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Abstract

Symbolic search, using Binary Decision Diagrams (BDDs) to
represent sets of states, is a competitive approach to optimal
planning. Yet heuristic search in this context remains chal-
lenging. The many advances on admissible planning heuris-
tics are not directly applicable, as they evaluate one state at
a time. Indeed, progress using heuristic functions in sym-
bolic search has been limited and even very informed heuris-
tics have been shown to be detrimental. Here we show how
this connection can be made stronger for LP-based poten-
tial heuristics. Our key observation is that, for this family
of heuristic functions, the change of heuristic value induced
by each operator can be precomputed. This facilitates their
smooth integration into symbolic search. Our experiments
show that this can pay off significantly: we establish a new
state of the art in optimal symbolic planning.

1 Introduction
A∗ search with admissible heuristics and symbolic search
are currently the two main contenders for the state of the
art in cost-optimal planning. In principle, these are two
orthogonal enhancements of a vanilla search algorithm—
admissible heuristics aim to reduce the number of ex-
plored states, and symbolic search uses Binary Decision Di-
agrams (BDDs) (Bryant 1986) to efficiently represent and
manipulate sets of states, greatly speeding up exhaustive
search. A natural idea is to combine the two, and indeed that
idea has been presented decades ago in the BDDA∗ algo-
rithm (Edelkamp and Reffel 1998; Edelkamp 2002).

Yet that combination has not been an unqualified suc-
cess. For a heuristic to be effective in symbolic search,
two properties are required: (1) it must be possible to effi-
ciently evaluate sets of states represented as BDDs, without
evaluating the heuristic on each represented state individu-
ally; and (2) it must induce a good partitioning, so that sets
of states with the same g- and h-value can be efficiently
represented as BDDs. Property (1) is fulfilled by some of
the strongest heuristics for explicit-state search (e.g., sym-
bolic PDBs (Kissmann and Edelkamp 2011; Franco et al.
2017; Torralba, López, and Borrajo 2018)) so they can be
used in BDDA∗. However, it has been shown that even
very informative heuristics can be detrimental in symbolic
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search (Speck, Geißer, and Mattmüller 2020), when they do
not fulfill property (2). The main reason is that reducing the
amount of expanded states may be detrimental if the under-
lying BDD representation is less efficient. Due to all this,
symbolic bidirectional blind search (without heuristics) is
considered the dominant symbolic search approach, and the
use of heuristic search in this context has lost traction.

Here we challenge this trend by showing that potential
heuristics (Pommerening et al. 2015) yield fresh synergy be-
tween heuristic and symbolic search. Such heuristics assign
a numeric value (a potential) to each fact of the planning
task, in a way so that the sum of the potentials of the facts
true in a state is an admissible estimate of the state’s goal
distance. As we show, potential heuristics are particularly
well suited for combination with symbolic search.

Our key observation is that potentials can be computed for
each operator rather than for each fact. Such operator poten-
tials combine synergically with symbolic search as they have
property (1): Under certain conditions, the operator potential
of an operator o is equal to the difference in heuristic values
h(s′) − h(s) for any state transition s → s′ induced by the
operator o. This allows for an efficient encoding of potential
heuristics in symbolic search without having to compute the
heuristic value of each explored state (Jensen, Veloso, and
Bryant 2008). The main difficulty in doing so is that these
operator potentials are real (floating-point) numbers, which
can lead to rounding and precision issues. Naively rounding
these values may lead to a path-dependent and inconsistent
heuristic. We show that this can be dealt with by rounding
operator potentials within the mixed-integer linear program
(MIP) that derives the potential heuristics.

Our empirical analysis shows that potential heuristics also
fulfill property (2). That is, they not only reduce the num-
ber of explored states, but also lead to improvements on
the number of BDD nodes on average. This makes poten-
tial heuristics very helpful in symbolic search across a large
number of benchmark domains. Overall, symbolic forward
search with potential heuristics soundly outperforms sym-
bolic bidirectional blind search, thus establishing a new state
of the art in optimal symbolic planning.

2 Preliminaries
We consider the finite domain representation (FDR) of plan-
ning tasks (Bäckström and Nebel 1995). An FDR planning
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task Π is specified by a tuple Π = 〈V ,O, I, G〉. V is a finite
set of variables, each variable V ∈ V has a finite domain
dom(V ). A fact 〈V, v〉 is a pair of a variable V ∈ V and one
of its values v ∈ dom(V ). The set of all facts is denoted by
F = {〈V, v〉 | V ∈ V , v ∈ dom(V )}, and the set of facts
of variable V is denoted by FV = {〈V, v〉 | v ∈ dom(V )}.
A partial state p is a variable assignment over some vari-
ables vars(p) ⊆ V . We write p[V ] for the value assigned
to the variable V ∈ vars(p) in the partial state p. We
also identify p with the set of facts contained in p, i.e.,
p = {〈V, p[V ]〉 | V ∈ vars(p)}. A partial state s is a state if
vars(s) = V . I is an initial state. G is a partial state called
goal, and a state s is a goal state iffG ⊆ s. Let p, t be partial
states. We say that t extends p if p ⊆ t.
O is a finite set of operators, each operator o ∈ O has

a precondition pre(o) and effect eff(o), which are partial
states over V , and a cost cost(o) ∈ R+

0 . An operator o
is applicable in a state s iff pre(o) ⊆ s. The resulting
state of applying an applicable operator o in a state s is
another state oJsK such that oJsK[V ] = eff(o)[V ] for ev-
ery V ∈ vars(eff(o)), and oJsK[V ] = s[V ] for every V ∈
V\vars(eff(o)). We also assume that pre(o)[V ] 6= eff(o)[V ]
for every V ∈ vars(pre(o)) ∩ vars(eff(o)).

