
Formula Synthesis in Propositional Dynamic Logic with Shuffle

Sophie Pinchinat1, Sasha Rubin2, François Schwarzentruber1

1IRISA/Univ Rennes, France
2The university of Sydney, Australia

sophie.pinchinat@irisa.fr, sasha.rubin@sydney.edu.au, francois.schwarzentruber@ens-rennes.fr

Abstract

We introduce the formula-synthesis problem for Proposi-
tional Dynamic Logic with Shuffle (PDL||). This prob-
lem, which generalises the model-checking problem again-
sts PDL|| is the following: given a finite transition system
and a regular term-grammar that generates (possibly infinitely
many) PDL|| formulas, find a formula generated by the gram-
mar that is true in the structure (or return that there is none).
We prove that the problem is undecidable in general, but add
certain restrictions on the input structure or on the input gram-
mar to yield decidability. In particular, we prove that (1) if the
grammar only generates formulas in PDL (without shuffle),
then the problem is EXPTIME-complete, and a further re-
striction to linear grammars is PSPACE-complete, and a fur-
ther restriction to non-recursive grammars is NP-complete,
and (2) if one restricts the input structure to have only simple
paths then the problem is in 2-EXPTIME. This work is moti-
vated by and opens up connections to other forms of synthe-
sis from hierarchical descriptions, including HTN problems
in Planning and Attack-tree Synthesis problems in Security.

Introduction
Dynamic Logics, such as Propositional Dynamic Logic
(PDL) and its extension PDL|| with the shuffle operator
||, were introduced to formally reason about the dynamics
of possibly nondeterministic programs (Fischer and Ladner
1979; Abrahamson 1980; Göller 2008). In these logics, for-
mulas are interpreted in a graph-like structure, called a state-
transition system, whose vertices are states and edges are la-
beled by actions, reflecting program instruction effects. For
instance, the PDL formula 〈(a1)∗; a2〉p expresses that some
execution of the nondeterministic program “do a1 some
number of times, and then do a2” results in a
state of the state-transition system that satisfies the atomic
property p.

In this work, we introduce the formula-synthesis prob-
lem for PDL||: given a finite state-transition system and
a fintely-presented mechanism that generates (possibly in-
finitely many) PDL|| formulas, find a generated formula that
is true in the state-transition system (or return that there is
none).

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The mechanism we use to specify the set of formulas
are regular term-grammars: these are context-free grammars
that generate syntactic terms over a ranked alphabet, such as
logical formulas where the alphabet contains logical opera-
tors (for instance, the conjunction symbol has rank 2), and
that have nice closure properties we will make use of.

Our motivation for using regular-tree grammars stems
from their ability to provide a hierarchical description of
the input set of PDL|| formulas, and more specifically of
the program modalities occurring in the formulas, thus en-
abling to relate the formula-synthesis problem for PDL|| to
other synthesis problems where hierarchical features are es-
sential. We discuss such connections in the related work sec-
tion at the end of the paper. In particular, we show that the
formula-synthesis problem for PDL|| is a natural abstraction
of certain aspects of Hierarchical Task Network problems
in Planning (Georgievski and Aiello 2015) and Attack-tree
Synthesis in Security (Wideł et al. 2019). For instance, the
decomposition patterns of compound tasks into sequences
of actions one finds in the framework of Hierarchical Task
Networks for planning scenarios can be simulated by gram-
mar rules on the program modalities in PDL||, while the
state-transition system can represent the planning domain.
Thus in our setting, term-grammars replace methods in task-
networks, and the formula-synthesis problem for PDL|| re-
places the Hierarchical Task Network problem.

We remark that the model-checking problem against
PDL|| is a special case of the formula synthesis problem
for PDL|| in which the grammar generates a single formula.

Technically, our contributions are as follows:

1. We provide a crisp formalization of the formula synthesis
problem for Propositional Dynamic Logic with Shuffle,
which we call SYNTHPDL||.

2. We prove that SYNTHPDL|| is undecidable by reduc-
ing the intersection problem for context-free word-
grammars, known to be undecidable, see, e.g., (Hopcroft,
Motwani, and Ullman 2003). This approach was used
earlier for a similar undecidability result in HTN plan-
ning (Erol, Hendler, and Nau 1996).
This motivates the study of special cases of the problem,
where restrictions are taken over the input structure or the
input grammar. More precisely, we establish that:

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

9902

3. If one restricts to PDL input grammars (i.e., without
shuffle), then this subproblem, called SYNTHPDL, is
EXPTIME-complete. The proof proceeds by building a
term-grammar that generates exactly the PDL formulas
that are true in the input transition system. For the lower
bound we reduce from the non-universality problem for
non-deterministic tree-automata.

4. If one restricts the input systems to have finitely many
paths, then SYNTHPDL|| is in 2-EXPTIME, while the
lower bound is left open. The proof proceeds by building
a term-grammar that generates exactly the PDL|| formu-
las that are true in the input transition system.

5. If one restricts to linear PDL input grammars (each rule
derives a term with at most one non-terminal symbol),
then SYNTHPDL is PSPACE-complete.

6. If one restricts to non-recursive PDL grammars (such
a grammar generates finitely many formulas), then
SYNTHPDL|| is in EXPSPACE and SYNTHPDL is in
PSPACE – the lower bound is still an open question.

