
Competing for Resources: Estimating Adversary Strategy for Effective Plan
Generation

Lukáš Chrpa, Pavel Rytı́ř, Rostislav Horčı́k, Stefan Edelkamp
Faculty of Electrical Engineering, Czech Technical University in Prague
{lukas.chrpa, pavel.rytir, rostislav.horcik, stefan.edelkamp}@fel.cvut.cz

Abstract

Effective decision making while competing for limited re-
sources in adversarial environments is important for many
real-world applications (e.g. two Taxi companies competing
for customers). Decision-making techniques such as Auto-
mated planning have to take into account possible actions of
adversary (or competing) agents. That said, the agent should
know what the competitor will likely do and then generate its
plan accordingly.
In this paper we propose a novel approach for estimating
strategies of the adversary (or the competitor), sampling its
actions that might hinder agent’s goals by interfering with the
agent’s actions. The estimated competitor strategies are used
in plan generation such that agent’s actions have to be applied
prior to the ones of the competitor, whose estimated times
dictate the deadlines. We empirically evaluate our approach
leveraging sampling of competitor’s actions by comparing it
to the naive approach optimising the make-span (not taking
the competing agent into account at all) and to Nash Equilib-
rium (mixed) strategies.

Introduction
Planning in static environments accounts for generating
plans that are optimised, for instance, for their length,
makespan or action cost. However, in environments, where
an adversarial (or competing) agent is present, such a naive
approach is rarely effective.

The concept of planning in adversarial environment is
not new (Applegate, Elsaesser, and Sanborn 1990). Succinct
symbolic representations of state sets helped generating op-
timistic and strong cyclic adversarial plans (Jensen, Veloso,
and Bowling 2001; Kissmann and Edelkamp 2009), a set-
ting conceptually related to FOND planning (Cimatti et al.
2003). Such a setting, however, has to explore most if not
all alternatives (in analogy to traditional game-tree methods
such as minimax). Monte-Carlo Tree Search (MCTS) and
Online Evolutionary Planning have been applied in adver-
sarial environments such as the Hero Academy game (Juste-
sen et al. 2018), or Starcraft (Justesen and Risi 2017). Deep
Reinforcement Learning (DRL) has shown impressive re-
sults in Starcraft (Vinyals et al. 2019) and other (adversar-
ial) domains such as the games of Chess or Go (Silver et al.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2018). MCTS and DRL approaches work “online”: they se-
lect the most promising action (or move) in the current state
of the environment and they continue to do so until the ter-
minal state is reached.

From the planning side, Speicher et al. (2018) used the
game-theoretic framework of Stackelberg games for gener-
ating robust plans against actions of the adversary. In a sim-
ilar spirit, Plan Interdiction Games have been proposed to
describe the problem of attackers and defenders, where the
former plans to intrude a computer network, while the latter
tries to prohibit attackers’ actions (Letchford and Vorobey-
chik 2013; Vorobeychik and Pritchard 2020). A recent work
about “Counterplanning” goes in a similar direction as one
agent tries to invalidate landmarks required by the oppo-
site agent (Pozanco et al. 2018). Planning-based techniques
work offline, i.e., they generate plans upfront, which are then
executed (as they are).

In this paper, we define a class of Resource Competi-
tion problems in which two agents compete for limited re-
sources. Such problems involve, for example, competing for
limited resources in strategy games, or on-demand trans-
port companies competing for passengers requiring trans-
porting from one place to another. We also assume that each
agent has to generate its plan upfront and the plan cannot
be amended after the agent starts executing it because, for
instance, there is a lack of reliable communication between
the units (e.g. UAVs) the agent controls. Although Resource
Competition problems can be addressed by MCTS (Lelis
2020) or DRL (Silver et al. 2018), these techniques do not
seem to be feasible for our assumption.

To generate mixed strategies (composed from plans) in
Nash Equilibrium, we can leverage the Double Oracle al-
gorithm (McMahan, Gordon, and Blum 2003), which can
take tens of iterations until it converges (and none of the
player can improve its strategy) even for smaller tasks (Rytı́ř,
Chrpa, and Bošanský 2019). It involves cost-optimally solv-
ing n planning tasks in each iteration (n is the number of
players), which is computationally expensive. This paper
tackles the issue by proposing a heuristic method for es-
timating a mixed strategy of the other (adversarial) agent.
Leveraging a heuristic for estimating earliest action applica-
tion time, developed by Chrpa, Rytı́ř, and Horčı́k (2020),
we propose a “sampling” method which provides poten-
tial application times of actions of the adversary that inter-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

9707

fere with agent’s actions. The sampling method, hence, pro-
vides deadlines for those agent’s actions (later called criti-
cal actions) the agent has to take into consideration while
it generates its plan. To evaluate potential of the “sampling”
method, we hence resort to cost-optimal planning as it re-
moves biases made by sub-optimal techniques. In particu-
lar, we compare plans generated by the sampling method
with naive plans, which optimise for make-span while ignor-
ing the presence of adversary, and mixed strategies in Nash
Equilibrium generated by Double Oracle (Rytı́ř, Chrpa, and
Bošanský 2019).

Preliminaries
This section introduces the terminology we use in this paper.

Automated Planning
We assume a restricted form of Temporal Planning in a
static, deterministic and fully observable environment. So-
lution plans are sets of pairs (action, time of its application).
We consider durative actions as defined in PDDL 2.1 (Fox
and Long 2003) and discretized timelines (in contrast to
PDDL 2.1).