Given a non-negative integer n ∈ N0, [n] denotes the set
{1, . . . , n} with [0] defined as an empty set. A sequence of
operators π = 〈o1, . . . , on〉 is applicable in a state s0 if there
are states s1, . . . , sn such that oi is applicable in si−1 and
si = oiJsi−1K for i ∈ [n]. The resulting state of this appli-
cation is πJs0K = sn and cost(π) =

∑n
i=1 cost(oi) denotes

the cost of this sequence of operators. A sequence of opera-
tors π is called an s-plan iff π is applicable in a state s and
πJsK is a goal state. An s-plan π is called optimal if its cost
is minimal among all s-plans.

A state s is reachable if there exists an operator sequence
π applicable in I such that πJIK = s. Otherwise, we say that
s is unreachable. The set of all reachable states is denoted
byR. An operator o is reachable iff it is applicable in some
reachable state. A state s is a dead-end state iff G 6⊆ s
and there is no s-plan. A set of facts M ⊆ F is a mutex if
M 6⊆ s for every reachable state s ∈ R.

A heuristic h : R 7→ R∪ {∞} estimates the cost of opti-
mal s-plans. The optimal heuristic h?(s) maps each reach-
able state s to the cost of the optimal s-plan or to∞ if s is
a dead-end state. A heuristic h is called (a) admissible iff
h(s) ≤ h?(s) for every reachable state s ∈ R; (b) goal-
aware iff h(s) ≤ 0 for every reachable goal state s; and
(c) consistent iff h(s) ≤ h(oJsK) + cost(o) for all reach-
able states s ∈ R and operators o ∈ O applicable in s. It
is well-known that goal-aware and consistent heuristics are
also admissible. In the context of heuristic search, h-value of
a state node s refers to the heuristic value of s, g-value to the
cost of the sequence of operators leading to s, and f -value
is the sum of g-value and the maximum of h-value and zero
(since we allow negative h-values).

3 Symbolic Search Background
Explicit state-space search operates on individual states,
whereas symbolic search (McMillan 1993) works on sets of

states represented by their characteristic functions. A char-
acteristic function fS of a set of states S is a Boolean func-
tion assigning 1 to states that belong to S and 0 to states that
do not belong to S. Operations like the union (∪), intersec-
tion (∩), and complement of sets of states correspond to the
disjunction (∨), conjunction (∧), and negation (¬) of their
characteristic functions, respectively. Binary Decision Dia-
grams (BDDs) (Bryant 1986) are a efficient data-structure to
represent Boolean functions in the form of a directed acyclic
graph. The size of a BDD is the number of nodes in this
representation. The main advantage of using BDDs is that
often a BDD is much smaller than the number of states it
represents. In fact, BDDs can be exponentially smaller, as
certain sets containing exponentially many states can be rep-
resented by BDDs of polynomial size (Edelkamp and Kiss-
mann 2008). Most operations on BDDs take only polyno-
mial time in the size of the BDD, which enables the efficient
manipulation of large sets of states.

The most prominent implementation of symbolic heuris-
tic search in the context of automated planning is
BDDA∗ (Edelkamp and Reffel 1998) which is a variant of
A? (Hart, Nilsson, and Raphael 1968) using BDDs to repre-
sent sets of states. In BDDA∗, operators of planning tasks are
represented as transition relations (TRs), also using BDDs.
A TR of an operator o is a characteristic function of pairs
of states (s, oJsK) for all states s such that o is applicable
in s. Having a TR To for every operator o ∈ O, we can
construct a TR of a set of operators with the same cost c as
Tc =

∨
o∈O,cost(o)=c To. As the size of Tc may be exponen-

tial in the number of operators with cost c, in practice, it is
often a good idea to use disjunctive partitioning to keep the
size at bay (Jensen, Veloso, and Bryant 2008; Torralba et al.
2017). Moreover, mutexes can be used for a more accurate
approximation of reachable states (Torralba et al. 2017).

Like A∗, BDDA∗ expands states by ascending order of
their f -value. To take advantage of the symbolic represen-
tation, BDDA∗ represents all states with the same g and h
value in a single BDD Sg,h (disjunctive partitioning of Sg,h

can also be used). Given a set of states Sg,h and a TR Tc,
image(Sg,h, Tc) computes the set of successor states reach-
able from any state in Sg,h by applying any operator rep-
resented by Tc.1 The g-value of the resulting set of succes-
sor states is simply g + c. These successor states have to
be split according to their h value. This can usually be per-
formed efficiently (e.g., with symbolic PDBs (Kissmann and
Edelkamp 2011)) by representing the heuristic as a BDD Sh

per heuristic value that represents the set of states with that
value and performing a conjunction.

