
Optimal Admission Control for Multiclass Queues with Time-Varying Arrival
Rates via State Abstraction

Marc Rigter,1, 2 Danial Dervovic,2 Parisa Hassanzadeh,2
Jason Long,2 Parisa Zehtabi, 2 Daniele Magazzeni 2

1Oxford Robotics Institute, University of Oxford
2J. P. Morgan AI Research

mrigter@robots.ox.ac.uk, {danial.dervovic, parisa.hassanzadeh, jason.x.long, parisa.zehtabi,
daniele.magazzeni}@jpmorgan.com

Abstract

We consider a novel queuing problem where the decision-
maker must choose to accept or reject randomly arriving tasks
into a no buffer queue which are processed by N identical
servers. Each task has a price, which is a positive real number,
and a class. Each class of task has a different price distribution,
service rate, and arrives according to an inhomogenous Pois-
son process. The objective is to decide which tasks to accept
so that the total price of tasks processed is maximised over
a finite horizon. We formulate the problem using a discrete
time Markov Decision Process (MDP) with a hybrid state
space. We show that the optimal value function has a specific
structure, which enables us to solve the hybrid MDP exactly.
Moreover, we rigorously prove that as the gap between succes-
sive decision epochs grows smaller, the discrete time solution
approaches the optimal solution to the original continuous
time problem. To improve the scalability of our approach to
a greater number of servers and task classes, we present an
approximation based on state abstraction. We validate our ap-
proach on synthetic data, as well as a real financial fraud data
set, which is the motivating application for this work.

Introduction
In many service systems, the rate at which tasks arrive may
greatly exceed the capacity of servers to process the tasks. We
are motivated by the problem of financial fraud detection and
monitoring (Dal Pozzolo et al. 2014), where the rate at which
suspicious transactions are detected may considerably exceed
the rate at which human operators (servers) can intervene,
for example, by holding payments and calling customers to
verify their identities.

We associate each task with a price, and a class. The price
of a task represents the value associated with processing that
task. In the financial fraud domain, the value of intervening to
verify a suspicious transaction may be equal to that transac-
tion’s monetary value. Tasks of each class may have different
service time requirements and price distributions. For exam-
ple, validating a high-value bank transfer (task class A) may
require a more thorough process, and therefore a slower ser-
vice rate, than a low-value credit card payment (task class
B). In the financial fraud domain, the rate of task arrivals
varies substantially with time: the volume of transactions is

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

far greater during business hours than at night. Therefore, we
allow the arrival rate of each task class to vary over time.

For such systems, we are interested in admission control,
the problem of deciding which tasks should be processed,
and which tasks should be ignored. We seek to optimise the
expected total price of tasks processed over a finite horizon
by a fixed number of identical servers.

The optimal control of multiclass queues has been con-
sidered by previous works (Ata 2006; Ata and Tongarlak
2013; Bertsimas, Paschalidis, and Tsitsiklis 1994; Cao and
Xie 2016; Harrison and Zeevi 2004; Klimov 1974). However,
all of these works consider an infinite horizon with constant
task arrival rates, which is a considerably easier problem as
the optimal solution is stationary (i.e. does not depend on
time). Yoon and Lewis (2004) consider optimal admission
control in a time-varying problem where there is only one
task class, and the task prices can only take on values from a
discrete set. The authors present an approximation algorithm,
but do not provide any theoretical analysis.

In contrast, we consider multiple task classes with time-
varying arrival rates and allow task prices to be continu-
ous. We rigorously prove that our discrete-time algorithm
approaches the optimal solution as the time step is reduced.
To improve the scalability of our approach to a greater num-
ber of task classes, we present an approximation based on
state abstraction to reduce the size of the state space.

Our main contributions are: 1) formulating a novel multi-
class queuing problem with continuous task prices and time-
varying arrival rates, 2) rigorously proving that our discrete-
time algorithm approaches the optimal continuous time so-
lution as the time step is reduced, and 3) an approach based
on state abstraction to improve scalability. We validate our
approach on synthetic domains, as well as a real financial
fraud data set. Our results demonstrate that our approach
is computationally efficient and significantly improves the
average total price of tasks processed compared to baselines.

Related Work
The stochastic sequential assignment problem (SSAP) with
random arrival times was proposed by Albright (1974), build-
ing on earlier work from Derman, Lieberman, and Ross
(1972). In this problem, tasks arrive according to an inho-
mogenous Poisson process and must be accepted or rejected
upon arrival. Furthermore, each task is associated with a con-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

9918

tinuous reward value drawn from an arbitrary distribution.
This problem is also referred to as the dynamic and stochastic
knapsack problem (Kleywegt and Papastavrou 1998). The
SSAP was recently revisited by Dervovic et al. (2021) to ad-
dress the problem when the arrival and reward distributions
must be learnt from historical data. In contrast to our work,
the SSAP problem assumes that the number of tasks to be
accepted is known a priori, whereas we assume that tasks
have stochastic processing times.

