
Sample-Efficient Iterative Lower Bound Optimization of
Deep Reactive Policies for Planning in Continuous MDPs

Siow Meng Low1, Akshat Kumar1, Scott Sanner2

1School of Computing and Information Systems, Singapore Management University, Singapore
2Industrial Engineering, University of Toronto, Canada

smlow.2020@phdcs.smu.edu.sg, akshatkumar@smu.edu.sg, ssanner@mie.utoronto.ca

Abstract
Recent advances in deep learning have enabled optimization
of deep reactive policies (DRPs) for continuous MDP plan-
ning by encoding a parametric policy as a deep neural net-
work and exploiting automatic differentiation in an end-to-
end model-based gradient descent framework. This approach
has proven effective for optimizing DRPs in nonlinear con-
tinuous MDPs, but it requires a large number of sampled tra-
jectories to learn effectively and can suffer from high vari-
ance in solution quality. In this work, we revisit the overall
model-based DRP objective and instead take a minorization-
maximization perspective to iteratively optimize the DRP
w.r.t. a locally tight lower-bounded objective. This novel for-
mulation of DRP learning as iterative lower bound optimiza-
tion (ILBO) is particularly appealing because (i) each step
is structurally easier to optimize than the overall objective,
(ii) it guarantees a monotonically improving objective under
certain theoretical conditions, and (iii) it reuses samples be-
tween iterations thus lowering sample complexity. Empirical
evaluation confirms that ILBO is significantly more sample-
efficient than the state-of-the-art DRP planner and consis-
tently produces better solution quality with lower variance.
We additionally demonstrate that ILBO generalizes well to
new problem instances (i.e., different initial states) without
requiring retraining.

Introduction
In the past decade, deep learning (DL) methods have demon-
strated remarkable success in a variety of complex applica-
tions in computer vision, natural language, and signal pro-
cessing (Krizhevsky, Sutskever, and Hinton 2017; Hinton
et al. 2012; Bengio, Lecun, and Hinton 2021). More re-
cently, a variety of work has sought to leverage DL tools
for planning and policy learning in a large variety of deter-
ministic and stochastic decision-making domains (Wu, Say,
and Sanner 2017; Bueno et al. 2019; Wu, Say, and Sanner
2020; Say et al. 2020; Scaroni et al. 2020; Say 2021; Toyer
et al. 2020; Garg, Bajpai, and Mausam 2020).

A large amount of this work has focused on learning (deep
reactive) policies in discrete planning settings such as ex-
ploiting structure in discrete relational planning models (Is-
sakkimuthu, Fern, and Tadepalli 2018) or learning policies
for effective transfer and generalized planning over different

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

domain instantiations of these relational models (Groshev
et al. 2018; Toyer et al. 2018; Bajpai, Garg, and Mausam
2018; Garg, Bajpai, and Mausam 2019, 2020; Toyer et al.
2020). Other recent work has investigated planning by dis-
crete and mixed integer optimization in learned discrete neu-
ral network models of planning domains (Say and Sanner
2018; Say et al. 2020). Further afield, policy learning has
been applied for planning in discrete models through the
use of policy gradient methods (Buffet and Aberdeen 2009,
2007; Aberdeen 2005), although it is critical to remark that
these methods focused on model-free reinforcement learn-
ing approaches and do not directly exploit optimization over
the known model dynamics that we explore in this work.

There has been considerably less research focus in the
challenging area of planning in nonlinear continuous MDP
models that we focus on in this paper. However, a recent di-
rection of significant influence on the present work is the use
of automatic differentiation in an end-to-end model-based
gradient descent framework to leverage recent advances in
non-convex optimization from DL. The majority of work in
this direction has focused on deterministic continuous plan-
ning models — both known (Wu, Say, and Sanner 2017;
Scaroni et al. 2020) and learned (Wu, Say, and Sanner 2020;
Say 2021). However, in this work we are specifically con-
cerned with learning deep reactive policies (DRPs) for fast
decision-making in general continuous state-action MDPs
(CSA-MDPs). While there has been work on planning in
CSA-MDPs with piecewise linear dynamics via symbolic
methods (Zamani, Sanner, and Fang 2012) or mixed integer
linear programming (Raghavan et al. 2017), these methods
suffer from scalability limitations and do not learn reusable
DRPs for general nonlinear dynamics or reward. The state-
of-the-art solution for DRP learning in such nonlinear CSA-
MDPs is provided by tfmdp (Bueno et al. 2019), which op-
timizes DRPs end-to-end by leveraging gradients backprop-
agated through the model dynamics and policy.

While tfmdp made significant advances in solving non-
linear CSA-MDPs, it requires a large number of sampled
trajectories to learn effectively and can suffer from high vari-
ance in solution quality. In this work, we revisit the over-
all model-based DRP objective and instead take a funda-
mentally different approach to its optimization. Specifically,
we make the following contributions: First, for CSA-MDPs
with stochastic transitions, we develop a lower bound for the

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

9840

planning objective for optimizing parameterized DRPs by
using techniques from convex optimization and minorize-
maximize (MM) methods (Lange 2016; Hunter and Lange
2004). Exactly optimizing this lower bound is guaranteed to
increase the original planning objective monotonically. Sec-
ond, we show that this lower bound has a particularly con-
venient structure for sample-efficient optimization. We also
develop techniques that allow us to effectively utilize both
recent and past data for learning the value function and op-
timizing the lower bound. This improves sample efficiency
and lowers the variance in solution quality. We show that our
method can generalize to new problem instances (i.e., differ-
ent initial states) without retraining. Empirically, we perform
evaluation on three different domains introduced in (Bueno
et al. 2019). Results confirm that our method ILBO is signifi-
cantly more sample-efficient than the state-of-the-art tfmdp
DRP planner and produces better solution quality with lower
variance consistently across all the domains and a variety of
hyperparameter settings.