GHSETA∗ and FSETA∗ (Jensen, Veloso, and Bryant
2008) encode the heuristic function as part of the transition
relation, creating multiple TRs depending on the impact of
the operators on heuristic value. This is a very efficient way
of evaluating the heuristics within symbolic search. How-
ever, up to now, all heuristics known to be suitable for this
representation were either non-informative, inadmissible, or
domain dependent.

1The details how the function image works are not important
here—Torralba et al. (2017) provide a detailed description.
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4 Potential Heuristics Background
Potential heuristics (Pommerening et al. 2015) assign a nu-
merical value to each fact, and the heuristic value for a state
s is then simply a sum of the potentials of all facts in s.
Definition 1. Let Π denote a planning task with facts F . A
potential function is a function P : F 7→ R. A potential
heuristic for P maps each state s ∈ R to the sum of poten-
tials of facts in s, i.e., hP(s) =

∑
f∈s P(f).

We will leverage prior work on so-called disambiguation
(Alcázar et al. 2013) to strengthen potential heuristics (Fišer,
Horčı́k, and Komenda 2020). A disambiguation of a variable
V for a given set of facts p is simply a set of facts F ⊆ FV

from variable V such that every reachable state extending p
contains one of the facts from F .
Definition 2. Let Π denote a planning task with facts F and
variables V , let V ∈ V denote a variable, and let p denote a
partial state. A set of facts F ⊆ FV is called a disambigua-
tion of V for p if for every reachable state s ∈ R such that
p ⊆ s it holds that F ∩ s 6= ∅ (i.e., 〈V, s[V ]〉 ∈ F ).

Clearly, every FV is a disambiguation of V for all possi-
ble partial states, and if 〈V, v〉 ∈ p and there exists a reach-
able state extending p, then {〈V, v〉} is a disambiguation of
V for p. Moreover, if the disambiguation of V for p is an
empty set (for any V ), then all states extending p are un-
reachable. Therefore, we can use empty disambiguations to
determine unsolvability of planning tasks (ifG extends p), or
to prune unreachable operators (if a precondition of the oper-
ator extends p). So, from now on we will consider only non-
empty disambiguations. Fišer, Horčı́k, and Komenda (2020)
showed how to use mutexes to find disambiguations, so here
we will assume we already have disambiguations inferred.
Furthermore, to simplify the notation, we introduce a dis-
ambiguation map.
Definition 3. A mapping D : (O × V) ∪ V 7→ 2F is called
a disambiguation map if (i) for every operator o ∈ O and
every variable V ∈ vars(eff(o)) it holds that D(o, V ) ⊆ FV

is a disambiguation of V for pre(o) such that |D(o, V )| ≥ 1;
and (ii) for every variable V ∈ V it holds that D(V ) ⊆ FV

is a disambiguation of V for G such that |D(V )| ≥ 1.
Now we can state sufficient conditions for the potential

heuristic to be admissible, which we will need later on.
Theorem 4. (Fišer, Horčı́k, and Komenda 2020) Let Π =
〈V ,O, I, G〉 denote a planning task with facts F , and let P
denote a potential function, and let D denote a disambigua-
tion map. If ∑

V ∈V
max

f∈D(V )
P(f) ≤ 0 (1)

and for every operator o ∈ O it holds that∑
V ∈vars(eff(o))

max
f∈D(o,V )

P(f)−
∑

f∈eff(o)

P(f) ≤ cost(o), (2)

then the potential heuristic for P is admissible.
In practice, we can obtain potentials as a solution to a lin-

ear program (LP) with constraints corresponding to condi-
tions from Theorem 4: For each f ∈ F , we create a (real-
valued) variable P(f), add constraints Eq. (1) and Eq. (2),

and then a solution of such LP for any objective function
results in a goal-aware and consistent potential function. So
far, potential heuristics have been used as described in Def-
inition 1, i.e., each fact gets assigned a potential value and
the heuristic value for a state s is the sum of potentials of all
facts in s.

5 Operator-Potential Heuristics
Our key observation is that potentials can also be designed
in a different way, yielding a new synergy with symbolic
search: We can assign a potential to each operator and com-
pute an admissible heuristic value for a state s reached by a
sequence of operators π as a sum of operator potentials of all
operators in π. We start by introducing an operator-potential
function.
Definition 5. Given a potential function P, and a disam-
biguation map D, a function Q : O 7→ R is called an
operator-potential function for P and D if

Q(o) =
∑

f∈eff(o)

P(f)−
∑

V ∈vars(eff(o))

max
f∈D(o,V )