Semi-MDPs were introduced by (Jewell 1963)
and (Howard 1963) and have been applied extensively to
the optimal control of queues (Rue and Rosenshine 1985;
Stidham 1985; Sennott 1989). However, these works assume
that the arrival rate of tasks is stationary, i.e. does not vary
with time, and optimise the expected reward over an infinite
horizon. Under these assumptions, the optimal policy is also
stationary (Sennott 1989). The queue control problem with
time-varying arrival rates that we address is an instance of a
non-stationary Semi-MDP (Ghosh and Saha 2013). Finding
the exact optimal solution for non-stationary Semi-MDPs is
generally not possible as the solution depends on time, and
the optimality equations involve integrals over time which
are intractable for most problems (McMahon 2008). Mamer
(1986) proposes an approximation which limits the number
of possible transitions, while while Duckworth, Lacerda, and
Hawes (2021) present an approximation algorithm which
utilises sample-based planning.

Multiclass queues have multiple task classes which may
have different arrival rates and service rates. The optimisa-
tion of multiclass queues has been addressed in numerous
works (Ata 2006; Ata and Tongarlak 2013; Bertsimas, Pascha-
lidis, and Tsitsiklis 1994; Cao and Xie 2016; Harrison and
Zeevi 2004; Klimov 1974). However, none of these existing
works consider time-varying arrival rates, which is a core
focus of this work.

The most related work to ours is that of Yoon and Lewis
(2004). Yoon and Lewis (2004) consider tasks arriving ac-
cording to a periodic inhomogenous (i.e. time-varying) Pois-
son process. All tasks have the same service rate, but may
take on price values from a discrete set. The authors present a
piecewise stationary approximation of the optimal admission
policy. The authors do not provide performance guarantees
for this approach. In contrast to Yoon and Lewis (2004), our
work a) admits continuous task prices values, b) considers
multiple task classes with different service rates and time-
varying arrival rates, and c) we rigorously prove that our
discrete-time algorithm approaches the optimal continuous-
time solution as the time step is reduced.

Problem Formulation
Problem 1 (Continuous-time formulation). Consider a multi-
server queue with Nserv identical servers. A task is defined
by a pair τ = (k, p), where k ∈ K = {1, 2, . . . , |K|} is the
task class, and p ∈ [0,∞) is the task price. Tasks of each
class arrive according to an inhomogenous Poisson process,
Λk(t). The arrival rate function for each class is assumed to be
finite and Lipschitz continuous with constant Ck. The price
distribution for each task is independent of the arrival time.
The probability density function for the price of task class

k is fk(p), with corresponding cumulative density function,
Fk(p). When a new task arrives, the decision maker observes
the task class and price, but does not observe the required
processing time. If there is at least one free server who is not
currently processing a task, the decision-maker can decide
to accept or reject the new task. If the new task is accepted,
it immediately starts being processed by one of the servers
who was previously free. If there are no servers who are free,
the decision-maker cannot accept new tasks (i.e. there is no
buffer or “waiting area”). For each task class, the time to
process a task is exponentially distributed with rate µk. The
objective is to find a decision-making policy to maximise the
expected total price of tasks which are completed during a
finite horizon of length tH .

Discrete-Time Solution
In Problem 1, tasks arrive in continuous time and the rate
of arrivals varies continuously with time. To solve Prob-
lem 1 exactly, it can be formalised as a Semi-MDP with
time-varying dynamics (Ghosh and Saha 2013). However,
solving Semi-MDPs with time-varying dynamics exactly
is intractable (McMahon 2008). Therefore, we take the ap-
proach of discretising time and approximate Problem 1 as
a discrete-time hybrid factored MDP (HMDP) with finite
horizon. In Proposition 4 we prove that as the resolution of
the discretisation of time approaches zero, the solution to our
HMDP formulation approaches the solution to Problem 1.

Discrete-Time Hybrid Factored MDPs

A discrete-time hybrid factored MDP (HMDP) (Kveton,
Hauskrecht, and Guestrin 2006) with a finite horizon is a
tuple,M = (X, A,R, P,D). D = {t0, t1, . . . , tH} is a fi-
nite sequence of decision epochs, or time steps. For simplicity,
we assume that the time step size, ∆t = ti+1 − ti, is a con-
stant. X is a state space represented by a set of state variables,
{X1, X2, . . . , Xn}. A state is defined by a vector x of assign-
ments to each state variable, which splits into discrete and
continuous components denoted by x = (xD,xC). For any
state vector, x, we write x[j] to refer to the value of state vari-
able j. A is a finite set of actions. R : X×A×D → R≥0 is
a non-negative reward function. P : X×A×D×X→ R≥0

is a time-varying transition function which describes the tran-
sition dynamics conditioned upon the previous state, action,
and time step. A deterministic Markovian policy is a mapping
from the state and time step to an action: π : X ×D → A.
The objective is to find a policy which optimises the expected
total reward over the finite horizon, E[

∑tH
t=t0

R(xt, π(xt))].
The optimal value function (Bellman 1966), Vπ∗ , satisfies

Vπ∗(x, ti) = max
a∈A

[
R(x, a, ti)+∑

x′D

∫
x′C

P (x′ | x, a, ti) · Vπ∗(x′, ti+1) dxC

]
, (1)

where we denote the optimal policy corresponding to Eq. 1
by π∗. The optimal Q-values are

9919

Qπ∗(x, a, ti) = R(x, a, ti)+∑
x′D

∫
x′C

P (x′ | x, a, ti) · Vπ∗(x′, ti+1) dxC . (2)

HMDP Formulation
To approximate the continuous-time formulation in Problem 1
by an HMDP, we make the following assumption.
Assumption 1. At each decision epoch, at most one task can
be accepted.