7. If one restricts to PDL grammars that are linear and non-
recursive, then SYNTHPDL is NP-complete.

Preliminary Notions
In this section, we recall useful notions in formal language
theory and fix our notations.

Binary relations We use standard notations for binary
relations over set D. Given two binary relations R1 and
R2, we let R1 ◦ R2 := {(u, v)| there exists w(u,w) ∈
R1 and (w, v) ∈ R2}, and R∗ :=

⋃
n≥0R

n with Rn de-
fined as follows: R0 = {(u, u) : u ∈ D}, Rn+1 = Rn ◦ R
for n > 0.

Finite-word languages Let Σ = {`, `′, `1, . . .} be a finite
alphabet. A word over Σ is a finite sequence α = `1`2 . . . `n
of elements of Σ. We denote by ε the empty word. We recall
classic formal language operations. Let L1 and L2 be two
languages over Σ. We define the concatenation of two lan-
guages L1 and L2 by L1L2 := {αβ |α ∈ L1 and β ∈ L2}.
Next, we recall the shuffle of two languages as the language
obtained by shuffling (or interleaving) each word of L1 with
each word of L2. Formally, the shuffle α ||β of two words
α and β is defined by induction as follows: ε ||α = α || ε =
{α} and (`α) ||(`′β) = `(α || `′β)∪`′(`α ||β). For example,
ab || cd 3 abcd, acbd, cadb, etc. The shuffle of two languages
L1 andL2 is then defined byL1 || L2 :=

⋃
α∈L1,β∈L2

α ||β.

Regular tree-grammars We now recall the basic notions
(the reader may refer to (Comon et al. 2005, Subsection 2.1,
p. 51) for more details). A ranked alphabet is a set Σ and
associated ranks (arities) of the symbols. The rank of f ∈ Σ
is denoted rk(f). The rank of standard function symbols are
obvious, e.g., the rank of ∧ is 2, and the rank of true is 0.
Note that we sometimes call symbols of rank 0 constants.

The set of terms, also known as trees, over Σ is the small-
est set of expressions satisfying the following: all constants
are terms, and if t1, · · · , tk are terms and rk(f) = k then
f(t1, · · · , tk) is a term. A language over Σ is a set of terms.

A regular tree-grammar over Σ is a tuple

G = (N, S,Σ,R)

where:
• N is a finite non-empty set of non-terminals,
• S ∈ N is the axiom,
• Σ, a ranked alphabet, is the set of terminals, and
• R a finite set of production rules of the form X → t

where X ∈ N and t is a term over Σ ∪N where nonter-
minals have rank 0.

For terms t, t′ over the ranked alphabet Σ ∪ N, write
t ⇒ t′ if t′ is the result of replacing a non-terminal X in
t by the right hand side of some rule X→ t′′. Write⇒∗ for
the reflexive and transitive closure of⇒. The language gen-
erated by G is the set of terms t over Σ such that S ⇒∗ t.
A set of terms is regular if it is the language generated by
some regular tree-grammar G. The size of a grammar G is
the sum of the length of all the rules inR.

We use the following algorithmic facts about regular tree-
grammars based on (Comon et al. 2005) that says that the
regular-tree grammars are efficiently closed under intersec-
tion and non-emptiness testing.
Proposition 1. 1. There is a polynomial time algorithm

that given two regular tree-grammars G1 and G2 builds
a regular tree-grammar G that generates the intersection
of the languages generated by G1 and G2.

2. There is a polynomial time algorithm that given a regu-
lar tree-grammar G decides if the language it generates
is non-empty, and in this case returns a term generated
by G.

The Logic PDL||

We recall the extension of Propositional Dynamic Logic as
considered in (Mayer and Stockmeyer 1996), which offers
a way of combining programs by interleaving that we call
shuffle in this paper.

In the following, we fix a set PROP of atomic propositions
and a set ACTIONS of atomic programs (these will be finite
sets for all practical purposes). The syntax of the logic PDL||
is given as follows:

ϕ ::= p | true | ¬ϕ | ϕ1 ∧ ϕ2 | [ρ]ϕ

ρ ::= a | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗ | ρ1 || ρ2

where p varies over elements of PROP, and a over elements
of ACTIONS. Expressions ϕ are PDL|| formulas, and expres-
sions ρ are programs.1 We denote by PDL|| the set of PDL||
formulas, and by Prog the set of programs. We use usual
shorthands for formulas, including 〈ρ〉ϕ = ¬[ρ]¬ϕ.

The semantics of PDL|| is defined over a transition-
system (TS) over PROP and ACTIONS, that is a structure D =
(D,λ, δ) consisting of a finite non-empty set D of states,
a labeling of states by propositions λ : PROP → 2D, and
a transition relation δ : ACTIONS → 2D×ACTIONS×D such
that δ(a) only contains elements of the form (u, a, v).

1Note that we write ρ∗ instead of ρ∗ since we reserve the su-
perscript for the semantics.

9903

In a TS D = (D,λ, δ), a pure transition is a triple
(u, a, v) in δ(a) for some a ∈ ACTIONS. Note that the co-
domain of δ is the set of pure transitions. A stuttering tran-
sition is a pair (u, u) where u ∈ D. A transition of D is a
either a pure or a stuttering transition. We will denote by ∆D

the set of transitions of D. For the set ∆D, we will use typi-
cal elements t,t′,t1, We then denote by ∆∗D the set of
finite sequences over ∆D. Given a sequence t1 . . .tn, we
let first(t1 . . .tn) = u if t1 = (u, a, v) or t1 = (u, u),
and we define last(t1 . . .tn) in a similar way.