P(f) (3)

for every operator o ∈ O.
Note that the value of Q(o) is just the value of the left

hand side of Eq. (2) with the opposite sign. Or in other
words, the operator-potential function for an operator o gives
us the lower bound on the change of the heuristic value of
the corresponding potential heuristic for the given poten-
tial function P and disambiguation map D. This immedi-
ately leads to another observation that for every sequence of
operators π = 〈o1, . . . , on〉 applicable in the initial state I
such that s = πJIK it holds that hP(I) +

∑
i∈[n] Q(oi) ≤

hP(s). So, we can compute an admissible heuristic esti-
mate for any state s reachable by a sequence of operators
π as hP(I) +

∑
i∈[n] Q(oi). However, this estimate is path-

dependent and therefore not necessarily consistent. Consider
a planning task with a binary variable V , and an operator o
with empty precondition and eff(o) = {〈V, 1〉}. It is easy to
see that the value Q(o) is fixed for the operator as the small-
est change in the heuristic value it can induce, but the actual
change of the heuristic value may be different if the operator
is applied on the state where 〈V, 0〉 or 〈V, 1〉 is set.

To avoid this difficulty, we now show that, if the dis-
ambiguation map D maps every operator o and every ef-
fect variable V ∈ vars(eff(o)) to a singleton, then hP(I) +∑

i∈[n] Q(oi) = hP(s) for every sequence of operators π =

〈o1, . . . , on〉 such that πJIK = s. That is, as long as the pre-
conditions on the variables affected by any operator o are
known precisely, the potential h-value for any state s can be
computed as the potential h-value for the initial state plus the
sum of operator potentials of operators from any sequence of
operators π leading to s. Lemma 6 shows that equality holds
for any two consecutive states, and Lemma 7 shows it holds
over any sequence of operators applicable in the initial state.
Lemma 6. Let P denote a potential function, D a disam-
biguation map, Q an operator-potential function for P and
D, s a reachable state, and let o denote an operator appli-
cable in s. If |D(o, V )| = 1 for every V ∈ vars(eff(o)), then∑

f∈s P(f) + Q(o) =
∑

f∈oJsK P(f).

9752



Proof. LetA =
⋃

V ∈vars(eff(o)) D(o, V ). Since |D(o, V )| =
1 for every V ∈ vars(eff(o)), Equation (3) can be rewritten
as Q(o) =

∑
f∈eff(o) P(f) −

∑
f∈A P(f). And since s is

reachable and o is applicable in s, it holds that A ⊆ s.
Let B = s \ A. Clearly, oJsK = B ∪ eff(o) and B ∩

eff(o) = ∅. Therefore,
∑

f∈s P(f) + Q(o) =
∑

f∈oJsK P(f)

can be rewritten to
∑

f∈B P(f) +
∑

f∈A P(f) + Q(o) =∑
f∈B P(f) +

∑
f∈eff(o) P(f), and further simplified to∑

f∈A P(f) + Q(o) =
∑

f∈eff(o) P(f). Expanding Q(o)

gives us
∑

f∈A P(f) +
∑

f∈eff(o) P(f) −
∑

f∈A P(f) =∑
f∈eff(o) P(f), which concludes the proof.

Lemma 7. Let P, D, and Q be as before, and let π =
〈o1, . . . , on〉 denote a sequence of operators applicable in
I , and let s = πJIK. If |D(o, V )| = 1 for every o ∈ O and
every V ∈ vars(eff(o)), then

∑
f∈I P(f) +

∑
i∈[n] Q(oi) =∑

f ′∈s P(f ′).

Proof. (By induction) It clearly holds for an empty sequence
π. Let s′ denote a state reachable from I by a sequence π =
〈o1, . . . , on−1〉, and let on ∈ O denote an operator applica-
ble in s′, and let s = onJs′K. Now, assume that

∑
f∈I P(f)+∑

i∈[n−1] Q(oi) =
∑

f ′∈s′ P(f ′), and we need to prove that∑
f∈I P(f) +

∑
i∈[n] Q(oi) =

∑
f ′∈s P(f ′). From the as-

sumption, it follows that
∑

f∈I P(f) +
∑

i∈[n−1] Q(oi) +

Q(on) =
∑

f ′∈s′ P(f ′) + Q(on), so it is enough to show that∑
f ′∈s′ P(f ′) + Q(on) =

∑
f∈s P(f) (Lemma 6).

Now, getting to the main result of this section, we for-
mulate an operator-potential heuristic and we prove that
this heuristic is well-defined and equal to the corresponding
(fact) potential heuristic.

Definition 8. Let Q denote an operator-potential function for
P and D such that |D(o, V )| = 1 for every o ∈ O and
every V ∈ vars(eff(o)). An operator-potential heuristic
hQ : R 7→ R ∪ {∞} for Q is defined as

hQ(s) =
∑
f∈I

P(f) +
∑
i∈[n]

Q(oi) (4)

for any sequence of operators π = 〈o1, . . . , on〉 such that
πJIK = s.

Theorem 9. Let D denote a disambiguation map such that
|D(o, V )| = 1 for every o ∈ O and every V ∈ vars(eff(o)),
let P denote a potential function, and let Q denote an
operator-potential function for P and D. Then hQ is well-
defined, and hQ(s) = hP(s) for every reachable state s, and
hQ is admissible (goal-aware, consistent) if hP is admissible
(goal-aware, consistent).