Assumption 1 is necessary to ensure that the action space
is finite. If a task, τ , arrives between ti and ti+1, at decision
epoch ti+1 the decision maker can choose to accept or reject
τ . In our formulation, we assume that if more than one task
arrives between decision epochs, one of these tasks is selected
uniformly at random to be the task that the decision maker
can choose to accept or reject. The rest of the arrivals are
automatically rejected.

We now introduce our HMDP formulation of the problem
which we refer to as the Stochastic Task Admission HMDP
(STA-HMDP). The STA-HMDP has the following set of
state variables: {n1, . . . , n|K|, k

+, p}. nk is the number of
servers who are currently processing tasks of class k. Because
there are Nserv servers,

∑
k∈K nk ≤ Nserv. If task τ =

(karr, parr) arrives between ti and ti+1, then at time ti+1:
k+ = karr and p = parr. If no task has arrived, then we say
k+ = ⊥ and p = 0, i.e. F⊥(p) = H(p), where H is the
Heaviside step function. Thus, k+ equals the task class if a
task has arrived since the last decision epoch, and equals ⊥
if no task has arrived.

Note that we must include the combination of task classes
currently being processed, (n1, . . . , n|K|), in the state be-
cause each task class has a different service rate. There-
fore, the rate at which tasks are being processed depends
explicitly on the classes of tasks being processed. To sim-
plify the notation, at times we will use the abbreviation
n = (n1, . . . , n|K|) ∈ N, where N is the set of possible task
class combinations.

The action space is A = {acc, rej}, corresponding to
accepting or rejecting a task. The acc action can only be
executed if k+ 6= ⊥ and

∑
k∈K nk < Nserv, i.e. a task has

arrived and there is at least one free server available. The
reward for accepting a task is

R(x, acc, t) = x[p] · Pr(fin(x[k+]) | t), (3)

where Pr(fin(k) | t) = 1− exp(−(tH − t)µk) is the prob-
ability that task class k will be completed before the horizon,
tH . Eq. 3 computes the expected price as the task price is
only received if the task is completed before the horizon
(Problem 1). The reward for rejecting a task is zero.

We now define the transition function for the rej action.
Due to independence between state variables, we can write
the transition function in the following product form

P (x′ | x, rej, ti) = Pr(x′[k+] | ti)×

fx′[k+](x
′[p])×

K∏
k=1

Pr(x′[nk] | x[nk]), (4)

where the probability that no task arrives is

Pr
(
x′[k+] = ⊥ | ti

)
= exp(−∆t

∑K
k=1 Λk(ti)), (5)

and the probability that a task of class k′ arrives is

Pr(x′[k+] = k′ | ti) =

Λk′ (ti)∑K
k=1 Λk(ti)

[
1− Pr

(
x′[k+] = ⊥ | ti

)]
. (6)

The transition probabilities for nk, the number of servers
currently processing a task of class k, can be computed as

Pr(x′[nk] | x[nk]) = (7)
(

x[nk]
x[nk]−x′[nk]

)
× (1− e−µk∆t)(x[nk]−x′[nk])×
e−µkx

′[nk]∆t, if x′[nk] ≤ x[nk].

0, otherwise.
where

(·
·
)

denotes the binomial coefficient. Eq. 7 follows a
binomial distribution because each server finishing or not
finishing during ∆t is an independent Bernoulli trial.

We now consider the acc action. If a task of class k is
accepted, the reward R(x, acc, ti) is received. The state in-
stantaneously transitions to a successor state, xacc

(n,k), where
there is additional server processing task class k, and no task
available to be accepted. Therefore, theQ-value for accepting
a task can be computed by

Qπ∗(x, acc, ti) = x[p] · Pr(fin(x[k+]) | ti)
+ Vπ∗(x

acc
(x[n],x[k+]), ti), where (8)

xacc
(x[n],x[k+])[nk] =

{
x[nk] + 1, if x[k+] = k

x[nk], otherwise.
(9)

and xacc
(x[n],x[k+])[k

+] = ⊥. The subscript of xacc
(n,k) indicates

that it is the successor state after accepting a task of class k
when the combination of tasks being processed was n.

STA-HDMP Solution Algorithm
General solutions to HMDPs resort to function approximation
due to the difficulty of optimising over the continuous state
space (Kveton, Hauskrecht, and Guestrin 2006). However, as
we shall show in this section, it is possible to solve the STA-
HMDP exactly (i.e. without function approximation) using a
finite number of Bellman backups. This is due to the specific
structure of the optimal value function in the STA-HDMP
with respect to the continuous state variable, p.