Problem Formulation
A Markov decision process (MDP) model is defined using
the tuple (S,A, T , r, γ). An agent can be in one of the states
st ∈ S at time t. It takes an action at ∈ A, receives a reward
r(st, at), and the world transitions stochastically to a new
state st+1 with probability p(st+1|st, at) = T (st, at, st+1).
We assume that rewards are non-negative. For the infinite-
horizon setting, future rewards are discounted using a factor
γ < 1; for finite-horizon settings γ = 1. The initial state dis-
tribution is denoted by b0(s). We assume continuous, multi-
dimensional state and action spaces (S ⊆ Rn, A ⊆ Rn) and
denote this as a continuous state-action MDP (CSA-MDP).

The empirical experiments conducted focus on tran-
sition function that can be factored, similar to factored
MDPs (Boutilier, Dean, and Hanks 1999). That is, the tran-
sition function can be decomposed as: p(st+1|st, at) =∏n
j=1 p(s

j
t+1|st, at) where sjt+1 is the jth component of the

state st+1. However, our proposed approach does not require
factorization of transition probabilities in general.
Policy: We follow a similar setting as in (Bueno et al. 2019)
and optimize a deterministic policy µθ. The Markovian pol-
icy µθ(s) provides the deterministic action a=µθ(s) that is
to be executed when the agent is in state s. The policy µθ is
parameterized using θ (e.g., θ may represent parameters of a
deep neural net).
Objective: The state value function is defined
as the expected total reward received by follow-
ing the policy µ from the state st as: V µ(st) =

E
[∑∞

T=t γ
T−tr(sT , µθ(sT))

∣∣∣st)]. For the finite-horizon
setting, we only accumulate rewards until a finite-horizon
H . The agent’s goal is to find the optimal policy µ?

maximizing the objective J as:

J(µ) = Es0∼b0
[
V µ(s0)

]
(1)

where b0 is the initial state distribution.

Parameter space

J(µ)

µ0 µ1

Ĵ(µ;µ0)

Ĵ(µ;µ1)

Figure 1: Minorize-Maximize (MM) framework

The Minorize-Maximize (MM) Framework
Our approach for optimizing DRPs is based on the MM
framework; we briefly review it here and refer the reader
to Lange (2016) for full details. Assume the goal is to solve
the optimization problem maxµ J(µ). The MM framework
provides an iterative approach where at each step m =

0, 1, . . ., we construct a function Ĵ(µ;µm) (assume that µ0

is some given starting estimate). The function Ĵ(µ;µm) mi-
norizes the objective J(µ) at µm iff:

Ĵ(µ;µm) ≤ J(µ) ∀µ (2)

Ĵ(µm;µm) = J(µm) (3)

In the MM framework, we then iteratively optimize the fol-
lowing problem:

µm+1 = argmax
µ

Ĵ(µ;µm) (4)

The above step is the so-called maximize operation in the
MM algorithm. This scheme results in a monotonic in-
crease in the solution quality until convergence (when µm =
µm+1), where we note the minorization property ensures

J(µm+1) ≥ Ĵ(µm+1;µm) . (5)

Given the maximize operation in (4), we also have
Ĵ(µm+1;µm) ≥ Ĵ(µm;µm). And we know from condi-
tion (3) that Ĵ(µm;µm) = J(µm). Therefore, J(µm+1) ≥
J(µm), which shows that the MM algorithm iteratively im-
proves the solution quality until convergence to a local opti-
mum or a saddle point (Lange 2016).

The geometric intuition behind the MM approach is
shown in figure 1. We first construct a lower bound Ĵ of J
at the initial estimate µ0 (or the blue curve Ĵ(µ;µ0)). Then
we maximize Ĵ(µ;µ0) to get the next estimate µ1. This step
also improves the solution quality as J(µ1) ≥ J(µ0). We
then keep repeating this process iteratively by constructing
a new lower bound at µ1 (in green) and maximizing it to get
the next estimate until convergence.

Our goal is to develop such an MM algorithm for planning
in CSA-MDPs. Several algorithms in machine learning are
based on the MM framework. The well-known expectation-
maximization (EM) algorithm (Dempster, Laird, and Rubin

9841

1977) can be derived from the MM perspective, along with
other examples noted in (Hunter and Lange 2004).

In the context of MDPs (and reinforcement learning), sev-
eral methods also fall under the umbrella of MM algorithms
such as trust region policy optimization (TRPO) (Schulman
et al. 2015b). Compared to TRPO, our derived lower bounds
are simpler, differentiable, and explicitly involve the gradi-
ent of the known reward and transition function in the ob-
jective, which is desirable for planning. The lower bound
in (Schulman et al. 2015b) relies on KL divergence based
non-differentiable penalty terms, and requires several ap-
proximations to optimize. Furthermore, TRPO assumes a
stochastic policy, whereas our lower bound is applicable to
the deterministic policy. Lower bounds for the MDP value
function have also been proposed when treating planning
and RL using a probabilistic inference setting (Schulman
et al. 2015a; Toussaint and Storkey 2006). However, such
formulations require rewards to not be deterministically in-
fluenced by the optimization parameters (Schulman et al.
2015a)[Appendix B]. This assumption breaks down for de-
terministic policies.