Let V be a set of variables where each variable v ∈ V is
associated with its domain D(v). An assignment of a vari-
able v ∈ V is a pair (v, val), where its value val ∈ D(v).
Hereinafter, an assignment of a variable is also denoted
as a fact. A (partial) variable assignment p over V is a
set of assignments of individual variables from V , where
vars(p) is a set of all variables in p and p[v] represents
the value of v in p. To accommodate the notion of time,
we denote that a fact f or a (partial) variable assignment
p holds in time t as f(t) or p(t) respectively. In an action
a = (dur(a), pre`(a), pre à(a), prea(a), eff`(a), effa(a)),
dur(a) is a non-negative integer representing duration of a’s
application and the other elements are sets of partial variable
assignments. In particular, pre`(a) represents action precon-
dition before its application, prea(a) represents action pre-
condition before finishing its application, pre à(a) represents
action precondition for the whole time interval of its appli-
cation, eff`(a) represents action effects taking place after
starting its application and effa(a) represents action effects
taking place after finishing its application. We say that an
action a is applicable in time t if and only if pre`(a)(t),
prea(a)(t+ dur(a)) and ∀t′ ∈ (t, t+ dur(a)) : pre à(a)(t′).
The result of applying a in time t (if possible) is that eff`(a)

becomes true in t and effa(a) becomes true in t+ dur(a). It
should be noted that an assignment of a variable can change
in time t only when an action effect modifying the vari-
able takes place in time t. Note that we denote pre(a) =

pre`(a)∪pre à(a)∪prea(a) and eff (a) = eff`(a)∪effa(a)
unless otherwise stated.

We say that actions ai and aj possibly interfere if
vars(pre(ai) ∪ eff (ai)) ∩ vars(pre(aj) ∪ eff (aj)) 6= ∅.

A planning task is a quadruple P = (V,A, I,G), where
V is a set of variables, A a set of actions, I a complete vari-
able assignment representing the initial state and G a par-
tial variable assignment representing the goal. A plan π =

{(a1, t1), . . . , (an, tn)} (for a planning task P) is a set of
couples (action,time) such that I(0) (i.e., the initial variable
assignment is true in time 0), for each 1 ≤ i ≤ n it is the case
that ai ∈ A is applicable in ti, no actions have conflicts (i.e.,
no two or more actions modify the same variable, or one ac-
tion modifies a variable some other action requires in its pre-
condition at the same time), and G(maxni=1(ti + dur(ai)))
holds (i.e., a goal is achieved after all actions are applied).

Typically, plans are optimised for makespan, i.e., duration
of their execution. For our purpose, it is more important to
apply some actions within given deadlines and hence we de-
fine a cost function that assigns each action and timestamp
a non-negative cost, i.e., cost : A× N0 → R+

0 . We say that
a plan π = {(a1, t1), . . . , (an, tn)} (for P) is cost-optimal
if for every plan π′ = {(a′1, t′1), . . . , (a′m, t

′
m)} (for P) it is

the case that
∑n
i=1 cost(ai, ti) ≤

∑m
j=1 cost(a′j , t

′
j).

Another variant of planning task definition considers,
rather than a single (hard) goal, a set of soft goals (each
goal is a partial variable assignment) such that failing to
achieve a goal is penalised. Therefore, for a planning task
P = (V,A, I,G), G = {G1, . . . , Gn}, where each Gi is
associated with a cost Mi (1 ≤ i ≤ n) such that for a plan π
it is the case that its cost is

∑
i∈{i | Gi not achieved}Mi.

Normal-form Games
A normal-form game Γ is a tuple (N,S, u), where N is the
number of players, S = S1, . . . , SN represents finite sets of
pure strategies of players 1, . . . , N and u = (u1, . . . , uN)
is an N -tuple of utility functions that assign a real-valued
utility of player i for each outcome of the game defined by a
strategy profile – an N -tuple of pure strategies (one for each
player); ui : S1 × · · · × SN → R. We say that a normal-
form game is a zero-sum game if

∑N
i=1 ui = 0. From now,

we focus only on 2-player games, i.e., N = 2.
A mixed strategy for a player i is a probability distribu-

tion σi over the set of player’s pure strategies Si. A pair
of mixed strategies σ = (σ1, σ2) is called a mixed-strategy
profile. We extend the definition of utility functions so that
for a given mixed-strategy profile σ, the value ui(σ) is the
expected utility of player i. We say that a mixed strategy of
one player σi is the best response to the strategy of the op-
ponent σ−i (denoted as σi = br(σ−i)) when ui(σi, σ−i) ≥
ui(σ

′
i, σ−i) for all mixed strategies σ′i over Si. We say that a

mixed-strategy profile σ is in Nash equilibrium (NE) if each
player is playing best response to the strategy of the oppo-
nent.

One way for tackling normal-form games is to incre-
mentally build the game using the Double-Oracle algo-
rithm (McMahan, Gordon, and Blum 2003). The algorithm
starts with a restricted game, where each player’s mixed
strategy is composed from a subset of pure strategies, then,
iteratively each player computes the best response expand-
ing the restricted game. The algorithm terminates when nei-
ther of the players can add a best response strategy that im-
proves the expected outcome from the restricted game. The
NE of the restricted game matches the one in the original
game, since best response is computed over the unrestricted
set of all strategies (McMahan, Gordon, and Blum 2003).

9708

The algorithm returns an optimal strategy, but is not mono-
tone (in the upper and lower bounds on the game value in
each iteration), and might have to consider, in the worst case,
all pure strategies during its computation.

Case Studies
Resource Hunting Domain We consider a two-player
game introduced by Rytı́ř, Chrpa, and Bošanský (2019),
called Resource Hunting, where each player controls its fleet
of unmanned aerial vehicles (UAVs) that tries to collect as
many resources as possible. Each UAV can move from one
location to another. Each UAV can carry at most two sen-
sors. For each resource to be collected, one or two (differ-
ent) sensors are required. One or two UAVs can collect an
available resource if the UAV(s) are at the same location as
the resource and carry the required sensors.