As a first step, we make the observation that the Q-
value for rejecting the task only depends on n and t, i.e.
Qπ∗(x, rej, t) = Qπ∗(x

′, rej, t) if x[n] = x′[n]. In-
tuitively, this is because if a task is rejected, no imme-
diate reward is received, and the transition dynamics to
the next time step are the same irrespective of what task
class and price was rejected. To make this explicit, we will
write Qπ∗(x[n], rej, t) in place of Qπ∗(x, rej, t). Follow-
ing from Eq. 2, the Q-value for the rej action is

Qπ∗(x[n], rej, ti) =∑
x′[n]

∑
x′[k+]

∫
x′[p]

P (x′ | x, rej, ti)·Vπ∗(x′, ti+1)·d(x′[p])

(10)

9920

We now show that the optimal value function is piecewise-
linear with respect to the task price, p. Full proofs of all propo-
sitions are in the supplementary material (supp. mat.) (Rigter
et al. 2022).
Proposition 1. Let Vπ∗(x, t) be the optimal value function
for the STA-HMDP. Vπ∗(x, t) has the following form

Vπ∗(x, t) =
Pr
(
fin(x[k+]) | t

)
·
(
x[p]− p∗cr(x[n],x[k+], t)

)
+Qπ∗(x[n], rej, t),

if x[k+] 6= ⊥ and x[p] ≥ p∗cr(x[n],x[k+], t).

Qπ∗(x[n], rej, t), otherwise. (11)

where p∗cr is the critical price function, defined as

p∗cr(x[n],x[k+], t) =
1

Pr(fin(x[k+]) | t)
×(

Qπ∗(x[n], rej, t)−Qπ∗(xacc
(x[n],x[k+])[n], rej, t)

)
.

(12)

if x[k+] 6= ⊥ and t < tH . We define p∗cr(x[n],x[k+], t) = 0
if x[k+] = ⊥ or t = tH .

Proposition 1 shows that the optimal value function is
piecewise-linear with respect to x[p]. For a given x[n],x[k+],
and t, if we know Qπ∗(x[n], rej, t) and the critical price
function, we can compute the value function for any value of
x[p]. Additionally, the optimal policy is to accept tasks only
if the task price exceeds the critical price.
Proposition 2. [Optimal threshold policy] The optimal pol-
icy, π∗, for the STA-HMDP may be expressed as follows

π∗(x, t)=

{
acc, if x[k+] 6= ⊥ and x[p] ≥ p∗cr(x[n],x[k

+], t)

rej, otherwise

Propositions 1 and 2 enable us to compute the optimal so-
lution for all states using a finite number of Bellman backups.
This is because to define the optimal value and policy for any
state and time, with any continuous price, we only need to
know p∗cr(n, k, t) and Qπ∗(n, rej, t) for all n ∈ N, k ∈ K,
and t ∈ D. Therefore, there are only a finite number of
Q-values and critical prices that we need to compute.

One remaining issue is that Eq. 10 contains integrals which
would be expensive to compute at every Bellman backup. In
Proposition 3 we show that the computations in Eq. 10 can
be simplified in the following manner.
Proposition 3. [Mean shortage function]

Qπ∗(x[n], rej, ti) =
∑
x′[n]

K∏
k=1

Pr(x′[nk] | x[nk])·

∑
x′[k+]

Pr(x′[k+] = k+′ | ti) ·
[
Qπ∗(x

′[n], rej, ti+1)+

Pr
(
fin(x′[k+]) | ti+1

)
· φx′[k+]

(
p∗cr(x

′[n],x′[k+], ti+1)
)]

(13)

where φk+(p) is the mean shortage function of
the price distribution for task class k+ defined as
φk+(p) =

∫∞
p

(1− Fk+(y)) dy.

Proposition 3 means that we do not have to compute the
integrals in Eq. 10 separately for each Bellman backup, but
instead we can query the mean shortage function. The mean
shortage function can be computed in closed form for many
common distributions (e.g. exponential, Pareto), and can be
computed efficiently for the nonparametric representation of
the task price distribution used in Dervovic et al. (2021).

We are now ready to introduce our finite horizon value
iteration algorithm for the STA-HMDP, with pseudocode in
Alg. 1, supp. mat. We initialise the value function to zero at
the horizon, tH . We then iterate over each time step back-
wards in time. For a given time step, we 1) compute the
Q-value corresponding to the rej action using Eq. 10 and 13,
and 2) compute the critical price values using Eq. 12. After
we have computed the critical price function for all time steps,
we can derive the optimal policy using Proposition 2.

STA-HDMP Approximation Error
We now establish that as the time step size, ∆t, approaches
zero the optimal solution to the STA-HMDP approaches the
optimal continuous time solution to Problem 1.

Proposition 4. Let V
∗
π(x, t), and p∗cr(n, k

+, t) be the opti-
mal value function and critical price function for the con-
tinuous time problem defined by Problem 1. Let Vπ∗(x, ti),
and p∗cr(n, k

+, ti) be the optimal value function and critical
price function for the corresponding STA-HMDP at decision
epochs ti ∈ D. Then:

lim∆t→0+

∣∣ V π∗(x, ti)− Vπ∗(x, ti) ∣∣= 0, ∀ x, ti ∈ D

lim∆t→0+

∣∣ p∗cr(n, k+, ti)− p∗cr(n, k+, ti)
∣∣= 0, ∀ n, k+, ti ∈ D

Approximation via State Abstraction
In the previous section, we have shown how to solve the
STA-HDMP. However, this requires iterating over the set N
of possible combinations of tasks currently being processed.
The size of this set grows rapidly with the number of task
classes, prohibiting scalability to more than a few classes.
Intuitively, we expect that some combinations of tasks re-
sult in a similar “workload”. For example, processing two
tasks with a medium service rate might represent a similar
workload to processing one fast, and one slow task. If this
were the case, we would expect that the optimal policy would
apply a similar threshold to accepting new tasks in both cases.
Therefore, we can expect to obtain a good solution by treating
both of these cases as the same. This idea of grouping similar
states together is referred to as state abstraction (Li, Walsh,
and Littman 2006). In this section, we show how to use state
abstraction to improve the scalability of our approach.