There are particular sequences t1t2 . . .tn called paths,
that yield the classic notion of path in a transition system,
namely a finite sequence π of transitions t1t2 . . .tn of the
form ti = (ui−1, ai, ui) ∈ δ(ai) for every i = 1, . . . n;
thus, in a path, the end state of a transition is equal to the
first state of the next transition (if any) along this sequence.
We fix a few notations: we denote by ΠD ⊆ ∆∗D the set of
paths of D, by Π

(u,v)
D ⊆ ΠD the set of paths from u to v,

and by Πu
D ⊆ ΠD the set of paths that start from state u.

To obtain the semantics of PDL||, the labeling function λ
and the transition relation δ are extended by simultaneous
induction to λ : PDL|| → 2D and δ : Prog → 2∆∗D as
follows. For programs define:
• δ(ρ1 + ρ2) = δ(ρ1) ∪ δ(ρ2),
• δ(ρ1; ρ2) = δ(ρ1)δ(ρ2),
• δ(ρ∗) = (δ(ρ))∗,
• δ(ρ1 || ρ2) = δ(ρ1) || δ(ρ2),
• δ(ϕ?) = {(u, u) ∈ D2 |u ∈ λ(ϕ)},

and for formulas define:
• λ(true) = D,
• λ(¬ϕ) = D \ λ(ϕ),
• λ(ϕ1 ∧ ϕ2) = λ(ϕ1) ∩ λ(ϕ2),
• λ([ρ]ϕ) = {u ∈ D | ∀π ∈ Πu

D ∩ δ(ρ), last(π) ∈ λ(ϕ)},
Write D, u |= ϕ if u ∈ λ(ϕ), and say that a program ρ

is executable in D from u if D, u |= 〈ρ〉true, namely, ac-
cording to the semantics above, whenever there exists a path
π in D starting from u (and whose end state satisfies true).
Remark 1. If we discard the program operator ||, we obtain
the logic PDL. Indeed, one can see that the standard seman-
tics of PDL (Fischer and Ladner 1979), and the semantics
given here inspired from (Mayer and Stockmeyer 1996) co-
incide. Recall that the standard semantics of PDL is over
transition systems (D,λ, δ′) where λ : PROP → 2D as in
our semantics, but where δ′ is a function ACTIONS → 2D×D

that is extended to δ′ : Prog → 2D×D instead of to
Prog → 2∆∗D . We can recover this ”finitary” semantics by
observing that δ′(ρ) is the set of pairs (start(π), last(π))
for paths π ∈ δ(ρ). The important difference between PDL||
and PDL is that while co-domain of δ′ is always a finite set,
this is not the case of δ in general. This makes decision prob-
lems for PDL|| more difficult than for PDL.

We now show how to use regular-tree grammars to gener-
ate sets of PDL|| formulas. The set of PDL|| formulas can
be viewed as terms over the ranked alphabet

ΣPDL|| := ACTIONS ∪ PROP ∪ {true, ∗, ?,¬, ; ,+,∧, [], ||}

with the following arities of symbols: symbols in ACTIONS

and PROP and the symbol true have arity 0, the symbols ∗,
?, and ¬ have arity 1, and the remaining ones have arity 2.
Throughout the paper, we take the convention that a term
of the form [](t, t′) is rather written [t]t′ and that we use
infix notations for the binary symbols of the alphabet, e.g.
the term ||(t, t′) is written t || t′, so that terms look like PDL
formulas and programs.

Example 1. Terms that describe arbitrary PDL|| formu-
las can be generated by the regular tree-grammar G =
({S,P}, S,ΣPDL|| ,R) where the axiom symbol S derives the
PDL|| formulas and the nonterminal P derives the PDL||
programs, and where the setR of rules is:

S→ p

S→ true

S→ ¬S
S→ S ∧ S
S→ [P]S

P→ a

P→ S?

P→ P + P

P→ P; P
P→ P∗
P→ P ||P

Example 2. We provide a tree-grammar that generates all
formulas of the form 〈ρ〉ϕ where ρ is a PDL||-program con-
sisting only of sequences of atomic actions, and where ϕ is
a goal set of states, characterized by proposition goal:

S→ 〈P〉goal
P→ a (a ∈ ACTIONS)
P→ P; P

Recall that D, d |= 〈ρ〉ϕ means there exists a ρ execution
from d that reaches a state satisfying ϕ.

We now define the formula synthesis problem for PDL||.

Definition 1 (SYNTHPDL||). The PDL||-formula synthesis
problem, written SYNTHPDL|| for short, is: given a finite set
PROP of atomic propositions, a finite set ACTIONS of atomic
programs, a TS D (over PROP and ACTIONS), a state d ∈ D,
a regular tree-grammar G generating a set of PDL|| for-
mulas, decide if there exists ϕ generated by G such that
D, d |= ϕ, and find one if there is.

We let SYNTHPDL be the subproblem of SYNTHPDL||
where the input regular tree-grammar generates a set of PDL
formulas, i.e., formulas without the operator ||.

Note that in case the grammar generates finitely many
formulas ϕ1, . . . , ϕm, the formula-synthesis problem re-
duces to solving the model-checking instance D, d |= ϕ1 ∨
. . . ∨ ϕm. We recall that model-checking against PDL||
is PSPACE-complete (Göller 2008, Proposition 2.10), while
model-checking against PDL is P-complete (Harel, Kozen,
and Tiuryn 2000; Lange 2006).