Taxi Domain We consider an on-demand transport sce-
nario in which there are two taxi companies competing for
passengers who require to be transported from one loca-
tion to another. When one company picks up a passenger,
she/he can no longer be transported by the other company.
The goal of each taxi company is to maximise its rewards by
transporting passengers, at the expense of the competing taxi
company. Each taxi company operates a fleet of cars. In the
standard variant, each car can carry at most one passenger at
time, while in the infinity variant, each car has unlimited ca-
pacity. The car can move between two connected location by
the drive action, can load a passenger into itself if both are
at the same location, and can unload the passenger if being
in his/her destination location.

Resource Competition Planning Task
In multi-agent environments, each agent executes its own
actions in order to achieve its own goals. In non-cooperative
settings, however, actions of one agent might interfere with
actions of other agent(s). In adversarial or competitive set-
tings, such conflicts between actions of multiple agents are
usually inevitable as “winning” the conflict might be essen-
tial for achieving a given (soft) goal.

To illustrate the problem, we can observe in our case stud-
ies that after one agent collects a given resource or picks up a
passenger, the other agent can no longer collect the resource
or pick up the passenger. The conflicting actions are hence
those trying to collect the same resource or to pick up a pas-
senger. “Winning” the conflict in this context means that one
agent collects a resource or picks up a passenger before the
other agent tries to do so.

In general, we can define a planning task for 2-player
normal form games. Our definition is partially inspired by
the MA-STRIPS formalism (Brafman and Domshlak 2008)
used in Multi-agent planning. In contrast to MA-STRIPS,
we consider soft goals for each agent and durative actions.

Definition 1. Let NP = (V,A1, A2, I, G1, G2) be a
2-Player Normal-form Game (2PNG) Planning Task,
where V is a set of variables,A1 andA2 such thatA1∩A2 =
∅ are sets of (durative) actions for the first and second agent
(or player), respectively, I is an initial state and G1 and G2

are sets of soft goals for the first and the second agent (or
player), respectively.

To address the 2PNG planning task, each agent might gen-
erate its own plan by solving an underlying planning task,
where each agent uses only its actions to achieve its own
goals. Plans of both agents are executed simultaneously and
we will assume that plans of both agents start their execution
at the same time. We can reasonably assume that a plan of
an individual agent is conflict-free on its own, i.e., actions
do not invalidate preconditions of other actions or actions
do not try to change the value of a variable at the same time.
However, while executing plans of both agents simultane-
ously, conflicts can arise (the agents compete against each
other).

Definition 2. We say that actions ai and aj have back
interference iff vars((pre à(aj) ∪ prea(aj)) ∩ eff(ai)) 6=
∅ or vars((pre à(ai) ∪ prea(ai)) ∩ eff(aj)) 6= ∅. We
also say that actions ai and aj have front interference
iff vars(pre`(aj) ∩ eff`(ai)) 6= ∅ or vars(pre`(ai) ∩
eff`(aj)) 6= ∅.

Back interference might cause situations in which an ac-
tion of one agent might invalidate precondition of another
agent’s action that is already running. Invalidation of a pre-
condition of a running action might have different outcomes
that have to be specified in the action model. For the sake of
simplicity of the execution model, we assume, in this paper,
that no actions ai ∈ A1, aj ∈ A2 have back interference (it
is the case for the considered case studies).

If actions having a front interference are scheduled at
the same time, then one action is randomly selected by
the “coin toss” (i.e., with an equal chance) to be applied
while the other becomes inapplicable. Inapplicable actions
are skipped during plan execution. Conflicts between effects
are also resolved by the “coin toss”. After both plans are ex-
ecuted, the cost of the plan for each agent is determined as
the sum of costs of soft goals the agent failed to achieve. The
utility value for each player is computed by subtracting the
cost from the sum of costs of all player’s soft goals.

Facts, i.e., variable assignments, that are required by ac-
tions of one agent (or they are part of agent’s goals) can
be deleted by actions of the competing agent. We call such
facts conflicting. Specific conflicting facts that are initially
true but neither are part of any agent’s goals nor can be
reachieved by either agent are called critical facts (the no-
tion is adapted from (Chrpa, Rytı́ř, and Horčı́k 2020)).

Definition 3. LetNP = (V,A1, A2, I, G1, G2) be a 2PNG
planning task. We say that (v, val), where v ∈ V and val ∈
D(v), is a conflicting fact iff there exists a ∈ Ai : (v, val) ∈
pre(a) or (v, val) is a part of Gi and there exists a′ ∈ Aj :
(v, val′) ∈ eff(a′) ∧ val 6= val′ with i 6= j.

We say that a conflicting fact (v, val) is a critical fact iff
(v, val) ∈ I , (v, val) is neither a part of G1 nor G2 and for
each a ∈ A1 ∪A2 : (v, val) 6∈ eff(a).

Resource Competition planning tasks, as defined below,
are a subclass of 2PNG planning tasks in which all conflict-
ing facts are critical facts and no actions of different agents

9709

r2

r1

r3

uav-1

uav-2

uav-3

uav-4

t = 4

t = 6

t = 3

r2

r1

r3

uav-1

uav-2

uav-3

uav-4

t = 4

t = 5

t = 7

Figure 1: Figure depicts two pure strategies of an adversary in a Resource Hunting scenario, where agent’s UAVs (uav-1 and
uav-2) compete for resources r1,r2 and r3 with adversary’s UAVs (uav-3 and uav-4). In the left-hand-side strategy, the adversary
collects r1 and r2 (in this order) by uav-3 in time 4 and 6, respectively, and r3 by uav-4 in time 3. In the right-hand-side strategy,
the adversary collects r2 and r3 (in this order) by uav-4 in time 5 and 7, respectively, and r1 by uav-3 in time 4.

have back interference. Note that critical facts represent re-
source availability before they are collected by either agent.