We introduce the following notation following from Li,
Walsh, and Littman (2006). LetM = (X, A,R, P,D) be re-
ferred to as the ground MDP, with optimal policy π∗. The ab-
stract version ofM is M̂ = (X̂, A, R̂, P̂ ,D), and has opti-
mal policy π̂∗. The abstraction function, ψ : X→ X̂, maps
each ground state to its corresponding abstract state, and
ψ−1(x̂) is the inverse of ψ(x). The weighting function is w :

X → [0, 1], where for each x̂ ∈ X̂,
∑

x∈ψ−1(x̂) w(x) = 1.
The abstract reward and transition functions are a weighted

9921

sum over the corresponding functions for the ground states

R̂(x̂, a, t) =
∑

x∈ψ−1(x̂)

w(x)R(x, a, t) (14)

P̂ (x̂′ | x̂, a, t) =
∑

x∈ψ−1(x̂)

∑
x′∈ψ−1(x̂′)

w(x)P (x′ | x, a, t) (15)

To generate the state aggregation function, one possibility
is to consider aggregating states together when their optimal
Q-values in the ground MDP are within ε, i.e.

ψ(x1) = ψ(x2)→
∀a∈A | Qπ∗(x1, a, t)−Qπ∗(x2, a, t) | ≤ ε (16)

Let πGA denote the policy in the ground MDP derived
from the optimal policy in the abstract MDP,

πGA(x) = π̂∗
(
ψ(x)

)
. (17)

Abel, Hershkowitz, and Littman (2016) prove that for any
valid weighting function, if the state aggregation function
satisfies Eq. 16, then the suboptimality of πGA in the ground
MDP is bounded by a function linear in ε:

Vπ∗(x)− VπGA(x) ≤ O(ε), for all x ∈ X (18)

State Abstraction in the STA-HDMP
We are now ready to present our state abstraction approach
for approximating the optimal solution to the STA-HMDP.
Proposition 5. Consider two states, x1 and x2, in the
STA-HDMP where x1[k+] = x2[k+] and x1[p] = x2[p].
If | Qπ∗(x1[n], rej, t)−Qπ∗(x2[n], rej, t) | ≤ ε/2, and
∀k+ | p∗cr(x1[n], k+, t)− p∗cr(x2[n], k+, t) | ≤ ε/2, then

∀a∈A | Qπ∗(x1, a, t)−Qπ∗(x2, a, t) | ≤ ε (19)

Proposition 5 suggests that we can define the state aggre-
gation function as follows

ψ(x1) = ψ(x2)→ x1[k+] = x2[k+], x1[p] = x2[p],

Qπ∗(x1[n], rej, t) ≈ Qπ∗(x2[n], rej, t) and

p∗cr(x1[n], k+, t) ≈ p∗cr(x2[n], k+, t) for all k+, (20)

and the performance of the policy derived from the abstract
MDP will be near-optimal due to the result stated in Eq. 16-
18. The resulting abstract states are represented by the state
variables {nA, k+, p}, where nA ∈ NA is an abstraction of n,
the combination of task classes being processed in the ground
state.NA is the set of abstractions of task class combinations.
We write ψn : N→ NA to denote the aggregation function
for combinations of task classes such that

ψ(x1) = ψ(x2)⇐⇒ x1[k+] = x2[k+], x1[p] = x2[p],

and ψn(x1[n]) = ψn(x2[n]) (21)

We cannot directly apply Proposition 5 to aggregate task
combinations since we cannot compute the optimal STA-
HDMP values required from the scaling of Alg. 1 for many
task classes. Guided by the intuition obtained from Eq. 20
we propose two more scalable methods for computing the
state aggregation function.

State Aggregation via Semi-MDP Stationary Solution
We propose to compute a stationary approximation of the
STA-HMDP solution to determine the aggregation function.
First, we compute the average arrival rate over the horizon
for each task class, Et[Λk(t)]. We then find the solution
which optimises the average reward over an infinite hori-
zon using the average arrival rates. This problem can be
solved more quickly than the STA-HDMP as the optimal
solution is stationary. We solve this stationary problem by
adapting policy iteration for stationary Semi-MDPs (Puter-
man 2005). Details of this are in the supp. mat. For each
n ∈ N, we then compose a vector vn of the associated rel-
ative1 Q-value and critical price values in the stationary so-
lution: vssn = [Q̃π∗(n, rej), p̃∗cr(n, k1), . . . , p̃∗cr(n, k|K|)],
where we use “∼” to denote the solution for the stationary
problem. We then perform clustering on the vssn vectors to
aggregate the task class combinations into the desired num-
ber of abstractions, |NA|. These clusters define aggregation
function, ψn. For clustering, we use the k-means algorithm.