In the subsequent sections, we analyze SYNTHPDL|| and
various relevant subproblems, including SYNTHPDL.

Analysis of SYNTHPDL||

We present a proof that SYNTHPDL|| is undecidable, taking
inspiration from the undecidability of the Hierarchical Task
Network problem of (Erol, Hendler, and Nau 1996). As a

9904

u

w

end

vavb

a(1)

a(2)b(1)

b(2)

Figure 1: The TS for alphabet Γ = {a, b}.

consequence, the formula-synthesis problem for PDL|| does
not always reduce to the model-checking problem against
PDL||.
Theorem 1. SYNTHPDL|| is recursively-enumerable com-
plete (and therefore undecidable), even when restricted to
sets of formulas expressing executability of programs with
shuffle and concatenation only.

Proof. The problem is recursively enumerable (RE) since
one can enumerate the PDL|| formulas ϕ generated by the
input tree-grammar, and for each one effectively check if
D, d |= ϕ.

For RE-hardness, we reduce from the intersection prob-
lem of context-free word grammars (CFGs) known to be
RE-hard, see, e.g., (Hopcroft, Motwani, and Ullman 2003):
given two CFGs H1, H2 in Chomsky-normal-form with the
same terminal alphabet Γ, decide if L(H1) ∩ L(H2) 6= ∅.

Recall that a CFG H is in Chomsky-normal-form if every
rule is of the form A → a or A → BC, for nonterminals
A,B,C and terminal a. Note that, w.l.o.g., we have assumed
that the grammars do not generate the empty string, and we
can assume that the sets of nonterminals of H1 and H2 are
disjoint, and that the start symbol of Hi is Zi.

Given an instance (H1, H2) of the intersection problem,
we compute an instance (D, d,G) of SYNTHPDL|| as fol-
lows. The TS D = (D,λ, δ) only depends on the al-
phabet Γ of the CFGs. By letting PROP := {end} and
ACTIONS := Γ(1)] Γ(2) ∪ {#}, where Γ(1) and Γ(2) are dis-
joint copies of Γ and # is a fresh symbol, the TS is defined
by:

• D = {u,w} ∪ {va | a ∈ Γ};
• λ(end) = {w};
• for a ∈ Γ, δ(a(1)) = {(u, va)} and δ(a(2)) = {(va, u)};
• δ(#) = {(u,w)}.

The TS for Γ = {a, b} is drawn in Figure 1; a typical
path from u starts like (u, a(1), va) (va, a

(2), u) (u, b(1), vb)
(vb, b

(2), u) · · · . The distinguished state d in D is u.
Regarding the grammar G, we first turn word-grammars

H1 and H2 into tree-grammars G1 and G2, respectively,
which are meant to generate sequential PDL|| programs.
The tree-grammar Gi has:

• terminal symbols Σi := Γ(i)] {; } where the symbols in
Γ(i) have arity 0, and the symbol “;” has arity 2;

• the same non-terminal symbols as Hi;
• every rule obtained by replacing a rule A → a in Hi by

the rule A→ a(i), and by replacing a rule A→ BC in Hi

by the rule A→ B; C.

The grammar G is obtained by gathering the rules from
G1 and G2, and by adding the rule S→ 〈(Z1 ||Z2); #〉end,
where S is a fresh axiom symbol.

Then, the grammar G generates a formula of the form
〈((a(1)

1 ; . . . ; a(1)
k) ||(b(2)

1 ; . . . ; b(2)
`)); #〉end if, and only if,

a1 . . . ak ∈ L(H1) and b1 . . . b` ∈ L(H2).
Now, D, u |= 〈(a(1)

1 ; . . . ; a(1)
k) ||(b(2)

1 ; . . . ; b(2)
`)); #〉end

iff k = ` and aj = bj for all 1 ≤ j ≤ k, which entails
a1 . . . ak ∈ L(H1) ∩ L(H2).

Conversely, from a word a1 . . . ak ∈ L(H1) ∩ L(H2),
since for i = 1, 2, Zi derives a(1)

i . . . a(1)
i , axiom S derives the

formula ϕ∩ := 〈((a(1)
1 ; . . . ; a(1)

k) ||(a(2)
1 ; . . . ; a(2)

k)); #〉end.
Moreover, the sequence of transitions (u, a(1)

1 , va1)

(va1 , a
(2)
1 , u) · · · (u, a(1)

k , vak)(vak , a
(2)
k , u)(u,#, w) is a

path in D that witnesses the statement D, u |= ϕ∩.

We make some observations about the SYNTHPDL|| in-
stances constructed in the proof of RE-hardness. First, the
formulas make use of a single shuffle operator. A nat-
ural question is to discard it and study the subproblem
SYNTHPDL. Second, the finite TS (Figure 1) has infinitely
many paths. But what if we only consider DAG2-like input
transition systems, while keeping the set of candidate formu-
las infinite? Third, we may consider restrictions on the input
grammar, in addition to forbidding the shuffle operator. We
explore all of these in the next section.

Decidability
In this section, we explore a broad spectrum of assumptions
on the inputs that make our formula-synthesis problem de-
cidable.

PDL Grammars
We consider the case where the input grammar generates
PDL formulas only, i.e., there is no occurrence of || in
any rule. Recall that SYNTHPDL is this subproblem of
SYNTHPDL||.