Proof. It follows directly from Lemma 7.

Note that every planning task can be transformed into an-
other task where |D(o, V )| = 1 holds for every operator o
and variable V ∈ vars(eff(o)). One possibility is the use
of transition normal form (Pommerening and Helmert 2015)

I

s1

s2

s3

G

o1 o2

o3 o4

o5

Figure 1: Let cost(oi) = 0 for all i ∈ [4], and cost(o5) = 1,
and let Q(o1) = 1, Q(o2) = 0, Q(o3) = 0.9, Q(o4) = 0.1, and
Q(o5) = −1, and let hQ(I) = 0. A simple example showing
inconsistency after rounding operator potentials down to the
nearest integers.

which is polynomial, but introduces a set of auxiliary opera-
tors, and requires a transformation of the resulting plan back
to the original planning task.

Another option is to enforce this property simply by enu-
merating all possible combinations of facts from all disam-
biguations D(o, V ) such that |D(o, V )| > 1 for all opera-
tors’ preconditions. For example, given an operator o with
vars(eff(o)) = {v1, v2}, and D(o, v1) = {f1, f2} and
D(o, v2) = {f3, f4}, we replace the operator o with four
new operators o1, . . . , o4 with the same effect eff(o1) =
eff(o2) = eff(o3) = eff(o4) = eff(o), but different precon-
ditions pre(o1) = pre(o) ∪ {f1, f3}, pre(o2) = pre(o) ∪
{f1, f4}, pre(o3) = pre(o) ∪ {f2, f3}, and pre(o4) =
pre(o) ∪ {f2, f4}. This way, the transformed planning task
can grow exponentially in the number of effects not appear-
ing in the preconditions of an operator. However, we can
prune operators whose preconditions form mutex, and in our
experiments, we ran out of memory in only one task.

6 Handling Floating-Point Potentials
Although Theorem 9 identifies conditions under which
operator-potential heuristics are consistent and equal to the
corresponding potential heuristics, in practice there is an ad-
ditional complication resulting from the fact that the Q(o)
values are typically represented as floating-point numbers.
So, we should not compare Q(o) values on equality. More-
over, having floating-point h-values is an even larger issue in
symbolic search, as states are aggregated based on their h-
value. If floating-point numbers are used, one could get dif-
ferent BDDs for every state in the search, greatly reducing
the efficiency of symbolic search. So, it is desirable to repre-
sent in a single BDD all states whose h-values are rounded to
the same integer value. Rounding operator potentials down
to the nearest integers would resolve this problem and it
would keep the heuristic function admissible. Unfortunately,
this kind of rounding could make the heuristic inconsistent.

Consider a planning task depicted in Figure 1. Clearly,
the operator-potential heuristic hQ is both admissible and
consistent. Now, let Q̂ denote an operator potential func-
tion obtained by rounding down Q to the nearest integers,
i.e., Q̂(o1) = 1, Q̂(o2) = 0, Q̂(o3) = 0, Q̂(o4) = 0, and
Q̂(o5) = −1. The sum

∑
f∈I P(f) +

∑
i∈[n] Q(oi) (cf. Defi-

nition 8) provides an admissible estimate, because rounding
down can only make the sum smaller. However, rounding
down can also make this estimate path-dependent, i.e., we
can obtain different values for a state depending on the path
by which we reached the state, and inconsistent.
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Consider the states s1 and s2, and operator sequences
π = 〈o1〉 and π′ = 〈o3, o4〉 from Figure 1. Since the
heuristic value for the initial state is zero, the inequality
hQ(s1) − hQ(s2) ≤ cost(o2) holds, because hQ(s1) = 1,
hQ(s2) = 1, and cost(o2) = 0. But after rounding, we get
Q̂(o1) = 1 and Q̂(o3) + Q̂(o4) = 0 resulting in a higher es-
timate for s1 than for s2 using Q̂. We resolve this issue by
encoding the rounding directly into the mixed-integer lin-
ear program (MIP) expressing the potentials. Since the op-
erator potential is just a left hand side of Eq. (2) with the
opposite sign, we can extend the original LP for the in-
ference of potentials with new integer variables, each cor-
responding to operator-potential Q(o), and add a new con-
straint Eq. (3) for each Q(o). That is, the new MIP has
a real-valued variable P(f) for each f ∈ F , an integer
variable Q(o) for each operator o ∈ O, and a set of con-
straints Eq. (1), Eq. (2), and Eq. (3). A solution to such MIP
for any objective function yields a goal-aware and consis-
tent operator-potential function. Moreover, since the vari-
ables corresponding to Q(o) are integer-valued, the resulting
operator-potentials are also integer-valued while the fact po-
tentials can remain real-valued. Therefore, the MIP solver
finds operator-potentials that are properly rounded, so that
we can compare the operator-potentials on equality without
running into problems with floating-point numbers.