Definition 4. LetRP = (V,A1, A2, I, G1, G2) be a 2PNG
planning task. We say that RP is a Resource Competition
(RC) Planning Task iff each conflicting fact over V is a
critical fact and for no pair of actions a1 ∈ A1 and a2 ∈ A2

it is the case that a1 and a2 have back interference.

Critical and Adversary Actions
To achieve its (soft) goals the agent has to apply certain
critical actions requiring specific critical facts. The ad-
versary, on the other hand, can apply adversary actions
deleting these critical facts and making them no longer
achievable. For example, an available(r1)=true fact is re-
quired by agent’s collect(uav-1,r1) action while adver-
sary’s collect(uav-3,r1) deletes the fact by setting avail-
able(r1)=false. Hereinafter, we present the terminology
from the perspective of agent 1, so agent 2 is considered
as an adversary or a competitor. We adopted the notions
of critical and adversary actions from Chrpa, Rytı́ř, and
Horčı́k (2020).

Definition 5. Let RP = (V,A1, A2, I, G1, G2) be a RC
planning task and (v, val) be a critical fact. We say that
Ac = {ac | ac ∈ A1, (v, val) ∈ pre`(ac)} is a set of criti-
cal actions over (v, val). We also define a set of adversary
actions as Aa = {aa | aa ∈ A2, (v, val′) ∈ eff(aa), val 6=
val′}.

Conceptually, the agent needs to apply its critical actions
before the adversary applies its adversary actions, e.g., the
agent has to collect a resource before the adversary does.
Therefore, adversary actions set deadlines for agent’s critical
actions. For example, in Figure 1 we depict two plans of the
adversary in which the adversary collects the r2 resource in
time 6 and 5, respectively. Hence, the deadlines for the agent
to collect r2 are 6 and 5, respectively. We define a function
at(f, a, eff) such that at(f, a, eff) = 0 iff f ∈ eff`(a), or
at(f, a, eff) = dur(a) iff f ∈ effa(a) and f 6∈ eff`(a).

Definition 6. Let Ac, Aa and (v, val) be as in Defini-
tion 5. Let π′ = {(a′1, t′1), . . . , (a′m, t

′
m)} be a plan of

the adversary. Then, for each ac ∈ Ac and (v, val) ∈
pre`(ac), we can determine a local deadline with respect to
π′ and (v, val), denoted as dl(ac, π′, (v, val)) as min{t +

at((v, val′), a′, eff) | (a′, t) ∈ π′, a′ ∈ Aa, (v, val′) ∈
eff(a′), val 6= val′}.

A (global) deadline for a critical action ac with
respect to π′, denoted as dl(ac, π′) is defined as
minf ′ is a critical fact for ac dl(a

c, π′, f ′).

Response Planning Task
Deadlines set by adversary actions determine whether cor-
responding critical actions can be successfully applied. Of
course, not all critical actions are required to achieve the
goal(s). We are therefore interested in critical actions that
are action landmarks or part of disjunctive action land-
marks (Hoffmann, Porteous, and Sebastia 2004). In particu-
lar, for achieving a goal an action landmark has to be present
in every (valid) plan while for a disjunctive action landmark
at least one its action has to be present in every plan. Con-
sidering planning tasks with sets of soft goals, we determine
for each soft goal which critical actions are (possibly) nec-
essary for achieving it. For example, collect actions over a
resource r1 form a disjunctive action landmark for r1 and
thus are relevant to the goal of collecting r1.
Definition 7. Let RP = (V,A1, A2, I, G1, G2) be a RC
planning task with G1 = {G1, . . . , Gn} being a set of
soft goals. Let Ac ⊆ A1 be a set of all critical actions
and Ali be the set of all disjunctive action landmarks for
Pi = (V,A1, I, Gi). We say that a set of critical actions
Aci =

⋃
Ali∈Ali

Ali ∩Ac is relevant to Gi.

It is reasonable to assume that the adversary will not fol-
low a single plan to set (firm) deadlines for the agent’s crit-
ical actions, but a randomised mixed strategy in form of a
set of plans, where each plan has a given probability for
being selected (and executed) (Rytı́ř, Chrpa, and Bošanský
2019). As the deadlines for agent’s critical actions are de-
termined only by the adversary actions, we do not have to
consider whole plans of the adversary but rather sets of ad-
versary actions with their application timestamps. Given a
critical action and a timestamp, we can project for which
pure strategies of the adversary the critical action will miss
the deadline, or be exactly on the deadline, as formalised in
the following definition.
Definition 8. Let RP = (V,A1, A2, I, G1, G2) be a RC
planning task and Ad ⊆ A2 be a set of all adversary ac-
tions. We say that adversary strategy σ over RP is a set

9710

σ = {(ad1, p1), . . . , (adn, pn)} such that
∑n
i=1 pi = 1 and

for each i it is the case that adi = {(ai1, ti1), . . . , (aik, t
i
k)},

where aij ∈ Ad and tij is the timestamp of aij’s application
(1 ≤ j ≤ k).

Let Ac ⊆ A1 be the set of all agent’s critical actions. We
define an after deadline strategy projection over σ as d>σ :
Ac ×N0 → 2σ such that d>σ (a, t) = {(adi, pi) | (adi, pi) ∈
σ, dl(a, adi) < t}. Analogously, we define an on deadline
strategy projection over σ as d=σ : Ac × N0 → 2σ such that
d=σ (a, t) = {(adi, pi) | (adi, pi) ∈ σ, dl(a, adi) = t}.