Theorem 2. SYNTHPDL is EXPTIME-complete.

We establish the upper bound in Proposition 3 by design-
ing a tree-grammar for the set of all PDL formulas satisfied
by state d in D (preliminary Proposition 2). Our ability to
effectively build such a grammar heavily relies on the PDL
co-domain-finite semantics δ′ for programs (see Remark 1).
For the lower bound we reduce from the non-universality of
nondeterministic word-automata (NFW) in Proposition 4.

Proposition 2. For every transition system D = (D,λ, δ)
and every state d ∈ D, we can build a regular tree-grammar
GD,d of size exponential in D generating exactly the PDL
formulas ϕ such D, d |= ϕ.

Proof. Intuitively, the grammar mimicks the inductive def-
inition of λ and of the program semantics δ′ of Remark 1.
We therefore need a nonterminal X for each X ⊆ D and a

2Directed acyclic graphs, i.e. there is no cycle
(u1, a1, u2), . . . , (uk−1, ak−1, uk) ∈ λ wth uk = u1.

9905

nonterminal Y for each binary relation Y ⊆ D×D, as well
as production rules that ensure:

X derives ϕ iff λ(ϕ) = X (1a)

Y derives ρ iff δ′(ρ) = Y (1b)

We therefore let NForm := {X |X ⊆ D} and NProg :=
{Y |Y ⊆ 2D×D}, and GD,d = (NForm] NProg]
{S}, S,ΣPDL,R) where R consists of the rules S → X for
every X ∈ NForm containing d, and of all the following
rules, for each X ⊆ D and each Y ⊆ D ×D:

X→ true

X→ p if X = λ(p)

X→ ¬X1 if X = D \X1

X→ X1 ∧ X2 if X = X1 ∩X2

X→ [Y]X1 if X = {u | ∀v.(u, v) ∈ Y implies v ∈ X1}
Y→ a if Y = δ(a)

Y→ X? if Y = {(u, u) |u ∈ X}
Y→ Y1 + Y2 if Y = Y1 ∪ Y2

Y→ Y1; Y2 if Y = Y1 ◦ Y2

Y→ Y1∗ if Y = Y ∗1

A straightforward induction (on formulas and programs)
shows that (1a) and (1b) hold. From those it is immediate
that S derives exactly the formulas ϕ such that D, d |= ϕ.
We just give some of the cases.

• X derives p iff λ(p) = X .
• X derives ϕ1 ∧ϕ2 iff X = X1 ∩X2 where Xi derives ϕi

for i = 1, 2 iff X = X1 ∩X2 and (IH) Xi = λ(ϕi) for
i = 1, 2 iff λ(ϕ1 ∧ ϕ2) = λ(ϕ1) ∩ λ(ϕ2) = X .

• X derives [ρ]ϕ iff X = {u | (u, v) ∈ Y implies u ∈ X1}
and Y derives ρ and X1 derives ϕ iff X = {u | (u, v) ∈
Y implies v ∈ X1} and (IH) Y = δ′(ρ) and (IH) X1 =
λ(ϕ) iff X = λ([ρ]ϕ).

• Y derives ρ1 + ρ2 iff Y = Y1 ∪ Y2 and Yi derives ρi for
i = 1, 2 iff Y = Y1∪Y2 and (IH) δ′(ρi) = Yi for i = 1, 2
iff Y = δ′(ρ1) ∪ δ′(ρ2) = δ′(ρ1 + ρ2).

The remaining cases are similar.

Proposition 3. SYNTHPDL is decidable, and can be solved
in exponential time in the size of the input transition system
and polynomial time in the size of the input grammar.

Proof. We take advantage of the effective construction of
GD,d (Proposition 2) to design an algorithm for solving
SYNTHPDL.

1. Build the grammar GD,d from the proof of Proposition 2
in time exponential in |D|.

2. Build a grammar G′ for the intersection of the lan-
guages generated by G and GD,d (Proposition 1), of size
poly(|G|)× poly(|GD,d|).

3. Decide in polynomial time in |G′| (Proposition 1)
whether or not the language generated by G′ is empty.
If it is empty, then return ”No solution”. Otherwise, ex-
tract and return a formula generated by G′.

This completes the proof.

By reducing the non-universality problem for (bottom
up) nondeterministic finite tree automata (NFT), (known
to be EXPTIME-complete, see (Löding 2012, p. 91)) to
SYNTHPDL, we obtained the following EXPTIME-hardness.

Proposition 4. SYNTHPDL is EXPTIME-hard.

Since SYNTHPDL is decidable, and because the proof of
the undecidabilty of SYNTHPDL|| makes use of a single oc-
currence of the shuffle operator in the generated formulas,
there is little hope to find a decidable subproblem in between
SYNTHPDL and SYNTHPDL|| based on a restriction of the
input grammar. Therefore, in the next section, we explore an
assumption on the input transition-system side.

DAG-like Transition Systems
Restricting to DAG-like TS amounts to considering TS with
finitely many paths, that we call here finitely-many-path TS;
observe that the TS of Figure 1 is not finitely-many-path.

In this setting, the semantics of programs are bounded,
i.e., the image δ(ρ) of every program ρ is a finite set of se-
quences, each sequence being a subsequence of one of the
finitely many paths in the TS. On this basis, one can effec-
tively build a regular tree-grammar that generates the PDL||
formulas true at some fixed D, d (see Proposition 5), and
thus design an algorithm similar to the one for PDL gram-
mars.