In the context of multiagent RL, difference-of-convex
functions (DC) programming (Lipp and Boyd 2016), which
is a type of MM algorithm, has been used (Ling, Gupta, and
Kumar 2020). However, their approach is only applicable
when state transition function is from the exponential fam-
ily; our proposed method requires no such restrictions.

MM Formulation For Deterministic Policy
In the last section, we formulated the objective J for a deter-
ministic policy µ. A lower bound for this objective function
using the MM formulation will now be derived. The main
idea behind iterative lower bound optimization (ILBO) is
to iteratively improve this lower bound function using a
gradient-based method for planning. For ease of exposition,
we first consider a discrete state space, and a tabular setting
where we need to optimize µ(s)∀s. Later we generalize this
bound for parametric policies and continuous state spaces.

Let τ0:t : (s0, a0, s1, a1, ..., st, at) be a state-action trajec-
tory from 0 to time t. The planning objective J(µ) can also
be expressed as maximizing the following:

J(µ)=
∞∑
T=0

∑
τ0:T

γT r(sT , µ(sT))b0(s0)
T−1∏
t=0

p(st+1|st, µ(st))

(6)

Minorization Step in MM
To fit within the MM framework, our first goal is to mi-
norize the function (6) to create the lower bound Ĵ satisfy-
ing (2) and (3). At first glance, J(µ) seems unwieldy due to
the presence of terms T (s, µ(s), s′), r(s, µ(s)), which may
be an arbitrary nonlinear function of parameters µ(s). Us-
ing tools from convex optimization, we address this chal-
lenge. Next, we create additional variables and constraints
over them to create a new optimization problem which has a
convex objective. We first create two sets of additional vari-
ables — φ(s, s′)∀s, s′ and ω(s)∀s. They encode the transi-

tion and reward function in an exponentiated form as:

eφ(s,s
′) = T (s, µ(s), s′)∀s, s′, eω(s) = r(s, µ(s))∀s (7)

The above representation is always possible as transition
function is non-negative and we assume rewards are also
non-negative. Notice that µ(s) itself is also a variable to op-
timize. The planning objective J(ω, φ) can be written as:

max
ω,φ,µ

J(ω, φ) =
∞∑
T=0

∑
τ0:T

γT b0(s0)e
ω(sT)+

∑T−1
t=0 φ(st,st+1)

(8)

eφ(s,s
′) = T (s, µ(s), s′)∀s, s′, eω(s) = r(s, µ(s))∀s (9)

Notice that the objective in (8) is convex in ω and φ as it is a
positive combination of convex terms (initial belief b0 and γ
are non-negative). The objective (8) is fully expressed in ω
and φ while their nonlinear relationship with policy terms
µ(s) are pushed into the constraints (9). The whole opti-
mization problem is still non-convex as constraints (9) are
non-convex (any equality constraints in a convex optimiza-
tion problem must be linear (Bertsekas 1999)). However,
this separation is useful as it is easier to minorize the convex
objective (8). The non-convex equality constraints (9) will
be addressed in later section through variable substitution,
ensuring the solution is confied to the feasible region.

Given that J(ω, φ) is convex, we can leverage properties
of convex functions to minorize it. Specifically, we use the
supporting hyperplane property of a convex function which
states that the tangent to the graph of a convex function is a
minorizer at the point of tangency (Hunter and Lange 2004).
Concretely, if f(x) is convex and differentiable, then:

f(x) ≥ f(xm) +∇f(xm) · (x− xm) ∀x (10)

with equality when x = xm. The minorizer is given as
f̂(x;xm) = f(xm)+∇f(xm)·(x−xm). The maximization
step in (4) is equivalent to:

max
x
∇f(xm) · x (11)

We have omitted the constant terms that only depend on
xm from the above problem. The analogous optimization
problem to solve in the MM framework for MDPs is given
in the next section.

Maximization Step in MM
The analogous optimization problem to solve in the MM
framework for MDPs is given next. We use the shorthand
Jm = J(ωm, φm), where superscript m denotes the previ-
ous iteration’s estimate of the corresponding parameter.

max
ω,φ,µ

∑
s

ω(s)∇ω(s)Jm +
∑
s,s′

φ(s, s′)∇φ(s,s′)Jm (12)

φ(s, s′) = ln T (s, µ(s), s′) ∀s, s′ (13)
ω(s) = ln r(s, µ(s)) ∀s (14)

Notice that the above optimization problem has a much sim-
pler structure than the original problem. The objective func-
tion is linear in the parameters to optimize. While the con-
straints involving µ(s) remain nonlinear, they will be elimi-
nated through variable substitution in later step.

9842

The key task to solve problem (12) is to compute the gra-
dients that are required in the above problem. The analytical
expressions for such gradients are derived next.

Gradient ∇ω(s)J(ω, φ) For a given deterministic policy
µ, we can define the occupancy measure for different states
as dµ(s) =

∑∞
t=0 γ

tp(st = s;µ) and p(τ0:T) as probability
of trajectory τ0:T . The gradient can be computed as:

∂J

∂ω(s)
=
∞∑
T=0

∑
τ0:T

γT b0(s0)∇ω(s)e
∑T−1

t=0 φ(st,st+1)+ω(sT)

=
∞∑
T=0

∑
τ0:T

p(τ0:T)γ
T rT Is(sT) (15)

where Is(sT) is an indicator function returning 1 iff state at
time T is s (or sT = s), otherwise 0. In the above expres-
sion, we have also re-substituted rT = eω(sT). We further
simplify the above to get:

=

∞∑
T=0

∑
τ0:T−1

p(τ0:T−1)γ
T rT p(s|τ0:T−1) (16)

=
∞∑
T=0

γT
∑
τ0:T−1

p(τ0:T−1)p(s|τ0:T−1)× r(s, µ(s)) (17)

∂J

∂ω(s)
= d(s)r(s, µ(s)) (18)

where d(s) is the state occupancy measure as defined earlier.
Based on probability marginalization we also used:∑

τ0:T−1

p(τ0:T−1)p(s|τ0:T−1) = p(sT = s).