Adversary’s strategies, in form of sets of adversary ac-
tions, provide multiple deadlines for agent’s critical actions.
Each competitor’s strategy occurs with a given probability.
In consequence while considering the assumption that to
achieve a soft goal at most one critical action is necessary,
the probability of reaching a given soft goal equals the prob-
ability of successful application of a corresponding critical
action. We can formulate a planning task such that critical
actions are associated with costs reflecting their probability
to be applied before adversary actions. Note that in situa-
tions in which a critical action is applied at the same time
as the corresponding adversary action, we evenly “split the
cost”. For example, let us assume that the left-hand-side plan
in Figure 1 has the probability of being selected 0.6 while
the right-hand-side plan 0.4 and the cost of failing to collect
r3 is 100. Then collect(uav-1,r3) and collect(uav-2,r3) will
get the following cost depending on their application time.
For t < 3, the cost will be 0 as both deadlines will be met.
For 3 < t < 7, one deadline will be missed and the cost
will be 60 (as the agent will fail to collect r3 with probabil-
ity 0.6). For t > 7, both deadlines will be missed and hence
the cost will be 100. Note that “on deadline” cases, i.e., with
t = 3 and t = 7, the corresponding deadline will be missed
on 50%, and thus the costs will be 30 and 80, respectively.

Plans are then optimised for minimising the total action
cost, in other words, maximising agent’s expected utility
with respect to the given adversary’s strategy. The next defi-
nition is adapted from Rytı́ř, Chrpa, and Bošanský (2019).

Definition 9. Let RP = (V,A1, A2, I, G1, G2) be a RC
planning task with G1 = {G1, . . . , Gk} being a set of soft
goals and σ be an adversary strategy overRP . LetAci ⊆ A1

be the set of critical actions relevant to Gi and Mi be the
cost for failing to achieve Gi (1 ≤ i ≤ k). We define a cost
function cRP,σ : A1 × N0 → R+

0 , where cRP,σ(a, t) =∑
i∈{j|a∈Acj}

Mi(
∑

(adi,pi)∈d>σ (a,t)

pi+1/2
∑

(adi,pi)∈d=σ (a,t)

pi), if a ∈
n⋃
i=1

Aci ,

and cRP,σ(a, t) = 0, otherwise. This sets up an agent’s re-
sponse planning task Pσ = (V,A1, I, G1) such that ac-
tions are associated with the cRP,σ cost function.

The cost function in the above definition ensures that the
cost-optimal plan is the best response if at most one critical
action is needed for achieving each soft goal (we then refer
to a best response planning task). Note that for both our do-
mains this condition is satisfied. In more general cases, the
cost function might depend on other critical actions relevant

Algorithm 1: Estimating earliest action application and fact
occurrence time

1: function EARLIESTTIME(F,O,A, time)
2: while true do
3: A′ ← {a | a ∈ A \O, pre`(a) ∪ pre à(a) ⊆ F}
4: ∀a ∈ A′ : time(a) ← max{time(f) | f ∈

pre`(a) ∪ pre à(a)}
5: a← arg minx{time(x) | x ∈ A′}
6: if a is undefined then break
7: O ← O ∪ {a}
8: ∀f ∈ eff (a) : time(f) ← min(time(f),
time(a) + at(f, a, eff))

9: F ← F ∪ eff (a)
10: end while
11: ∀a 6∈ O : time(a)←∞
12: return F, time
13: end function

to the same goal that are (already) present in a partial plan.
Hence classical cost-optimal planning might not be applica-
ble in such cases.

Estimating Earliest Action Application Time
We adopt the algorithm for estimating lower bounds
of action application and fact occurrence time proposed
by Chrpa, Rytı́ř, and Horčı́k (2020). For this purpose, we
define a function time : A ∪ F → N0 assigning a times-
tamp to either an action from A or to a fact from the set
of all variable assignments F . The EarliestTime function in
Algorithm 1 is inspired by the hmax heuristics in classical
planning (Bonet and Geffner 2001), with setsF andO repre-
senting processed facts and actions, respectively. Each itera-
tion involves selection of not yet processed actions (Line 3),
determining their application time as maximum across the
times of its “at start” and “over all” preconditions (Line 4),
selecting the action (not yet processed) with the lowest ap-
plication time (Line 5), and determining times of its effects
as minimum of the current time and the time when the effect
of the selected action takes place (Line 8). Note that “at end”
preconditions are relaxed out as their presence might cause
that actions whose application starts later influence possible
application starting time of earlier actions.

Estimating Adversary Strategy
Formulating a (best) response planning task requires knowl-
edge of an adversary (mixed) strategy. Computing adversary
strategy by the Double Oracle algorithm is computationally
expensive as even for small problems, tens planning tasks
have to be (optimally) solved (Rytı́ř, Chrpa, and Bošanský
2019). We hence propose a heuristic method that estimates
when the competitor can apply its adversary actions as such
an information is important for setting the deadlines for
agent’s critical actions and thus formulating the (best) re-
sponse problem. That said, we do not need to compute whole
plans of the competitor.