State Aggregation via Order Statistics The scalability
of the state aggregation approach we have just outlined is
limited, as it requires solving for the stationary solution which
may not be feasible for a large number of task classes. Here,
we present an alternative state aggregation approach, based
on summary statistics for each combination of tasks. For each
n ∈ N, we compose a vector of the form

vosn =
[
E[tNf≥0 | n],E[tNf≥1 | n], . . . ,E[tNf=Nserv

| n]
]

where Nf denotes the number of servers free, i.e. Nf =
Nserv −

∑
k∈K nk. Additionally, E[tNf≥q | n] denotes the

expected time until at least q servers are free given that the
combination of tasks currently being processed is n, and
no further tasks are accepted. The intuition for vosn is that it
approximately summarises the distribution over task comple-
tion times for the tasks currently being processed. Once the
vectors have been computed, we perform clustering using
k-means, and the resulting clusters correspond to ψn.

Computing vosn requires computing the mean of order
statistics of independent and non-identical exponential distri-
butions. This is computationally challenging, so in practice
we use a Monte Carlo approximation (details in supp. mat.).

Value Iteration for STA-HMDP with State Abstraction
We refer to the abstract version of the STA-HDMP as the
Abstract STA-HDMP. We provide a brief summary of the
algorithm for the Abstract STA-HDMP here, and more details
can be found in the supp. mat. We denote by Q̂π∗ , and p̂∗cr the
optimal Q-value function and critical price respectively in
the Abstract STA-HDMP. Like the original STA-HMDP, the
optimal policy for the Abstract STA-HMDP has a threshold
form, as stated in Proposition 6.

Proposition 6. The optimal policy for the Abstract STA-
HMDP, π̂∗, may be expressed as follows

π̂∗(x̂, t) =

{
acc, if x̂[k+] 6= ⊥ and x̂[p] ≥ p̂∗cr(x̂[nA], x̂[k+], t)

rej, otherwise
1We use the relative value (see Puterman (2005), Chapter 8) as

the value is infinite the average-reward infinite horizon setting.

9922

where the critical price function is

p̂∗cr(nA, k
+, t) =

1

Pr(fin(k+) | t)
×
(
Q̂π∗(nA, rej, t)−∑

n∈ψ−1
n (nA)

w(n) · Q̂π∗(ψ(xacc
(n,k+)), rej, t)

)
. (22)

if x[k+] 6= ⊥ and t < tH , and 0 otherwise.
The value iteration algorithm for solving the Abstract STA-

HDMP proceeds in a similar manner to the STA-HMDP.
Pseudocode is provided in Alg. 2 in the supp. mat. Once the
policy has been computed for the Abstract STA-HDMP, the
policy to apply to the original STA-HMDP is derived using
Eq. 17.

Experiments
The experiments were run using an Intel Xeon E3-1585L v5
3GHz processor with 64GB of RAM. We compare several
methods based on our Value Iteration (VI) approach as well
as additional baselines. The following methods are compared:

• VI No Abstr.: our VI approach from Alg. 1.
• VI Stationary Sol. Abstr.: our VI approach with state ab-
straction based on the Semi-MDP stationary solution.

• VI Order Stat. Abstr.: our VI approach with state abstraction
based on the mean of order statistics.

• VI Random Abstr.: our VI approach with state abstraction
with random state aggregation.

• VI Avg. Class: we compute an “average” task class, kavg, as
follows. The arrival rate function is Λkavg(t) =

∑
k∈K Λk(t).

The price distribution and service rate are a weighted av-
erage over each task. The weighting for each class, ωk,
is proportional to the mean arrival rate for each class:
ωk ∝ Et[Λk(t)]. We perform VI using the single average
class, and assume that all tasks are the average class.

• Stationary Sol.: uses the critical prices from the stationary
solution, which assumes constant arrival rates.

• Grid Search: the critical price for each task class, pk, is
proportional to the expected service time, i.e. pk = C/µk,
where C is a constant. To find the best value for C, we
evaluate the performance of 50 log-spaced values of C for
300 episodes each, and choose the best value.

Synthetic Domains For each synthetic domain, the hori-
zon is 28800s, representing an 8hr working day. The task
prices are distributed according to a Lomax distribution, with
shape parameter of 3. We test two arrival rate functions: sinu-
soid and step functions which are plotted in the supp. mat.
Small: There are 10 servers and 3 task classes which
we call {slow, medium, fast}. The scale param-
eters of the Lomax price distribution for each task
class are: {slow=1600, medium=900, fast=400}.
The service rates for each task class are:
{slow= 1

2000 , medium= 1
1000 , fast= 1

500}.
Large: There are 40 servers and 4 task classes
which we call {very slow, slow, medium, fast}.
The Lomax price distribution scale parameters are:
{very slow=2500, slow=1600, medium=900, fast=400}.
The service rates for each of the task classes are:
{very slow= 1

4500 , slow= 1
3000 , medium= 1

1500 , fast= 1
750}.

For both versions of the synthetic domains, tasks with
slower service times tend to have higher prices.