Theorem 3. SYNTHPDL|| restricted to finitely-many-path
transition systems is in 2-EXPTIME.

The remainder of the section is dedicated to the proof that
is similar to the one of Proposition 2, but has to exhibit an
image-finiteness for the program semantics.

Proposition 5. Given a transition system D = (D,λ, δ)
with finitely many paths, and some state d ∈ D, one can
effectively build a regular tree grammar GD,d that generates
exactly all the PDL|| formulas ϕ such that D, d |= ϕ.

Proof. Fix a transition system D = (D,λ, δ) with finitely
many paths, and some state d ∈ D.

Recall that the set of transitions of D (pure and stuter-
ring transitions) is denoted by ∆D, and that the set of paths
ΠD ⊆ ∆∗D. Given two transitions t,t′ ∈ ∆D, we let
t < t′ hold whenever along some path π ∈ ΠD, last(t)
preceeds first(t′). Observe that ≤ is a partial order since
D is a DAG.

We let ∆<
D ⊆ ∆∗D be the finite subset of linearly

<-ordered sequences of transitions. Clearly, every path and
every stuttering transition belong to ∆<

D.

We define the grammar GD,d = (N, S,ΣPDL|| ,R) that
intuitively mimicks the inductive definition of λ and δ.
N = {S}]NForm]NPairs]NProg where:

1. NForm contains a non-terminal X for each X ⊆ D;
2. NPairs contains a non-terminal Y for each Y ⊆ D×D;
3. NProg contains a non-terminal Z for each Z ⊆ ∆<

D.

9906

In the spirit of the proof of Proposition 2, it is possible to
construct in time O(22poly(|D)|

) a set of rules R, so that the
resulting grammar has size O(22poly(|D|)

) and satisfies the
following lemma.

The constructed grammar garanties the three properties of
the following lemma, similar to the properties (1a) and (1b)
in Proposition 2.

Lemma 1. For each X ∈ NForm,Y ∈ NPairs,Z ∈ NProg ,

X derives ϕ iff λ(ϕ) = X (2a)

Y derives ρ iff Y = {(u, v) ∈ D2 | Π(u,v)
D ∩δ(ρ) 6=∅} (2b)

Z derives ρ iff Z = δ(ρ) ∩∆<
D (2c)

It is clear that Equation (2a) entails Proposition 5 since by
definition of the single rule from S, it is immediate that S
derives ϕ iff D, d |= ϕ.

Lemma 1 can be proved by induction over the formulas
and the programs.

Now, we conclude the proof of Theorem 3 by designing
an algorithm along the same lines as the one for Proposi-
tion 2. Because the constuction of the grammar GD,d re-
quires poly(22poly(|D|)

)-time, this algorithm runs in double-
exponential time, which concludes the proof.

Theorem 3 shows that keeping the shuffle operator is pos-
sible. We currently are not aware of another restriction on
the input transition systems that would work. We therefore
return to restrictions on the input grammars, disallowing the
use of the || operator.

Linear PDL Grammars
Inspired from the definition of linear context-free grammars
(Salomaa 1987, Section 5 p. 44), we say that a regular tree
grammar is linear whenever for every rule there is at most
one non-terminal occurring in the right-hand expression of
this rule. For example, the grammar in Theorem 1 is not lin-
ear.
Theorem 4. SYNTHPDL for linear grammars is PSPACE-
complete.

Proof. First, we establish that its PSPACE-hardness already
holds for the following fixed linear grammar G:

S→ p S→ [0]S S→ [1]S

Indeed, we can reduce from the PSPACE-complete prob-
lem of the non-universality of nondeterministic finite word
automata (NFW), known to be PSPACE-complete (Aho,
Hopcroft, and Ullman 1974, Section 10.6, p. 395). In-
tuitively, this reduction takes the TS as the very NFW
where proposition p holds of every non final state, while
the grammar can generate some formula of the form
[a0][a1] · · · [ak]p, thus showing that word a0a1 · · · ak is re-
jected by the NFW.

Regarding the PSPACE-membership, there is a non-
deterministic algorithm that runs in polynomial space, and
that generates a formula ϕ from the grammar G, and simul-
taneously verifies that D, d |= ϕ. The idea is to iteratively

guess the rule to apply to the current unique non-terminal,
and to guess its semantics.

Non-Recursive Grammars
A regular tree grammar is non-recursive (Nederhof and Satta
2002) when every nonterminal occurs at most once in every
derivation; as a consequence a non-recursive grammar gen-
erates a finite language. Note that the grammar of the RE-
hardness of SYNTHPDL|| (Theorem 1) is recursive.
Theorem 5. SYNTHPDL with non-recursive grammars is
in PSPACE.

Proof. We design an alternating algorithm that runs in poly-
nomial time (recall APTIME = PSPACE). The algorithm is
based on the idea given in the proof of Theorem 4 with the
difference that there may be several non-terminal symbols
in the right-hand side of a rule. Rules to apply are guessed
existentially, as well as the semantics X ′, Y ′, etc. of the
symbols in the right-hand side of the choosen rule. Then we
universally guess on which non-terminal symbol we keep
on for next rule in the derivation. Since the grammar is
non-recursive, there is a natural well-founded partial order
between non-terminals, which makes the algorithm run in
polynomial-time; and there are at most a linear number of
recursive calls.