Algorithm 2 summarises the routine for estimating an ad-
versary strategy. Initially, for each (soft) goal Gi, “clusters”

9711

Algorithm 2: Estimating adversary strategy
Require: RC planning task RP = (V,A1, A2, I, G1, G2)

with G1 = {G1, . . . , Gn}, number of samples k
Ensure: Estimated adversary strategy σ

1: for i = 1 to n do
2: Let Aci be relevant to Gi (as in Def. 7)
3: Ci = {a | a ∈ A2, a is an adversary action over f,
ac ∈ Aci , Aci ∈ Aci , ac is a critical action over f}

4: end for
5: σ ← ∅
6: for i = 1 to k do
7: ad← EstimateAdversaryTime(RP, {C1, . . . , Cn})
8: if (ad, p) ∈ σ then
9: σ ← σ \ {(ad, p)} ∪ {(ad, p+ 1

k)}
10: else
11: σ ← σ ∪ {(ad, 1k)}
12: end if
13: end for

14: function ESTIMATEADVERSARYTIME(RP , C)
15: sa← ∅, F ← ∅
16: set time as undefined
17: for all f ∈ I do
18: time(f)← 0, F ← F ∪ {f}
19: end for
20: while C 6= ∅ do
21: F, time′ ←EarliestTime(F, sa,A2, time)
22: A′ ← {a | a ∈

⋃
Ci∈C Ci, time

′(a) 6=∞}
23: if A′ = ∅ then break end if
24: a′ ←Select(A′)
25: sa← sa ∪ {a′}, time(a′)← time′(a′)
26: C ← C \ {C ′ | a′ ∈ C ′}
27: F, time← UpdateFactTime(a′, F, time′)
28: end while
29: return {(a, time(a)) | a ∈ sa}
30: end function

of adversary actions (denoted as Ci) corresponding to sets
of critical actions relevant for Gi are determined (Line 3).
Then, it k times samples a “skeleton” of an adversary’s
plan in the form of a set of sampled adversary actions with
their estimated application times (the EstimateAdversary-
Time routine). EstimateAdversaryTime initially sets the set
of selected adversary actions (sa) as empty and the initial
facts with time of 0. Then, in each iteration of the while
loop, Algorithm 1 is called to estimate application time of
the actions (Line 21), and then an adversary action, which is
reachable, is selected (Line 24) and the corresponding clus-
ter is removed (Line 26). Lastly, we update the set of facts
F and the time function according to the selected action a′
(Line 27). For facts in F whose variable is not part of a′, the
value of time will be the same as the value of time′. For
variables being part of a′, the value that remains true after
application of a′ is considered in F and time is set to when
a′ accessed the fact (in precondition of a′) or modified the
fact (in effects of a′) for the last time. The facts representing
the other variable values are removed from F and time for

them is set to∞.
Probability of selecting a particular adversary action (the

Select function) depends on their estimated application time
such that those with lower application time are preferred.
The following expression, inspired by the roulette wheel se-
lection in genetic programming (Goldberg and Deb 1991),
denotes how the probability is computed:

pa =
1−

(
time(a)∑

a′∈A′ time(a′)

)
|A′| − 1

As adversary actions are selected randomly (according to
the probability), different runs of The EstimateAdversary-
Time routine produce different outcomes. The k outcomes
of The EstimateAdversaryTime routine are then “arranged”
into an adversary strategy σ.

For example, the EstimateAdversaryTime routine can
produce the left-hand-side pure strategy in Figure 1 by
iteratively sampling collect(uav-4,r3), collect(uav-3,r1),
collect(uav-3,r2) (in this order). Note that after sampling,
for example, collect(uav-3,r1) the F set will contain the fact
that uav-3 is in the location of r1 at time 4 plus the duration
of collect(uav-3,r1).

Let us have two adversary actions ai, aj such that
vars(pre(ai)∪eff (ai))∩vars(pre(aj)∪eff (aj)) 6= ∅. Also
let us assume if either ai or aj is in A′, then the other action
can be applied after the one in A′ finishes its application.
Under this assumption we can derive that the EstimateAd-
versaryTime routine does not overestimate application time
of selected adversary actions (in a given order). Such an ob-
servation is implied from the fact that the EarliestTime func-
tion (Alg. 1) does not overestimate action application time
and fact occurrence time (Chrpa, Rytı́ř, and Horčı́k 2020).

The last step, after adversary strategy σ is obtained, is the
formulation of the response planning task (according to Def-
inition 9) and solving the task by generating a plan.

Experimental Evaluation
The aim of the experiments is to evaluate i) the quality of
plans generated with the use of our sampling method vs the
naive one (minimising plan makespan) and vs the mixed
(planning) strategy generated with the Double Oracle ap-
proach, ii) the CPU time required for running the above
methods, and iii) the exploitability of the naive and sam-
pling method showing how much generated plans are sub-
ject to exploitation from the competitor.

We encoded both case study domains as temporal do-
mains (in PDDL 2.1) for the naive approach, and in a classi-
cal subset of PDDL for the sampling and Double Oracle ap-
proach. To reason with (discrete) time in the classical mod-
els we introduced “timeline” objects analogously to Rytı́ř,
Chrpa, and Bošanský (2019). To obtain state-variable rep-
resentation we used Temporal Fast Downward (Eyerich,
Mattmüller, and Röger 2009). For discovering disjunctive
action landmarks, we used the back-chaining method (Hoff-
mann, Porteous, and Sebastia 2004). As an optimal classi-
cal planner, we used the Fast Downward planner (Helmert
2006) with the potential heuristic (Pommerening et al. 2015)
optimised by the diversification method proposed by Seipp,

9712

22 25 28 211 214

1800

1900

2000

22 25 28 211 214

650

700

750

800

850

22 25 28 211 214
600

650

700

750

800

Figure 2: Comparing the cumulative utility value of plans (y-axis) generated by the optimal planner using our strategy sampling
approach against the optimal mixed strategy generated by Double Oracle (blue line) and the naive plans (green line) with an
increasing number of samples (x-axis). Orange line denotes the Nash Equilibrium utility value. The Resource Hunting domain
is on the left, the standard Taxi domain in the middle and the infinity variant of the Taxi domain is on the right.

22 25 28 211 214

100

101

102

103

104

22 25 28 211 214
10−1

100

101

102

103

22 25 28 211 214
10−1

100

101

102

103

Figure 3: Comparing the cumulative runtime of plan generation (y-axis, in seconds) by our strategy sampling approach (blue
line) against the runtimes of optimal mixed strategy generation by Double Oracle (orange line) and the naive plan generation
(green line) with an increasing number of samples (x-axis). Note that runtime is in logarithmic scale. The Resource Hunting
domain is on the left, the standard Taxi domain in the middle and the infinity variant of the Taxi domain is on the right.