Public Fraud Data For this domain we use a public
dataset, M , of financial transactions which are labelled as
fraudulent or non-fraudulent (IEEE-CIS 2019). We wish to
optimise the expected value of fraudulent transactions re-
viewed by staff. The horizon for each episode is 86400s (1
day). We use half of the dataset, Mtrain, to train a classi-
fier to predict the probability that a transaction is fraudu-
lent based on additional features of the data. We assume
that transactions with a probability ≥ 0.1 are automati-
cally reviewed. Our objective is to optimise the value of
the remaining transactions which are reviewed by staff. To
adjust for the fraud likelihood, we consider the adjusted
price of each task (transaction) to be the value of the trans-
action multiplied by the probability of fraud predicted by
the classifier. We assume that tasks are divided into the fol-
lowing classes according to the value of the transactions:
{low val: [$0, $150), med val: [$150, $500), high val:
[$500,∞)}. We assume that there are 20 staff (servers), and
that transactions of different values require different pro-
cesses to review, and therefore have the following service
rates: {low val= 1

900 , med val= 1
3600 , high val= 1

10,800}.
We learn the adjusted price distributions and arrival rate
functions from Mtrain with the method from Dervovic et al.
(2021). We then simulate the total adjusted price of transac-
tions reviewed using the remainder of the data, Mtest.

Results
We evaluate each approach for 300 episodes on each domain.
In the plots, the error bars and the shaded regions indicate the
mean ± the std. error. Additional results are in the supp. mat.

Influence of time step Figure 1a shows the influence of
∆t for the VI No Abstr. method in the Synthetic Small domain
with sinusoid arrival rate functions. At large values of ∆t, the
performance is poor, but as ∆t is decreased below approxi-
mately 1 second, the performance plateaus. This empirically
confirms Proposition 4. Based on this finding, we use a time
step of ∆t = 0.5s for all other results on the synthetic do-
mains. For the fraud domain we use ∆t = 1s as this is the
resolution of the time information in the dataset.

Computation Time The computation times for each ap-
proach on the Synthetic Small domain are shown in Fig-
ure 1b. VI No Abstr. and Grid Search are the slowest methods.
For the methods based on state abstraction, the computation
time decreases as the number of abstractions is decreased,
verifying that our abstraction method reduces the computa-
tion required. We omit results for methods which take more
than 30,000s, including VI No Abstr. on either of the larger do-
mains. Computation times for the other domains are included
in the supp. mat.

Synthetic Domain Results Results on the Synthetic Small
domain with sinusoid arrival rates are in Figure 2a. VI No
Abstr. has the strongest performance, and the best baseline is
Stationary Sol. Both VI Order Stat. Abstr. and VI Stationary
Sol. Abstr. perform better than all baselines, and comparably

9923

(a) Influence of time step. (b) Computation times. (c) Arrival rate functions.

Figure 1: Mean reward vs ∆t for VI No Abstractions (a), computation time for each method (b) in Synthetic Small domain
(sinusoid arrival rates), and (c) Public fraud dataset arrival rates.

(a) Synthetic Small (sinusoid arrival rates). (b) Synthetic Large (sinusoid arrival rates). (c) Public Fraud dataset.

Figure 2: Mean total reward performance on 300 evaluation runs for each domain. Error bars and shaded regions indicate standard
errors. We only include methods and numbers of abstract combinations which can be computed within 30,000 seconds.

to VI No Abstr. if a sufficient number of abstractions (≥ 30)
are used. VI Random Abstr. performs poorly across all do-
mains, indicating that the state aggregation approaches we
have proposed are crucial for strong performance.

The results on the Synthetic Large domain in Figure 2b
show that VI Order Stat. Abstr. is the best performing method,
provided that a sufficient number of state abstractions are
used. For the large domain, the number of possible combi-
nations of task classes is over 130,000. This means that we
cannot provide results for VI No Abstr., or any of the methods
which require the stationary solution because these methods
(considerably) exceed our 30,000s computation limit.

In the supp. mat., we include results for the synthetic
domains using step functions for the arrival rates. We ob-
serve similar results for the step functions, indicating that our
method performs well for a variety of arrival rate functions.

Public Fraud Data Results For the fraud domain, the ar-
rival rates are plotted in Figure 1c, and the performance of
each method is in Figure 2c. Our methods based on state
abstraction outperform all of the baselines when using ≥ 30
state abstractions, and require less computation time than the
grid search approach as shown in the supp. mat.

Our results validate that a) our state abstraction approach
reduces the computation requirements for value iteration,
making it applicable to complex problems, and b) our ap-
proach significantly improves performance over simpler base-

lines, and therefore has the potential to improve the efficiency
of real world systems, such as those used to monitor fraud.

Conclusion
We have introduced a novel queuing problem that corre-
sponds to a challenge faced in financial fraud detection and
monitoring. Moreover, we demonstrate that it has a computa-
tionally tractable solution by discretising time and utilising
state abstraction. Future work includes adversarial modelling
of incoming tasks and proving reward lower bounds as a
function of the size of the abstract state space.