We exploit the approach above for SYNTHPDL||.

Theorem 6. SYNTHPDL|| with non-recursive grammars is
in EXPSPACE.

Proof. Due to non-recursiveness, there are finitely many
derivable formulas, in fact at most an exponential number
in the size of the grammar G. Also, each formula is of
size O(2poly(|G|)). We first generate all derivable formu-
las, and for each of these formulas ϕ, we check D, d |= ϕ,
which is in PSPACE (Göller 2008). As formula ϕ is of size
O(2poly(|G|)), each check requires an exponential amount of
memory, which concludes.

Linear and Non-Recursive PDL Grammars
Finally, combining the last two restrictions we get:
Theorem 7. The PDL synthesis problem restricted to non-
recursive linear grammars is NP-complete.

Proof. For NP-membership, note that a linear non-recursive
grammar G only generates terms of size in O(|G|). Indeed,
in each derivation step, we add O(1) symbols, and since
there are at most a linear number of derivations, a formula
generated by the grammar has has size at most O(|G|). The
NP procedure guesses a derivation of some ϕ, and checks
D, d |= ϕ (which can be done in P).

For NP-hardness, we reduce from 3SAT by converting an
input 3CNF φ into a pair (D, u) and a grammar G, so that
φ is satisfiable iff G generates some ϕ with D, u |= ϕ. In-
tuitively, the reduction relies on the satisfiability game for φ
where initially Player 0 chooses a valuation ν, next Player
1 picks a clause, and Player 1 to win the play if the picked
clause satisfies the valuation. The generated formulas are of
the form 〈valuation〉[clause]sat. The grammar’s role for

9907

the program is to generate all possible valuations Player 0
may select, and the choice of Player 2 as well as the satis-
faction check are reflected in the TS.

Discussion and Related Work
The formula synthesis problem seems to be new. A remotely
related work concerns a schema for randomly generating
Description Logic formulas (Hladik 2005). More closely re-
lated work concerns other mathematical settings, which have
similar features to PDL||, and are concerned with synthesis-
ing objects from hierarchical descriptions. We now discuss
two of these: HTN Planning and Attack-tree synthesis.

A task problem in Hierarchical Task Network (HTN)
Planning (Bacchus 2001) involves task-network methods
that decompose compound tasks into a combination of sub-
tasks, just as tree-grammar rules for a PDL|| program de-
compose programs in subprograms. It can be established
that if we restrict to the propositional setting of HTN and
if all methods are linearly ordered task decomposition (L)
or unordered task decomposition (U), also known as TOTD
and UTD respectively in the literature (see (Georgievski and
Aiello 2015, Section 2.2.1)), then the following claim holds.
Claim 1. The task problem on HTNPL+U instances, i.e.,
propositional instance only consisting of L and U methods,
polynomially reduces to SYNTHPDL||.

Intuitively, the tree-grammar in this reduction generates
only formulas of the 〈ρ〉true where the grammar rules for ρ
reflect the task decomposition methods of the HTNPL+U in-
stance: linearly ordered and unordered task decompositions
are respectively captured by program operators ; and ||.

A careful inspection of the proof in (Erol, Hendler, and
Nau 1996) of the undecidability of the task problem for ar-
bitrary HTN instances reveals that undecidability already
holds for the HTNPL+U instances. Thus, our undecidabil-
ity result for SYNTHPDL|| (Theorem 1) becomes a mere
corollary of Claim 1; and indeed the direct proof proposed
in this paper borrows ideas from the one in (Erol, Hendler,
and Nau 1996). Claim 1 also makes it possible to connect
our complexity results for SYNTHPDL|| with the ones in
(Erol, Hendler, and Nau 1996) for HTN planning. How-
ever, it should be noticed that in the HTN setting, the plan-
ning domain is symbolic, while the input transition system
in SYNTHPDL|| is explicit. This, and the fact that task-
network methods in HTN planning may rely on arbitrary
partial orders between subtasks, renders the comparison of
our complexity results with the ones of (Erol, Hendler, and
Nau 1996; Alford, Bercher, and Aha 2015) tricky, but opens
clear avenues for future work to explore deeper connec-
tions between the two frameworks. Besides, the inability
of SYNTHPDL|| programs to describe linearizations of ar-
bitrary partial orders prevents a natural reduction from the
(propositional) HTN problem to SYNTHPDL||, which calls
for an extension of the latter.

Attack Tree Synthesis
The second notable work that concerns hierarchical decom-
position is the attack tree synthesis problem in Security. At-
tack trees (AT) are aknowledged models for reasoning in

Risk Analysis (Schneier 1999). Their automated generation
(synthesis) is considered as a Holy Grail by security ex-
perts so as to avoid their tedious and error-prone manual
design (Vigo, Nielson, and Nielson 2014). Although much
less studied than the task problem, there are few works
that tackle this tricky challenge; see (Wideł et al. 2019)
for the survey on formal methods for AT, which include
(Gadyatskaya et al. 2017; Pinchinat, Schwarzentruber, and
Lê Cong 2020). In these approaches, one can recast the ad-
dressed problems as subproblems of SYNTHPDL||. In par-
ticular in the latter contribution, the notion of library is
in essence a set of grammatical rules for PDL||-like pro-
grams, with tight correspondance between OR, SAND and
AND node types in AT with the +, ; and || program operators
in SYNTHPDL||, respectively.