Gradient∇φ(s,s′)J The gradient ∂J
∂φ(s,s′) is given below:

∇φ(s,s′)J = γd(s)p(s′|s, µ(s))V µ(s′) (19)

where d is the state occupancy measure. The proof is pro-
vided in the supplement1.

Value function lower bound Using these gradients, we
simplify the problem (12) as:

max
ω,φ,µ

∑
s

dm(s)r(s, µm(s))ω(s)

+
∑
s,s′

γdm(s)T (s, µm(s), s′)V m(s′)φ(s, s′) (20)

subject to constraints (13)-(14) (21)

where superscript m denotes the dependence of the corre-
sponding term on the previous policy estimate µm (e.g., V m
is the value function of the policy µθm , and dm is the corre-
sponding state occupancy measure). We can now eliminate

1Supplementary material provided in the arXiv version of this
paper (Low, Kumar, and Sanner 2022)

the equality constraints (13)-(14) by substituting them di-
rectly into the objective to get the final simplified problem:

max
ω,φ,µ

Ĵ(µ;µm)=max
µ

∑
s

dm(s)r(s, µm(s)) ln r(s, µ(s))

+
∑
s,s′

γdm(s)T (s, µm(s), s′)V m(s′) ln T (s, µ(s), s′)

(22)

The function Ĵ(µ;µm) is the value function lower bound for
the MM strategy shown in figure 1, and each MM iteration
is maximizing Ĵ .

There are several ways in which such a MM approach
can exploit known model parameters in the planning con-
text. If policy µ has a simple form (such as a feature based
linear policy), then we can directly solve (22) using non-
linear programming solvers. Notice that we do not have to
exactly compute occupancy measures dm; we can replace∑
s d

m(s) by using expectation over samples collected us-
ing previous policy estimate in iteration m. Next we focus
on optimizing DRPs, which is the parameterized deep neural
network based policy used in ILBO.

Optimizing deep reactive policies For large state spaces,
we can parameterize the policy µθ using parameters θ. In
this case, our maximization problem becomes:

max
θ
Ĵ(θ; θm)=max

θ

∑
s

dm(s)r(s, µθm(s)) ln r(s, µθ(s))

+
∑
s,s′

γdm(s)T (s, µθm(s), s′)V m(s′) ln T (s, µθ(s), s′)

(23)

Since exact maximization over all possible θ may be in-
tractable, we can optimize Ĵ by using gradient ascent. Let
θm be the current estimate of parameters, the gradient of the
lower bound∇θĴ |θ=θm is given as (proof in supplement):

∇θĴ |θ=θm=
∑
s

dm(s)∇θµθ(s)
[
∇µ(s)r(s, µ(s))

∣∣
µ(s)=µm(s)

+ γ
∑
s′

∇µ(s)T (s, µ(s), s′)
∣∣
µ(s)=µm(s)

V m(s′)
]

(24)

Notice that the above expression can be evaluated by col-
lecting samples from current policy estimate µm, and com-
puting the gradient of transition and reward functions using
autodiff libraries such as Tensorflow. Iteratively optimizing
the above expression results in our iterative lower bound op-
timization (ILBO) algorithm. In addition, we also develop
a principled method to reduce the variance of gradient esti-
mates (shown in supplement) without introducing any bias.
Note that the state value function V m(s) is not known and
has to be estimated. ILBO utilizes a deep neural net to learn
state-action approximator Q̂ψ(s, a) and estimates it using
the relation V̂ m(s) = Q̂ψ(s, a)|a=µm(s).

We also remark on the structure of expression (24). Gra-
dient ascent tries to optimize the reward in the first term. In
the second term, it tries to increase the probability of tran-
sitioning to highly-valued states. Since approximator V̂ in-
forms ILBO of the highly-valued states, gradient ascent on

9843

0 10000 20000 30000 40000 50000
250

200

150

100

50
To

ta
l R

ew
ar

d
(1

0
Ru

ns
 A

ve
ra

ge
)

NAV3

0 10000 20000 30000 40000 50000
Episode

-4500K

-4000K

-3500K

-3000K

-2500K

-2000K

-1500K

-1000K

-500K

0K HVAC6

0 10000 20000 30000 40000 50000
-100K

-90K

-80K

-70K

-60K

-50K

-40K

-30K

-20K

-10K

0K
RES20

ILBO (1-Layer)
ILBO (4-Layers)
TFMDP (1-Layer)
TFMDP (4-Layers)