7 Symbolic Search with Operator-Potentials
Using potential heuristics in BDDA∗ is not straightforward,
as the standard way of evaluating the heuristics by con-
structing a BDD Sh representing all states with a heuristic
value equal to h may not always be feasible. The naive ap-
proach would be to enumerate all possible sub-sets of fea-
tures whose potentials add up to h. However, this requires
enumerating exponentially many sub-sets and it may result
in an exponentially large intermediate BDD. We overcome
this difficulty by using operator-potential heuristics instead.

To do so, we use GHSETA∗ (Jensen, Veloso, and Bryant
2008), a symbolic heuristic search algorithm which parti-
tions the TRs not only by the cost of the corresponding op-
erators, but also by the change of the heuristic value they
induce.2 That is, instead of creating a TR Tc for all opera-
tors o having cost(o) = c, we create a TR Tc,q represent-
ing all operators o such that cost(o) = c and Q(o) = q.
For the initial state, the g-value is set to zero, and the h-
value is set to

∑
f∈I P(f). For all subsequent states Sg,h

expanded by the TR Tc,q , the g-value and h-value of the re-
sulting state S′g′,h′ = image(Sg,h, Tc,q) is set to g′ = g + c

and h′ = h+ q, respectively.
The pseudocode for the algorithm using a consistent

operator-potential heuristic is encapsulated in Algorithm 1.
On lines 1 and 2, the TRs corresponding to all unique
pairs of operator costs and Q(o) values are constructed. The
heuristic value for the initial state is computed on line 3. The
open list of sets of states (represented by BDDs) ordered by
f = g + max(0, h) values is initialized with the initial state

2The alternative FSETA∗ does not directly support negative
heuristic values (Jensen, Veloso, and Bryant 2008).

Algorithm 1: Symbolic forward A∗ with a consistent
operator-potential heuristic.

Input: A planning task Π, a consistent operator potential
function Q.

Output: An optimal plan or “unsolvable”.
1 for each c, q ∈ {cost(o), Q(o) | o ∈ O} do
2 Construct Tc,q from {o ∈ O | cost(o) = c, Q(o) = q};
3 hI ←

∑
f∈I P(f);

4 S0,hI ← {I};
5 open← {〈max(0, hI), S0,hI 〉};
6 closed← ∅;
7 while open 6= ∅ do
8 Sg,h ← PopMin(open) \ closed;
9 if Sg,h contains a goal state then

10 return ExtractPlan(Sg,h);
11 closed← closed ∪ Sg,h;
12 for each Tc,q do
13 Sg+c,h+q ← image(Sg,h, Tc,q) \ closed;
14 if Sg+c,h+q 6= ∅ then
15 f ← g + c + max(0, h + q);
16 InsertOrUpdate(open, 〈f, Sg+c,h+q〉);
17 return “unsolvable”;

on lines 4 and 5. On line 6, a BDD representing all closed
states is constructed. The while-cycle on lines 7–16 is an A∗

algorithm adapted to the symbolic search. On line 8, we ex-
tract the set of states with the lowest f -value from the open
list and remove all closed states from this set. If a goal state
is reached (line 9 and 10), an optimal plan is extracted and
returned (for details see (Torralba et al. 2017)). If the cur-
rent set of states Sg,h does not contain a goal state, then all
these states are added to the set of closed states (line 11).
On lines 12–16, all operators are applied and the resulting
states that were not closed yet are assigned the correct g and
h values and either inserted into the open list (if there is no
Sg+c,h+q in the open list), or the set of states in the open list
is extended with the new set of states.

Note that we need the operator-potential heuristic to be
consistent in order to avoid re-opening states (cf. lines 8 and
13). This also means that if the computation of consistent
operator-potentials require the transformation of the plan-
ning task described in Section 5, then the same transformed
task must be used also for the symbolic search.

GHSETA∗ can also be adapted to work with the path-
dependent (and thus possibly inconsistent) variant of the
operator-potential heuristic that does not require transform-
ing the planning task. We need to allow re-opening states
that were previously closed with a higher g-value. We
can achieve that by maintaining not one BDD representing
closed states, but one BDD for each g-value (cf. lines 6 and
11). And when removing closed states from the set of states,
we remove only the closed states with the same or lower g-
value (cf. lines 8 and 13).

8 Experimental Evaluation
We implemented our search algorithm in C.3 Operators and
facts are pruned with the h2 heuristic in forward and back-

3https://gitlab.com/danfis/cpddl, branch aaai22-symba-op-pot
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Figure 2: (a)–(d): Comparison of symbolic forward uniform-cost search (bfw) against GHSETA∗ with the best-performing
variant of the consistent operator-potential heuristic (A+I) on commonly solved tasks. (e): Time (s) spent computing potentials
for the original formulation (LP) and with added constraints on integer operator potentials (MIP) on transformed tasks.

ward direction (Alcázar and Torralba 2015), and the transla-
tion from PDDL to FDR uses the inference of mutex groups
proposed by Fišer (2020). We used all planning domains
from the optimal track of International Planning Competi-
tions (IPCs) from 1998 to 2018 excluding the ones contain-
ing conditional effects after translation. We merged, for each
domain, all benchmark suites across different IPCs. This
leaves 48 domains overall.