Disclaimer This paper was prepared for informational pur-
poses in part by the Artificial Intelligence Research group of
JPMorgan Chase & Co. and its affiliates (“JP Morgan”), and
is not a product of the Research Department of JP Morgan.
JP Morgan makes no representation and warranty whatsoever
and disclaims all liability, for the completeness, accuracy or
reliability of the information contained herein. This document
is not intended as investment research or investment advice,
or a recommendation, offer or solicitation for the purchase or
sale of any security, financial instrument, financial product
or service, or to be used in any way for evaluating the merits
of participating in any transaction, and shall not constitute a
solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would
be unlawful.

9924

References
Abel, D.; Hershkowitz, D.; and Littman, M. 2016. Near
optimal behavior via approximate state abstraction. In In-
ternational Conference on Machine Learning, 2915–2923.
PMLR.
Albright, S. C. 1974. Optimal sequential assignments with
random arrival times. Management Science, 21(1): 60–67.
Ata, B. 2006. Dynamic control of a multiclass queue with
thin arrival streams. Operations Research, 54(5): 876–892.
Ata, B.; and Tongarlak, M. H. 2013. On scheduling a mul-
ticlass queue with abandonments under general delay costs.
Queueing Systems, 74(1): 65–104.
Bellman, R. 1966. Dynamic programming. Science,
153(3731): 34–37.
Bertsimas, D.; Paschalidis, I. C.; and Tsitsiklis, J. N. 1994.
Optimization of multiclass queueing networks: Polyhedral
and nonlinear characterizations of achievable performance.
The Annals of Applied Probability, 43–75.
Cao, P.; and Xie, J. 2016. Optimal control of a multiclass
queueing system when customers can change types. Queue-
ing Systems, 82(3-4): 285–313.
Dal Pozzolo, A.; Caelen, O.; Le Borgne, Y.-A.; Waterschoot,
S.; and Bontempi, G. 2014. Learned lessons in credit card
fraud detection from a practitioner perspective. Expert sys-
tems with applications, 41(10): 4915–4928.
Derman, C.; Lieberman, G. J.; and Ross, S. M. 1972. A
sequential stochastic assignment problem. Management Sci-
ence, 18(7): 349–355.
Dervovic, D.; Hassanzadeh, P.; Assefa, S.; and Reddy, P.
2021. Non-Parametric Stochastic Sequential Assignment
With Random Arrival Times. International Joint Conference
on Artificial Intelligence.
Duckworth, P.; Lacerda, B.; and Hawes, N. 2021. Time-
Bounded Mission Planning in Time-Varying Domains with
Semi-MDPs and Gaussian Processes. Conference on Robot
Learning.
Ghosh, M. K.; and Saha, S. 2013. Non-stationary semi-
Markov decision processes on a finite horizon. Stochastic
Analysis and Applications, 31(1): 183–190.
Harrison, J. M.; and Zeevi, A. 2004. Dynamic scheduling of
a multiclass queue in the Halfin-Whitt heavy traffic regime.
Operations Research, 52(2): 243–257.
Howard, R. A. 1963. Semi-markovian decision-processes.
Proceedings of the International Statistical Institute, 40(2):
625–652.
IEEE-CIS. 2019. IEEE Computational Intelligence Soci-
ety Fraud Detection. https://www.kaggle.com/c/ieee-fraud-
detection. Accessed: 2021-08-28.
Jewell, W. S. 1963. Markov-renewal programming. I: For-
mulation, finite return models. Operations Research, 11(6):
938–948.
Kleywegt, A. J.; and Papastavrou, J. D. 1998. The dynamic
and stochastic knapsack problem. Operations research, 46(1):
17–35.

Klimov, G. 1974. Time-sharing service systems. I. Theory of
Probability & Its Applications, 19(3): 532–551.
Kveton, B.; Hauskrecht, M.; and Guestrin, C. 2006. Solv-
ing factored MDPs with hybrid state and action variables.
Journal of Artificial Intelligence Research, 27: 153–201.
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
Unified Theory of State Abstraction for MDPs. ISAIM, 4: 5.
Mamer, J. W. 1986. Successive approximations for finite
horizon, semi-Markov decision processes with application to
asset liquidation. Operations Research, 34(4): 638–644.
McMahon, J. J. 2008. Time-dependence in Markovian deci-
sion processes. Ph.D. thesis, University of Adelaide, Aus-
tralia.
Puterman, M. L. 2005. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Rigter, M.; Dervovic, D.; Hassanzadeh, P.; Long, J.; Zehtabi,
P.; and Magazzeni, D. 2022. Optimal Admission Control for
Multiclass Queues with Time-Varying Arrival Rates via State
Abstraction. arXiv:2203.08019.
Rue, R. C.; and Rosenshine, M. 1985. The application of
semi-Markov decision processes to queueing of aircraft for
landing at an airport. Transportation science, 19(2): 154–172.
Sennott, L. I. 1989. Average cost semi-Markov decision
processes and the control of queueing systems. Probability in
the Engineering and Informational Sciences, 3(2): 247–272.
Stidham, S. 1985. Optimal control of admission to a queueing
system. IEEE Transactions on Automatic Control, 30(8): 705–
713.
Yoon, S.; and Lewis, M. E. 2004. Optimal pricing and admis-
sion control in a queueing system with periodically varying
parameters. Queueing Systems, 47(3): 177–199.

9925