Figure 2: Total Reward (Higher is Better); tfmdp setting: 200 epochs; 256 Batchsize. x-axis denotes # episodes, y-axis quality

the transition function adjusts the policy such that it makes
transition to highly rewarding states more likely. And the
use of function approximator for state-action value func-
tion smooths out the effect of environment stochasticity as
action-value function can be learned from past experiences
also (explained later). These features of ILBO contribute
to the sample efficiency and better quality solutions than
tfmdp. Another key difference between ILBO and tfmdp
is that ILBO uses gradient of the transition function di-
rectly, whereas tfmdp encodes this information implicitly
with reparameterization trick (Bueno et al. 2019).
Extension to continuous state spaces: Previous sections
derived the MM formulation for a discrete state space MDP.
We can also show how the MM formulation extends easily
to the continuous state space also using Riemann sum based
approximation of integrals in the continuous state space set-
ting (proof in the supplement). The structure of the lower
bound even in the continuous state setting remains the same
as in (23) with summation over states replaced using an ex-
pectation over sampled states from the policy µm.
Efficient utilization of samples: Notice that computing the
gradient (24) requires on-policy samples, similar to tfmdp.
Therefore, we maintain a small store of recently observed
episodes and use it to optimize the lower bound. How-
ever, our approach can still utilize samples from the past
(or the so-called off-policy) samples to effectively train the
state value estimate V̂ψ(s) of the current policy. This makes
our approach much more stable and sample efficient than
tfmdp as our value function estimate is intuitively more ac-
curate than estimating the value of a state only using on-
policy samples from the current mini-batch of episodes as
in tfmdp. We provide more on such implementation details,
and the entire ILBO algorithm in the supplement.

Experiments
We present the empirical results comparing performance
of ILBO2 against that of state-of-the-art DRP planner,
tfmdp (Bueno et al. 2019). Experiments were carried out in
the three planning domains used to evaluate tfmdp (Bueno
et al. 2019). We only provide a brief description of these

2Implementation on GitHub: https://github.com/siowmeng/ilbo

three domains here; for details we refer to (Bueno et al.
2019). Experiments in these three planning domains have
been conducted using the Python simulator made pub-
licly available on the RDDLGym GitHub repository (Bueno
2020). For tfmdp, we used its Python implementation, avail-
able on GitHub (Bueno 2021).

Navigation is a path planning problem in a two-
dimensional space (Faulwasser and Findeisen 2009). The
agent’s location is encoded as a continuous state variable
st ∈ R2 while the continuous action variable at ∈ [−1, 1]2
represents its movement magnitudes in the horizontal and
vertical directions. The objective is to reach the goal state in
the presence of deceleration zones.

HVAC control is a centralized planning problem where
an agent controls the heated air to be supplied to each of the
N rooms (Agarwal et al. 2010). Continuous state variable
st ∈ RN represents the temperature of each room and ac-
tion variable at ∈ [0, amax]

N is comprised of the amount of
heated air supplied; N = 6 in this domain. The objective is
to maintain the room temperatures within the desired range.

Reservoir Reservoir management requires the planner to
release water to downstream reservoirs to maintain the de-
sired water level (Yeh 1985). State variable sit is the water
level at reservoir i and action variable ait ∈ [0, sit] represents
the water outflow to the downstream reservoir. A penalty is
imposed if the reservoir level is too low or high. Both state
and action spaces are 20-dimensional.

Experiment Objectives We assess ILBO’s performance
in the following aspects:

• Sample efficiency and quality of solution: The ability to
provide high-quality solution (in terms of total rewards
gathered) in a sample-efficient manner.

• Training stability: The policy network should gradually
stabilize and not exhibit sudden large degradation in per-
formance as learning progresses.

• Generalization: The ability to generalize to other prob-
lem instances (e.g., new initial states) without retraining.

Hyperparameters We evaluated ILBO using two rep-
resentative DRP architectures: one hidden layer and four
hidden layers, exactly the same architectures used in the

9844

ILBO
5K
Ep

TF-MDP
50

Epochs
(3.2K-

12.8K Ep)

TF-MDP
100

Epochs
(6.4K-

25.6K Ep)

TF-MDP
200

Epochs
(12.8K-

51.2K Ep)

TF-MDP
300

Epochs
(19.2K-

76.8K Ep)

0

25

50

75

100

125
To

ta
l C

os
t (

10
 R

un
s

Av
er

ag
e)

NAV3

ILBO
5K
Ep

TF-MDP
50

Epochs
(3.2K-

12.8K Ep)

TF-MDP
100

Epochs
(6.4K-

25.6K Ep)

TF-MDP
200

Epochs
(12.8K-

51.2K Ep)

TF-MDP
300

Epochs
(19.2K-

76.8K Ep)

0K

200K

400K

600K

800K

1000K HVAC6

ILBO
5K
Ep

TF-MDP
50

Epochs
(3.2K-

12.8K Ep)

TF-MDP
100

Epochs
(6.4K-

25.6K Ep)

TF-MDP
200

Epochs
(12.8K-

51.2K Ep)

TF-MDP
300

Epochs
(19.2K-

76.8K Ep)

0K

5K

10K

15K

20K

25K

30K

35K RES20
1-Layer ILBO
4-Layer ILBO
1-Layer TFMDP
(Batch=64)
1-Layer TFMDP
(Batch=128)
1-Layer TFMDP
(Batch=256)
4-Layer TFMDP
(Batch=64)
4-Layer TFMDP
(Batch=128)
4-Layer TFMDP
(Batch=256)

Figure 3: Total Cost Incurred by the Final Policy (Lower is Better); tfmdp: Various Hyperparameter Settings

0 10000 20000 30000 40000 50000
Episode

-100K

-90K

-80K

-70K

-60K

-50K

-40K

-30K

-20K

-10K

0K

To
ta

l R
ew

ar
d

(1
0

Ru
ns

 A
ve

ra
ge

)

RES20
ILBO (1-Layer)
ILBO (4-Layers)
TFMDP (1-Layer)
TFMDP (4-Layers)

Figure 4: Total RES20 Reward Obtained by Current Policy
(Higher is Better); tfmdp: 200 epochs & 256 Batchsize

evaluation of tfmdp (Bueno et al. 2019). The total learn-
ing episodes for ILBO is 5000 in all our experiments. The
default setting for tfmdp is: 200 epochs of 256 batchsize,
where batchsize refers to the number of episodes (or tra-
jectories) sampled per epoch (Bueno et al. 2019). We per-
formed detailed comparisons with a variety of tfmdp hyper-
parameter settings: epoch = {50, 100, 200, 300}, batchsize =
{64, 128, 256}. We refer the reader to supplement for other
hyperparameter settings used in the experiments.