We used a cluster of computing nodes with Intel Xeon
Scalable Gold 6146 processors and CPLEX (I)LP solver
v12.10. The time and memory limits were set to 30 minutes
and 8 GB, respectively. We used a time limit of 30 seconds
for applying mutexes on the goal BDD and 10 seconds for
merging transition relation BDDs (Torralba et al. 2017).

We evaluated GHSETA∗ with the following variants of
the consistent operator-potential heuristics obtained on the
transformed planning tasks:
• I: maximize the hQ-value of the initial state (Pommeren-

ing et al. 2015).
• A+I: maximize the hQ-value for the average (syntac-

tic) state while enforcing the maximum hQ(I) (Seipp,
Pommerening, and Helmert 2015; Fišer, Horčı́k, and
Komenda 2020).

• S1k+I: maximize the hQ-value for 1 000 states sam-
pled using random walks, while enforcing the maximum
hQ(I) (Seipp, Pommerening, and Helmert 2015; Fišer,
Horčı́k, and Komenda 2020).

• M2+I: maximize the hQ-value for all reachable states ap-
proximated with mutex pairs while enforcing the maxi-
mum hQ(I) (Fišer, Horčı́k, and Komenda 2020).

We also evaluated the same consistent operator-potential
heuristics with the tasks transformed to the transition nor-
mal form (Pommerening and Helmert 2015) (prefixed with
tnf-); and the path-dependent operator-potential heuristics
on the original planning task (prefixed with pd-).

We compare these to symbolic uniform-cost search us-
ing forward (bfw) and bidirectional search (bbi)4. Further-
more, we compare to other state-of-the-art planners. We ran

4Our implementation does not lack in performance behind the
IPC 2018 SymbA? planner—its overall coverage is 942 and 852
for blind bidirectional and blind forward search, respectively.
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tot

scrp – 23 23 19 26 24 27 26 30 31 36 37 39 1 112
A+I 13 – 7 17 17 9 24 26 26 30 33 37 36 1 109
M2+I 13 2 – 17 16 10 23 25 23 31 33 36 35 1 103
comp2 16 16 18 – 23 18 22 27 25 32 33 38 37 1 096
S1k+I 13 3 6 16 – 9 22 22 22 29 29 35 34 1 081
pd-A+I 12 2 5 16 15 – 22 22 23 27 30 32 34 1 080
bbi 14 14 14 12 16 15 – 23 20 23 24 29 31 1 004
potA+I 5 9 9 13 14 11 18 – 19 23 24 22 29 1 000
I 10 2 3 9 5 5 16 15 – 20 21 24 29 996
bfw 10 7 6 7 9 7 7 17 10 – 17 22 28 936
lmc 2 4 5 6 8 8 13 14 15 20 – 21 28 901
ms 1 1 2 4 5 4 11 4 10 16 15 – 24 859
tnf-A+I 4 0 1 6 3 2 7 7 6 12 11 12 – 803

Table 1: Summary of domain coverage. A value in row x
and column y is the number of domains where x solved more
tasks than y, it is bold if higher than the value in row y and
column x. “tot” shows overall number of solved tasks.

A∗ with the LM-Cut (lmc) heuristic (Helmert and Domshlak
2009), with the merge-and-shrink (ms) heuristic with SCC-
DFP merge strategy and non-greedy bisimulation shrink
strategy (Helmert et al. 2014; Sievers, Wehrle, and Helmert
2016), and with the potential heuristic (potA+I), i.e., a vari-
ant of A+I for A∗. We further compare to two of the best-
performing non-portfolio planners from IPC 2018: Comple-
mentary2 (comp2) (Franco et al. 2017; Franco, Lelis, and
Barley 2018), and Scorpion (scrp) (Seipp 2018; Seipp and
Helmert 2018). Table 1 shows the comparison across all
planners in terms of total coverage, and in terms of the num-
ber of domains in which each planner is superior to others.

Operator Potentials in Symbolic Search
The comparison of symbolic potential variants against the
baseline forward search without heuristics (bfw) clearly
demonstrates that potential heuristics are beneficial for the
performance of symbolic search over a wide range of dif-
ferent domains. The best variant of GHSETA∗ with an
operator-potential heuristic (A+I) solves 173 more tasks
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than the baseline (bfw). It increases coverage on 30 different
domains, and it is detrimental in only 7 domains. Among the
different variants of potential heuristics, we observe that the
optimization criteria can have a significant impact on perfor-
mance. The best variant is A+I, closely followed by S1k+I
and M2+I, and significantly better than I. These results are
well in line with the results of the same potential heuristics
in explicit search (Fišer, Horčı́k, and Komenda 2020).

For a heuristic to be beneficial in symbolic search, it is
required that sets of states with the same g and h value are
efficiently represented with BDDs. The positive coverage re-
sults from Table 1 suggest that this is indeed the case for
the operator-potential heuristics. To confirm this, Figure 2
compares the performance of the baseline, symbolic search
without any heuristics (bfw), against the best configuration
of our symbolic search with potential heuristics (A+I).