Pommerening, and Helmert (2015). As an optimal temporal
planner we used CPT4 (Vidal 2011). We ran the experiments
on Linux with 2.10GHz Intel Xeon CPU E5-2620 v4 with
32GB RAM.

An interesting property of the Resource Hunting domain
as well as the infinity variant of the Taxi domain is that Al-
gorithm 2 provides a perfect heuristic estimation of the ap-
plication time of the adversary’s collect (or load) actions be-
cause in each iteration of Algorithm 2 the application time
of the next collect (or load) action depends on the distance
of the required UAVs (or car) that is never underestimated.
In contrast to Resource Hunting, passengers have to be de-
livered to their required destinations, which might create
larger discrepancies between makespan optimal and “adver-
sary aware” plans. In the standard variant of the Taxi do-
main, Algorithm 2 provides perfect heuristic estimation only
for cars loading their first passenger, then Algorithm 2 un-
derestimates loading times of subsequent passengers, since
the heuristic incorrectly assumes that delivering the current
passenger (to empty the car) and going to load the next pas-
senger can be done simultaneously.

For the experiments, we consider eight scenarios of the
Resource Hunting domain ranging from 1 UAV per player to
3 UAVs per player and 2 to 6 resources. Further, we consider
five problems for each variant of the Taxi domain, ranging

from 1 to 2 taxi per player and 3 to 5 passengers.1

Figure 2 summarises the results of a comparison between
the Sampling method, the Double Oracle method (setting
the Nash Equilibrium value), and the naive one in terms of
utility values of agent’s plans against competitor’s plans or
(mixed) strategies. The sampling method was run 40 times
for each setting and the presented results show average val-
ues. We observed that the utility values fluctuated for each
run (much) more with smaller number of samples and were
rather stable with the large number of samples. As the re-
sults show, the sampling method generates plans whose util-
ity values usually converge to the equilibrium with a grow-
ing number of samples. Comparing to the naive method, the
sampling method often provides a better plan (with grow-
ing number of samples), i.e., the utility value of the agent is
greater than the equilibrium value (there are, however, a few
exceptions – 2 problems in Resource Hunting and 1 problem
in each variant of the Taxi domain).

Figure 3 depicts cumulative runtimes of the sampling
method (with respect to the number of samples), the Dou-
ble Oracle method for generating Nash Equilibrium mixed
strategies and naive plan generation. Naive plans were gen-

1Code and benchmarks can be found at https://gitlab.com/
FRASProject/aaai22-competing-for-resources

9713

22 25 28 211 214
300

400

500

600

700

800

22 25 28 211 214

150

200

250

300

350

22 25 28 211 214

100

150

200

250

300

Figure 4: Comparing the cumulative exploitability value (y-axis) of naive plans (orange line), single plans generated by the
optimal planner using our strategy sampling approach (blue line) and the uniform mixed strategies of 10 plans generated by
different runs of the sampling method (green line) with an increasing number of samples (x-axis). The Resource Hunting
domain is on the left, the standard Taxi domain in the middle and the infinity variant of the Taxi domain is on the right is on the
right.

erated in less than 100ms for each of the considered prob-
lems and hence cumulative runtimes were lower than 1 sec-
ond in each domain. Unsurprisingly, runtimes of the sam-
pling method increased with the higher number of sam-
ples. For the largest number of samples (216) the runtime
ranged from 7 to 473 seconds per problem while for 28

samples the runtime ranged from 6 to 75 seconds per prob-
lem. Even though the higher number of samples leads to
higher runtime of the adversary strategy estimating algo-
rithm (Algorithm 2), the main reason for runtime increase
with the higher number of samples is the “complexity” of
the response planning tasks. That said, more samples pro-
duce more deadlines for critical actions and hence generat-
ing cost-optimal plans for such response planning tasks is
harder for the planner. Generating Nash Equilibrium mixed
strategies (by Double Oracle) is slower by an order of mag-
nitude than the sampling method, in average 9 – 53 times
depending on the number of samples. Such a result comes
with no surprise as Double Oracle has to optimally solve a
number of response planning tasks (between 5 – 44).

Figure 4 considers the robustness of generated plans by
measuring their “exploitability” (lower is better): for a given
plan or a (mixed) strategy, we calculate the difference of
the best response plan against it and the equilibrium value.
Note that a strategy in Nash Equilibrium has 0 exploitabil-
ity. For single plans, there is no difference between the sam-
pling method generated plans (with more samples) and the
naive plans in Resource Hunting, while in Taxi, single plans
generated by the sampling method have lower exploitabil-
ity. We have, in addition, considered mixed strategies con-
sisting of 10 plans generated by 10 different runs of the
sampling method (in the same setting). With not so small
number of samples, where the variance of outcomes can be
large, we find more diverse plans that —if combined into
a strategy— are harder to exploit. The exploitability results
demonstrate that single plans are easier to exploit (if they
are known to the adversary) than mixed strategies combin-
ing more different plans (which matches the observation
of LaValle (2006)). The agent, however, does not have to
generate such a mixed strategy as due to randomness of the

sampling method, the competitor might not be able to guess
an actual plan even if it knows the method (and settings) the
agent uses. This means that plans generated by the sampling
method are more robust, since they are harder to guess.

It is possible to use satisficing planners with all the meth-
ods. Whereas the use of satisficing planners can improve
scalability, the results are heavily dependent on how subop-
timal the generated plans are. It often happens that different
best response tasks over the same problem instance (i.e., dif-
fering only in critical action cost distribution) lead to plans
of varying suboptimality. The use of optimal planners alle-
viates such a bias.