Performance Reporting We adopt the same approach as
tfmdp (Bueno et al. 2019), which reports the average and
standard deviation values over 10 training runs and for each
training run, the best policy so far is kept to smooth out the
effects of stochasticity during training. All the result figures
report solution qualities attained by the best policies so far,
with the exception of Figure 4, which compares the train-
ing stability of ILBO and tfmdp. We use 64 test trajectories
(different from training ones) to evaluate the policy.

Sample Efficiency, Quality The total rewards gathered
by ILBO and tfmdp are shown in Figure 2 for all three
domains. The two tfmdp curves were trained using the de-
fault settings specified in (Bueno et al. 2019): epoch = 200,
batchsize = 256. Compared to tfmdp, ILBO converges to

higher quality plan earlier and collects much fewer sample
episodes in all three domains. There are several key reasons
for this. Our method can learn better estimate of state value
function using off-policy samples, which intuitively is more
accurate than estimating value function from only on-policy
samples. For highly stochastic domains, such as reservoir,
limited on-policy samples may not be enough to provide a
reliable estimate of the value function. Additionally, the gra-
dient in (24) can be estimated after collecting sufficient ex-
perience samples, without having to wait for full trajectory
samples, which is required in tfmdp. Consequently, ILBO
is able to produce high quality plans in a sample-efficient
manner over tfmdp, as the empirical result suggests.

Training Stability From Figure 2, the reader may notice
the large variance present in the total rewards gathered by
tfmdp for Reservoir-20 domain. Compared to the other two
domains, Reservoir-20 domain is highly stochastic and its
transition dynamics is characterized by the Gamma distribu-
tion, which has fat tails at both ends. Consequently, each
mini-batch of collected samples can be highly dissimilar.
The effect of this high stochasticity on ILBO and tfmdp
is further examined in Figure 4. Instead of remembering the
best policy so far, this diagram shows the average total re-
ward of current policies at every training step.

Figure 4 demonstrates that ILBO is more resilient to en-
vironment stochasticity. The weight updates by ILBO are
more stable and the policy improves iteratively. In compari-
son, tfmdp witnesses large variations in policy performance
towards the later part of training. We postulate that this is
due to the better learning of value estimates by ILBO. Al-
though the environment is highly stochastic, ILBO updates
value function using historical samples. As a result, this
stochastic effect was smoothed out. In contrast, tfmdp only
uses the current batch of trajectory samples to compute gra-
dient updates. In a highly stochastic domain like Reservoir-
20, one single batch might not contain sufficient number
of representative trajectory samples. Consequently, tfmdp
might estimate gradients using these unrepresentative sam-
ples, causing huge performance degradation.

Varying hyperparameters of tfmdp The bar charts in
Figure 3 quantify the total cost achieved at the end of train-
ing. This chart presents the full range of tfmdp performance
across a variety of epoch and batchsize settings, in order to

9845

Start 1 Start 2 Start 3 Start 4 Start 5
0K

100K

200K

300K

400K

500K

600K

700K

HVAC-6 (Distance 5)

Start 1 Start 2 Start 3 Start 4 Start 5
0K

100K

200K

300K

400K

500K

600K

700K

HVAC-6 (5 < Distance 10)

Start 1 Start 2 Start 3 Start 4 Start 5
0K

10K

20K

30K

40K

50K

60K
Reservoir-20 (Distance 500)

ILBO (1-Layer)
ILBO (4-Layers)
Retrained TFMDP (1-Layer)
Retrained TFMDP (4-Layers)

Start 1 Start 2 Start 3 Start 4 Start 5
0K

10K

20K

30K

40K

50K

60K
Reservoir-20 (500 < Distance 1000)

Figure 5: Total Cost Incurred in New Initial States (Lower is Better): Same ILBO Policy vs Retrained tfmdp Policy

provide an elaborate comparison. Note that cost is defined
as negative reward and hence lower is better in this figure.

In HVAC and Reservoir domains, increasing the number
of epochs and/or batchsize improves the solution qualities
attained by tfmdp, albeit at the cost of sample efficiency.
We continue to witness high variance in tfmdp’s Reservoir-
20 policy performance; this corroborates our finding in Fig-
ure 4. The best tfmdp policy in Reservoir domain is trained
with 200 epochs of 256 batchsize. However, its high vari-
ance indicates that tfmdp often produces significantly worse
policies in many of the runs.

In comparison, ILBO consistently produces higher qual-
ity solutions across all three domains, with significantly
lower average total cost and variance. It is worth pointing
our that even in the highly stochastic Reservoir domain, the
performance variance of ILBO policies remain low. This is
advantageous since it provides the assurance that ILBO con-
sistently produces policies with similar performance, despite
high stochasticity present in the environment.

Generalization The tfmdp algorithm estimates gradients
from fixed-length Stochastic Computation Graph (Schulman
et al. 2015a) and the planning horizon is fixed before train-
ing commences. Coupled with fixed initial state, the samples
collected by agent may be too monotonous and disadvantage
the DRP in generalizing to new states. In contrast, ILBO ex-
plicitly takes gradients of reward and transition function in
(24) and the state value approximator helps ILBO to ride out
the idiosyncrasy present within a single minibatch of sam-
ples, resulting in better generalization to new states.

