and that of Fox and Long
is that we specify our semantics in Isabelle/HOL wrt abstract
syntax which is very close to PDDL syntax.4 This gives rise
to a more detailed specification of the semantics and leaves
less room for ambiguities.

Another tangentially related work is that of Gigante
et al. 2020. In their work, they studied the complexity of
computing plans for different restrictions of the temporal
planning as described by Fox and Long.

Another notable planning language which includes tem-
poral elements is ANML (Smith, Frank, and Cushing 2008).
The semantics of a language “inspired” by ANML were
defined by Cimatti, Micheli, and Roveri 2017. Although
Cimatti, Micheli, and Roveri use pen-and-paper definitions,
the level of detail of their presentation is closer to ours as
they specified an abstract syntax for their language, based
on which they defined their semantics. However, our seman-
tics are much more succinct than theirs since we use HOL to
specify our semantics, while they specify their semantics in
terms of linear temporal logic modulo real arithmetic, which
is significantly less expressive than HOL.

Another well-established formalism for studying the se-
mantics of planning and action languages in general is sit-
uation calculus (McCarthy and Hayes 1981; Reiter 2001).
In that line of work, the work by Claßen, Hu, and Lake-
meyer 2007 is the most related to this paper. They showed
how to encode a PDDL 2.1 problem as a formula in ES ,
which is a dialect of first-order logic with interesting compu-
tational and meta-theoretic properties introduced by Lake-
meyer and Levesque 2004. The main merit of that approach,
as stated by Claßen, Hu, and Lakemeyer, is that their se-
mantics are a declarative specification of the semantics of

4Interested readers should consult the formalisation.

PDDL 2.1 as opposed to the state transition-based seman-
tics of Fox and Long. This has the advantage that all the
computational and meta-theoretic properties of ES apply to
it. On the other hand, it has the disadvantage of being less
understandable than a state transition-based definition, as
one needs to first understand ES . Seen from that perspec-
tive, our formalisation three properties:(i) It is clearly state
transition-based as our semantics are in terms recursively
defined action execution and state transitions. This makes
it more readable than the formalisation of Claßen, Hu, and
Lakemeyer. (ii) It is also declarative in HOL since, although
our top-level definitions are state transition-based, the mech-
anisms behind the recursive function definitions and the al-
gebraic data types in HOL are all declarative in terms of
the axioms of HOL (Krauss 2009; Traytel, Popescu, and
Blanchette 2012). (iii) Has less clear computational prop-
erties, since general procedures to reason about HOL are all
heuristic, since the logic is incomplete. This disadvantage is
not an issue, however, in our context given that our goal is
to specify a concise semantics for deriving correct by con-
struction software. It can, nonetheless, be remedied by for-
malising the semantics of ES in HOL and formally show-
ing, within Isabelle/HOL, the correctness of the encoding of
PDDL in ES from Claßen, Hu, and Lakemeyer.

A lot of work on trustworthiness in planning has fo-
cused on plan validation. The state-of-the-art plan validator
for temporal plans is VAL (Howey, Long, and Fox 2004).
Since VAL implements temporal planning semantics, which
is rather involved, in C++, it is difficult to inspect VAL to
make sure that it is free of bugs. This, in a sense, defeats one
of the main purposes of plan validators: they are supposed
to boost trustworthiness by being much simpler than plan-
ning systems, making it less likely for them to have bugs
and making them easier to inspect. One motivation for our
work was to avoid that problem by having a separate con-
cise specification of the semantics which precisely describes
what the validator implements. These semantics are then for-
mally connected to an efficient validator. Another approach
to temporal plan validation is the one by (Cimatti, Micheli,
and Roveri 2017), who compile a given planning problem
and a candidate plan into a formula of temporal logic. Plan
validation then becomes a satisfiability task for an LTL for-
mula. From a trustworthiness perspective, this approach has
the disadvantages that one has to trust the code that imple-
ments the compilation to LTL and, more importantly, either
one has to trust an LTL model-checker or devise a valida-
tor that validates models of LTL formulae. Our approach, on
the other hand, trusts a much smaller code base, thanks to
the LCF architecture of Isabelle/HOL.

As future work, we would like to connect our formalisa-
tion of temporal planning to the formalisation of timed au-
tomata by Wimmer and von Mutius 2020. This would enable
us to generate formally checkable certificates of unsolvabil-
ity for temporal planning problems. It would also enable for-
mally verified checking of different properties of a planning
domain similar to the ones by Cimatti, Micheli, and Roveri,
but with formal guarantees.
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