Conclusion
Planing in adversarial environments requires to predict the
strategy of the competitor, so the agent can optimise its
plan accordingly. We defined a subclass of adversarial prob-
lems - the Resource Competition problems in which two
agents compete for (limited) resources. We have presented
a method that, by sampling, estimates the ordering and the
application time of actions, by which the adversary collects
the resources. By applying the method several times, we de-
rived a (randomised) mixed strategy of the adversary, which
imposed deadlines for the agent’s actions collecting the re-
sources. Missing the deadlines is encoded by action cost and
hence cost-optimal plan is the best response to the estimated
adversary strategy.

The results show that the sampling method outperforms
the naive one (i.e., plans that optimise for make-span) in
terms of quality (although the plan generation time is higher
for the sampling method). Also, plans generated by the sam-
pling method are harder to guess and exploit due to random-
ness of adversary action selection; even if the competitor
conveys full knowledge of the sampling method (including
the parameters), it might come up with a different plan.

In future, we plan to extend the sampling method for more
than 2 players. We also plan to use the sampling method in
an online mode, for example, with MCTS techniques or by
dynamically adapting plans on the fly.

9714

Acknowledgements
We thank Jan Čuhel and Anastasiia Livochka for their help
in the initial stages of the implementation.

This research was funded by AFOSR award FA9550-
18-1-0097 and by the OP VVV funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center
for Informatics”.

References
Applegate, C.; Elsaesser, C.; and Sanborn, J. C. 1990. An
architecture for adversarial planning. IEEE Trans. Systems,
Man, and Cybernetics, 20(1): 186–194.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artif. Intell., 129(1-2): 5–33.
Brafman, R. I.; and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In The
Eighteenth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2008, 28–35.
Chrpa, L.; Rytı́ř, P.; and Horčı́k, R. 2020. Planning Against
Adversary in Zero-Sum Games: Heuristics for Selecting and
Ordering Critical Actions. In The Thirteenth International
Symposium on Combinatorial Search, SOCS 2020, 20–28.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artif. Intell., 147(1-2): 35–84.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
Context-enhanced Additive Heuristic for Temporal and Nu-
meric Planning. In The 19th International Conference on
Automated Planning and Scheduling, ICAPS 2009.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif.
Intell. Res., 20: 61–124.
Goldberg, D. E.; and Deb, K. 1991. A Comparative Analysis
of Selection Schemes Used in Genetic Algorithms. volume 1
of Foundations of Genetic Algorithms, 69–93. Elsevier.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. J. Artif. Intell. Res., 22: 215–278.
Jensen, R.; Veloso, M.; and Bowling, M. 2001. OBDD-
based optimistic and strong cyclic adversarial planning. In
ECP, 265–276.
Justesen, N.; Mahlmann, T.; Risi, S.; and Togelius, J. 2018.
Playing Multiaction Adversarial Games: Online Evolution-
ary Planning Versus Tree Search. IEEE Trans. Games,
10(3): 281–291.
Justesen, N.; and Risi, S. 2017. Continual online evolution-
ary planning for in-game build order adaptation in StarCraft.
In The Genetic and Evolutionary Computation Conference,
GECCO 2017, 187–194.
Kissmann, P.; and Edelkamp, S. 2009. Solving Fully-
Observable Non-deterministic Planning Problems via Trans-
lation into a General Game. In KI, volume 5803, 1–8.
Springer.
LaValle, S. M. 2006. Planning Algorithms. Cambridge Uni-
versity Press. ISBN 9780511546877.

Lelis, L. H. S. 2020. Planning Algorithms for Zero-Sum
Games with Exponential Action Spaces: A Unifying Per-
spective. In The Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2020, 4892–4898.
Letchford, J.; and Vorobeychik, Y. 2013. Optimal interdic-
tion of attack plans. In International conference on Au-
tonomous Agents and Multi-Agent Systems, AAMAS ’13,
199–206. IFAAMAS.
McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003. Plan-
ning in the Presence of Cost Functions Controlled by an Ad-
versary. In ICML, 536–543.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Proc. AAAI’15, 3335–3341.
Pozanco, A.; E-Martı́n, Y.; Fernández, S.; and Borrajo, D.
2018. Counterplanning using Goal Recognition and Land-
marks. In The Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence, IJCAI 2018, 4808–4814.
Rytı́ř, P.; Chrpa, L.; and Bošanský, B. 2019. Using Classical
Planning in Adversarial Problems. In Proceedings of the
31st IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), 1327–1332.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New
Optimization Functions for Potential Heuristics. In Proc.
ICAPS’15, 193–201.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140–1144.
Speicher, P.; Steinmetz, M.; Backes, M.; Hoffmann, J.; and
Künnemann, R. 2018. Stackelberg planning: Towards ef-
fective leader-follower state space search. In Thirty-Second
AAAI Conference on Artificial Intelligence.
Vidal, V. 2011. CPT4: An Optimal Temporal Planner Lost in
a Planning Competition without Optimal Temporal Track. In
Proceedings of the 7th International Planning Competition
(IPC-2011), 25–28. Freiburg, Germany.
Vinyals, O.; Babuschkin, I.; Czarnecki, W.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D.; Powell, R.; Ewalds, T.;
Georgiev, P.; Oh, J.; Horgan, D.; Kroiss, M.; Danihelka, I.;
Huang, A.; Sifre, L.; Cai, T.; Agapiou, J.; Jaderberg, M.;
and Silver, D. 2019. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature, 575.
Vorobeychik, Y.; and Pritchard, M. 2020. Plan Interdiction
Games. In Adaptive Autonomous Secure Cyber Systems,
159–182. Springer.

9715