Figure 5 demonstrates ILBO’s ability to generalize. We
evaluated the same ILBO policies trained for the original
start state in HVAC and Reservoir domains, without per-
forming retraining. Ten different random start states were

used in this evaluation. Five of them are within shorter Eu-
clidean distance from the original start state while the other
five are of larger distance. We retrained tfmdp in these new
start states to serve as benchmark for comparison.

For HVAC-6 domain, ILBO consistently outperforms the
retrained tfmdp in all ten start states. As for Res-20 domain,
ILBO outperforms the retrained tfmdp in all but two initial
states (i.e., Start 2 and 4 in the lower right chart). We postu-
late that this is because the state space is high-dimensional
and very large in Res-20 domain, and the agent may not have
collected sufficient representative transition samples within
5000 episodes. More training episodes would allow ILBO
to improve generalization in the learned policy.

Conclusion and Future Work
In this work, we developed a novel minorization-
maximization approach for sample-efficient deep reactive
policy (DRP) learning in nonlinear CSA-MDPs using iter-
ative lower bound optimization (ILBO). Empirical results
confirmed ILBO’s superior sample efficiency, solution qual-
ity, stability, and generalization to new initial states by learn-
ing from diverse transition samples.

One interesting direction of future work would be to ex-
tend ILBO to other types of MDP problems such as con-
strained MDPs (Altman 1999; Feyzabadi and Carpin 2014).
Solving constrained MDPs in a sample-efficient manner is
particularly important in many safety-critical settings ger-
mane to the deployment of DRPs. Another promising direc-
tion would be to develop ILBO extensions for optimizing
DRPs that are robust to model error (Nilim and El Ghaoui
2005; Wiesemann, Kuhn, and Rustem 2013), which would
further facilitate their practical deployment when high fi-
delity models are hard to learn or acquire.

9846

Acknowledgments
We thank anonymous reviewers for their helpful feedback.
This research/project is supported by the National Research
Foundation, Singapore under its AI Singapore Programme
(AISG Award No: AISG2-RP-2020-017).

References
Aberdeen, D. 2005. Policy-Gradient Methods for Planning.
In Advances in Neural Information Processing Systems 18
[Neural Information Processing Systems, NIPS 2005, De-
cember 5-8, 2005, Vancouver, British Columbia, Canada],
9–16.
Agarwal, Y.; Balaji, B.; Gupta, R.; Lyles, J.; Wei, M.;
and Weng, T. 2010. Occupancy-Driven Energy Manage-
ment for Smart Building Automation. In Proceedings of
the 2nd ACM Workshop on Embedded Sensing Systems
for Energy-Efficiency in Building, BuildSys ’10, 1–6. New
York, NY, USA: Association for Computing Machinery.
ISBN 9781450304580.
Altman, E. 1999. Constrained Markov decision processes,
volume 7. CRC Press.
Bajpai, A. N.; Garg, S.; and Mausam. 2018. Transfer of
Deep Reactive Policies for MDP Planning. In Bengio, S.;
Wallach, H. M.; Larochelle, H.; Grauman, K.; Cesa-Bianchi,
N.; and Garnett, R., eds., Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, 10988–10998.
Bengio, Y.; Lecun, Y.; and Hinton, G. 2021. Deep Learning
for AI. Commun. ACM, 64(7): 58–65.
Bertsekas, D. 1999. Nonlinear Programming. Athena Sci-
entific.
Boutilier, C.; Dean, T. L.; and Hanks, S. 1999. Decision-
Theoretic Planning: Structural Assumptions and Computa-
tional Leverage. Journal of Artificial Intelligence Research,
11: 1–94.
Bueno, T. P. 2020. rddlgym. https://github.com/
thiagopbueno/rddlgym. Accessed: 2021-09-07.
Bueno, T. P. 2021. tf-mdp. https://github.com/thiagopbueno/
tf-mdp. Accessed: 2021-09-07.
Bueno, T. P.; de Barros, L. N.; Mauá, D. D.; and Sanner,
S. 2019. Deep Reactive Policies for Planning in Stochastic
Nonlinear Domains. In AAAI Conference on Artificial Intel-
ligence, 7530–7537.
Buffet, O.; and Aberdeen, D. 2007. FF + FPG: Guiding
a Policy-Gradient Planner. In Boddy, M. S.; Fox, M.; and
Thiébaux, S., eds., Proceedings of the Seventeenth Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2007, Providence, Rhode Island, USA, September
22-26, 2007, 42–48. AAAI.
Buffet, O.; and Aberdeen, D. 2009. The factored policy-
gradient planner. Artificial Intelligence, 173(5): 722–747.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Max-
imum Likelihood from Incomplete Data via the EM Algo-
rithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1): 1–38.