Claim 2. The attack tree synthesis problem of (Pinchinat,
Schwarzentruber, and Lê Cong 2020) polynomially reduces
to SYNTHPDL||.

Intuitively, the reduction provides input grammars that
generate only formulas of the form 〈ρ〉goal, similarly
to HTN planning. In (Pinchinat, Schwarzentruber, and Lê
Cong 2020) the input transition system consists of a single
path, yielding an NP-complete complexity (by a dynamic-
programming-based approach), and the case of a DAG-like
transition system was left open. We have proved that this
generalisation also polynomially reduces to SYNTHPDL||.
Due to lack of space, this reduction will be available in an
extended version of this paper. It is another exciting avenue
for future work to exploit our results about the synthesis
problem to shed light on general forms of the attack tree
synthesis problem.

Future Work
Besides the future research foreseen in the related work,
many tasks remain.

First, although we showed how to lower the complexity of
the problem for various restrictions, we left open the lower
bounds in a number of cases.

Second, we observed that the shuffle operator threatens
decidability since, in general, it yields an image-infinite pro-
gram semantics. We exploited this to exhibit decidable cases
of the general problem, and note here that this is a useful
heuristic for the quest of finding other decidable cases.

Finally, from a broader perspective, it would be interest-
ing to study the formula-synthesis problem for other log-
ics, and to find applications of this generalisation of model-
checking. In particular, we are inclined to consider the case
of Game Logic (Pauly and Parikh 2003) for attack tree syn-
thesis in an adverserial setting.

References
Abrahamson, K. R. 1980. Decidability and expressiveness
of logics of processes. University of Washington.
Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D. 1974. The
Design and Analysis of Computer Algorithms. Addison-
Wesley. ISBN 0-201-00029-6.

9908

Alford, R.; Bercher, P.; and Aha, D. 2015. Tight bounds for
HTN planning. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 25,
7–15.
Bacchus, F. 2001. AIPS 2000 planning competition: The
fifth international conference on artificial intelligence plan-
ning and scheduling systems. Ai magazine, 22(3): 47–47.
Comon, H.; Dauchet, M.; Gilleron, R.; Jacquemard, F.;
Lugiez, D.; Löding, C.; Tison, S.; and Tommasi, M. 2005.
Tree automata techniques and applications. https://hal.inria.
fr/hal-03367725
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity
Results for HTN Planning. Ann. Math. Artif. Intell., 18(1):
69–93.
Fischer, M. J.; and Ladner, R. E. 1979. Propositional Dy-
namic Logic of Regular Programs. J. Comput. Syst. Sci.,
18(2): 194–211.
Gadyatskaya, O.; Jhawar, R.; Mauw, S.; Trujillo-Rasua, R.;
and Willemse, T. A. C. 2017. Refinement-Aware Generation
of Attack Trees. In STM, volume 10547 of LNCS, 164–179.
Springer.
Georgievski, I.; and Aiello, M. 2015. HTN planning:
Overview, comparison, and beyond. Artif. Intell., 222: 124–
156.
Göller, S. 2008. Computational complexity of propositional
dynamic logics. Ph.D. thesis, University of Leipzig.
Harel, D.; Kozen, D.; and Tiuryn, J. 2000. Dynamic Logic.
MIT Press.
Hladik, J. 2005. A Generator for Description Logic Formu-
las. In Description Logics.
Hopcroft, J. E.; Motwani, R.; and Ullman, J. D. 2003. In-
troduction to automata theory, languages, and computation
- international edition (2. ed). Addison-Wesley. ISBN 978-
0-321-21029-6.
Lange, M. 2006. Model checking propositional dynamic
logic with all extras. Journal of Applied Logic, 4(1): 39–
49.
Löding, C. 2012. Basics on Tree Automata. In D’Souza,
D.; and Shankar, P., eds., Modern Applications of Automata
Theory, volume 2 of IISc Research Monographs Series, 79–
110. World Scientific.
Mayer, A. J.; and Stockmeyer, L. J. 1996. The complexity
of PDL with interleaving. Theoretical Computer Science,
161(1-2): 109–122.
Nederhof, M.-J.; and Satta, G. 2002. Parsing non-recursive
CFGs. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, 112–119.
Pauly, M.; and Parikh, R. 2003. Game logic-an overview.
Studia Logica, 75(2): 165–182.
Pinchinat, S.; Schwarzentruber, F.; and Lê Cong, S. 2020.
Library-Based Attack Tree Synthesis. In III, H. E.; and
Gadyatskaya, O., eds., Graphical Models for Security - 7th
International Workshop, GraMSec 2020, Boston, MA, USA,
June 22, 2020 Revised Selected Papers, volume 12419 of
Lecture Notes in Computer Science, 24–44. Springer.

Salomaa, A. 1987. Formal languages. Computer science
classics. Academic Press. ISBN 978-0-12-615750-5.
Schneier, B. 1999. Attack trees. Dr. Dobb’s journal, 24(12):
21–29.
Vigo, R.; Nielson, F.; and Nielson, H. R. 2014. Automated
generation of attack trees. In 2014 IEEE 27th Computer
Security Foundations Symposium, 337–350. IEEE.
Wideł, W.; Audinot, M.; Fila, B.; and Pinchinat, S. 2019.
Beyond 2014: Formal Methods for Attack Tree–based Se-
curity Modeling. ACM Computing Surveys (CSUR), 52(4):
1–36.

9909