First, we observe that the average number of BDD
nodes per expanded BDD was almost always lower (Fig-
ure 2a). This means that, indeed, the partitioning induced by
operator-potential heuristics is often beneficial, resulting on
sets of states during the search that have a concise BDD rep-
resentation. This property, however, is not guaranteed by the
method. In particular, the average number of BDD nodes per
expanded BDD was higher for bfw in only ten tasks, though
only by a small margin. On the other hand, the number of ex-
panded BDDs is almost always increased (Figure 2b), which
is not surprising, as sets of states during the search are not
only partitioned by g-value, but also by h-value.

Most remarkably, the number of BDD nodes from all ex-
panded BDDs often decreased with potential heuristics (Fig-
ure 2c). This confirms that these heuristics are not only infor-
mative for explicit-state search, avoiding expansion of cer-
tain states, but also beneficial in symbolic search by inducing
a good BDD partitioning. This contrasts with previous re-
sults on very informative heuristics ( 1

2h
∗, 3

4h
∗), that despite

their accuracy are often detrimental for the performance of
symbolic search (Speck, Geißer, and Mattmüller 2020).

Furthermore, the runtime of the planner is often decreased
(Figure 2d), confirming that partitioning the TRs using oper-
ator potentials is an effective way of evaluating the heuristic
in symbolic search. So, not only potential heuristics can be
informative for symbolic search, but they can also be effi-
ciently evaluated. The increase in runtime for some of the
tasks is often due to increased computational effort in the
inference of integer operator potentials.

Compared against symbolic bidirectional uniform cost
search (bbi), which has state-of-the-art performance in sym-
bolic search planning (Torralba et al. 2014; Torralba, Linares
López, and Borrajo 2016), A+I solves 105 more tasks. The
two algorithms are still quite complementary though, with
A+I being superior in 24 domains and bbi in 14. This sug-
gests that there is a potential to further improve bidirectional
heuristic search by integrating operator-potential heuristics.

Explicit-State Search with Potential Heuristics
Compared to the potential heuristics in explicit-state search,
A+I solves 109 instances more than potA+I. Moreover, there
are only 9 domains where using symbolic search with the

same heuristics is detrimental, compared to 26 domains
where it is beneficial.

Note that these two configurations are using the same op-
timization criteria to compute the potentials. However, as ex-
plained in Section 6, in order to obtain consistent operator-
potential heuristics, we must (1) split the operators so that
all variables mentioned in the effect appear in the precon-
ditions; and (2) use MIP to ensure that operator potentials
have an integer value. In most domains this is not an issue,
and there are only a few domains where the number of oper-
ators increases significantly (e.g., only in agricola and main-
tenance the task size at least doubled). Nevertheless, this
sometimes has an overhead on the computation of the po-
tential heuristics, as illustrated by Figure 2e, which makes
the improvements in coverage even more remarkable.

To analyze if this overhead could be easily avoided,
we also compared A+I against pd-A+I and tnf-A+I. The
path-dependent variant pd-A+I partially avoids the overhead
shown in Figure 2e, because it does not require the transfor-
mation of tasks as per (1). Yet, in terms of coverage, results
are inferior in general, reducing coverage in 9 domains and
improving only in agricola, and caldera. We also tried a vari-
ant of pd-A+I with floating-point potentials (i.e., only LP is
solved) and rounding to nearest smaller integer (to deal with
partitioning of states), but it solved 107 fewer tasks from 20
domains. This shows that it pays off to force the heuristic to
be consistent, unless the task size increases significantly.

Finally, using the transition normal form (tnf-A+I) turns
out to be detrimental for symbolic search and never pays-off,
because the symbolic search must also use the task in transi-
tion normal form with a lot of auxiliary zero-cost operators.

Comparison Against State of the Art
Compare finally the performance of our best-performing
variants (A+I, M2+I, and S1k+I) against the unrelated ap-
proaches lmc, ms, comp2, and scrp. Our planners clearly
beat lmc and ms in terms of overall coverage and fre-
quency of per-domain superiority. The state-of-the-art plan-
ners comp2 and scrp are roughly on par in overall coverage.
In terms of individual domains, the clear conclusion is that
our new techniques are highly complementary to the previ-
ous state of the art: A+I, M2+I, and S1k+I outperform comp2
and scrp in 12 to 16 domains.

9 Conclusion
While heuristic search and symbolic search are both con-
tenders for the throne in optimal planning, and their com-
bination is a natural and promising avenue, the results with
that combination have thus far been disappointing. As we
show, this picture changes dramatically when leveraging the
fact that potential heuristics can be viewed as potentials over
operators, which enables their smooth integration into sym-
bolic search. We have shown that and how this can be done,
in particular while retaining consistency. Our empirical re-
sults show that this boosts the performance of optimal sym-
bolic planning, which is now on par with the best heuristic
search based optimal planners.
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Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient symbolic search for cost-optimal planning.
Artificial Intelligence, 242: 52–79.
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