Faulwasser, T.; and Findeisen, R. 2009. Nonlinear model
predictive path-following control. In Nonlinear model pre-
dictive control, 335–343. Springer.
Feyzabadi, S.; and Carpin, S. 2014. Risk-aware path plan-
ning using hirerachical constrained markov decision pro-
cesses. In 2014 IEEE International Conference on Automa-
tion Science and Engineering (CASE), 297–303. IEEE.
Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In Benton, J.; Lipovet-
zky, N.; Onaindia, E.; Smith, D. E.; and Srivastava, S.,
eds., Proceedings of the Twenty-Ninth International Confer-
ence on Automated Planning and Scheduling, ICAPS 2018,
Berkeley, CA, USA, July 11-15, 2019, 631–636. AAAI Press.
Garg, S.; Bajpai, A.; and Mausam. 2020. Symbolic Net-
work: Generalized Neural Policies for Relational MDPs. In
Proceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research,
3397–3407. PMLR.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies
Using Deep Neural Networks. In de Weerdt, M.; Koenig,
S.; Röger, G.; and Spaan, M. T. J., eds., Proceedings of
the Twenty-Eighth International Conference on Automated
Planning and Scheduling, ICAPS 2018, Delft, The Nether-
lands, June 24-29, 2018, 408–416. AAAI Press.
Hinton, G.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A.-r.;
Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath,
T. N.; and Kingsbury, B. 2012. Deep Neural Networks
for Acoustic Modeling in Speech Recognition: The Shared
Views of Four Research Groups. IEEE Signal Processing
Magazine, 29(6): 82–97.
Hunter, D. R.; and Lange, K. 2004. A Tutorial on MM Al-
gorithms. American Statistician, 58(1): 30–37.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
Deep Reactive Policies for Probabilistic Planning Problems.
In de Weerdt, M.; Koenig, S.; Röger, G.; and Spaan, M.
T. J., eds., Proceedings of the Twenty-Eighth International
Conference on Automated Planning and Scheduling, ICAPS
2018, Delft, The Netherlands, June 24-29, 2018, 422–430.
AAAI Press.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2017. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. Commun. ACM, 60(6): 84–90.
Lange, K. 2016. MM Optimization Algorithms. Society for
Industrial and Applied Mathematics.
Ling, J.; Gupta, T.; and Kumar, A. 2020. Reinforcement
Learning for Zone Based Multiagent Pathfinding under Un-
certainty. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 30, 551–559.
Lipp, T.; and Boyd, S. 2016. Variations and extension of the
convex–concave procedure. Optimization and Engineering,
17(2): 263–287.
Low, S. M.; Kumar, A.; and Sanner, S. 2022. Sample-
efficient Iterative Lower Bound Optimization of Deep
Reactive Policies for Planning in Continuous MDPs.
arXiv:2203.12679.

9847

Nilim, A.; and El Ghaoui, L. 2005. Robust Control of
Markov Decision Processes with Uncertain Transition Ma-
trices. Oper. Res., 53(5): 780–798.
Raghavan, A.; Sanner, S.; Tadepalli, P.; Fern, A.; and
Khardon, R. 2017. Hindsight Optimization for Hybrid State
and Action MDPs. In Proceedings of the 31st AAAI Con-
ference on Artificial Intelligence (AAAI-17). San Francisco,
USA.
Say, B. 2021. A Unified Framework for Planning with
Learned Neural Network Transition Models. In AAAI Con-
ference on Artificial Intelligence, AAAI, 5016–5024.
Say, B.; Devriendt, J.; Nordström, J.; and Stuckey, P. J.
2020. Theoretical and Experimental Results for Planning
with Learned Binarized Neural Network Transition Mod-
els. In Principles and Practice of Constraint Programming,
917–934.
Say, B.; and Sanner, S. 2018. Planning in Factored State
and Action Spaces with Learned Binarized Neural Network
Transition Models. In International Joint Conference on Ar-
tificial Intelligence, 4815–4821.
Scaroni, R.; Bueno, T. P.; de Barros, L. N.; and Mauá, D.
2020. On the Performance of Planning Through Backprop-
agation. In Cerri, R.; and Prati, R. C., eds., Intelligent Sys-
tems, 108–122. Springer International Publishing.
Schulman, J.; Heess, N.; Weber, T.; and Abbeel, P. 2015a.
Gradient estimation using stochastic computation graphs. In
Advances in Neural Information Processing Systems, 3528–
3536.
Schulman, J.; Levine, S.; Moritz, P.; Jordan, M.; and Abbeel,
P. 2015b. Trust region policy optimization. In International
Conference on Machine Learning, volume 3, 1889–1897.
ISBN 9781510810587.
Toussaint, M.; and Storkey, A. J. 2006. Probabilistic infer-
ence for solving discrete and continuous state Markov De-
cision Processes. In International Conference on Machine
Learning, 945–952.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. J. Artif.
Intell. Res., 68: 1–68.
Toyer, S.; Trevizan, F. W.; Thiébaux, S.; and Xie, L. 2018.
Action Schema Networks: Generalised Policies With Deep
Learning. In McIlraith, S. A.; and Weinberger, K. Q., eds.,
Proceedings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, (AAAI-18), the 30th innovative Applica-
tions of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelli-
gence (EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, 6294–6301. AAAI Press.
Wiesemann, W.; Kuhn, D.; and Rustem, B. 2013. Robust
Markov decision processes. Mathematics of Operations Re-
search, 38(1): 153–183.
Wu, G.; Say, B.; and Sanner, S. 2017. Scalable Planning with
Tensorflow for Hybrid Nonlinear Domains. In Advances in
Neural Information Processing Systems, 6273–6283.
Wu, G.; Say, B.; and Sanner, S. 2020. Scalable Planning with
Deep Neural Network Learned Transition Models. Journal
of Artificial Intelligence Research, 68: 571–606.

Yeh, W. 1985. Reservoir Management and Operations Mod-
els: A State-of-the-Art Review. Water Resources Research,
21: 1797–1818.
Zamani, Z.; Sanner, S.; and Fang, C. 2012. Symbolic
Dynamic Programming for Continuous State and Action
MDPs. In Hoffmann, J.; and Selman, B., eds., AAAI Confer-
ence on Artificial Intelligence.

9848

