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Abstract

Near-term quantum hardware can support two-qubit opera-
tions only on the qubits that can interact with each other.
Therefore, to execute an arbitrary quantum circuit on the
hardware, compilers have to first perform the task of qubit
routing, i.e., to transform the quantum circuit either by insert-
ing additional SWAP gates or by reversing existing CNOT
gates to satisfy the connectivity constraints of the target topol-
ogy. The depth of the transformed quantum circuits is mini-
mized by utilizing the Monte Carlo tree search (MCTS) to
perform qubit routing by making it both construct each action
and search over the space of all actions. It is aided in perform-
ing these tasks by a Graph neural network that evaluates the
value function and action probabilities for each state. Along
with this, we propose a new method of adding mutex-lock
like variables in our state representation which helps factor in
the parallelization of the scheduled operations, thereby prun-
ing the depth of the output circuit. Overall, our procedure (re-
ferred to as QRoute) performs qubit routing in a hardware ag-
nostic manner, and it outperforms other available qubit rout-
ing implementations on various circuit benchmarks.

Introduction
The present-day quantum computers, more generally known
as Noisy Intermediate-Scale quantum (NISQ) devices
(Preskill 2018) come in a variety of hardware architec-
tures (IBM 2021; Arute et al. 2019; Karalekas et al. 2020;
Bourassa et al. 2021), but there exist a few problems per-
vading across all of them. These problems constitute the
poor quality of qubits, limited connectivity between qubits,
and the absence of error-correction for noise-induced errors
encountered during the execution of gate operations. These
place a considerable restriction on the number of instruc-
tions that can be executed to perform useful quantum com-
putation (Preskill 2018). Collectively these instructions can
be realized as a sequential series of one or two-qubit gates
that can be visualized more easily as a quantum circuit as
shown in Fig. 1a (Childs, Schoute, and Unsal 2019).

To execute an arbitrarily given quantum circuit on the tar-
get quantum hardware, a compiler routine must transform it
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to satisfy the connectivity constraints of the topology of the
hardware (Cowtan et al. 2019). These transformations usu-
ally include the addition of SWAP gates and the reversal of
existing CNOT gates. This ensures that any non-local quan-
tum operations are performed only between the qubits that
are nearest-neighbors. This process of circuit transformation
by a compiler routine for the target hardware is known as
qubit routing (Cowtan et al. 2019). The output instructions in
the transformed quantum circuit should follow the connec-
tivity constraints and essentially result in the same overall
unitary evolution as the original circuit (Pozzi et al. 2020).

In the context of NISQ hardware, this procedure is of ex-
treme importance as the transformed circuit will, in general,
have higher depth due to the insertion of extra SWAP gates.
This overhead in the circuit depth becomes more prominent
due to the high decoherence rates of the qubits and it be-
comes essential to find the most optimal and efficient strat-
egy to minimize it (Cowtan et al. 2019; Herbert and Sen-
gupta 2018; Pozzi et al. 2020). In this article, we present a
procedure that we refer to as QRoute. We use Monte Carlo
tree search (MCTS), which is a look-ahead search algorithm
for finding optimal decisions in the decision space guided by
a heuristic evaluation function (Kocsis and Szepesvari 2006;
Munos 2014). We use it for explicitly searching the decision
space for depth minimization and as a stable and performant
machine learning setting. It is aided by a Graph neural net-
work (GNN) (Wang et al. 2018), with an architecture that
is used to learn and evaluate the heuristic function that will
help guide the MCTS.

Qubit Routing
In this section, we begin by defining the problem of qubit
routing formally and discussing the work done previously in
the field.

Describing the Problem
The topology of quantum hardware can be visualized as a
qubit connectivity graph (Fig. 2). Each node in this graph
would correspond to a physical qubit which in turn might
correspond to a logical qubit. The quantum instruction set,
which is also referred to as quantum circuit (Fig. 1a), is a
sequential series of single-qubit and two-qubit gate opera-
tions that act on the logical qubits. The two-qubit gates such
as CNOT can only be performed between two logical qubits
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Figure 1: An example of qubit routing on a quantum circuit for 3×3 grid architecture (Figure 2a). (a) For simplicity, the original
quantum circuit consists only of two-qubit gate operations. (b) Decomposition of the original quantum circuit into series of
slices such that all the instructions present in a slice can be executed in parallel. The two-qubit gate operations: {d, e} (green)
comply with the topology of the grid architecture whereas the operations: {a, b, c, f} (red) do not comply with the topology
(and therefore cannot be performed). Note that the successive two-qubit gate operations on q3 → q4 (blue) are redundant
and are not considered while routing. (c) Decomposition of the transformed quantum circuit we get after qubit routing. Four
additional SWAP gates are added that increased the circuit depth to 5, i.e., an overhead circuit depth of 2. The final qubit labels
are represented at the end right side of the circuit. The qubits that are not moved (or swapped) are shown in brown ({q1, q5}),
while the rest of them are shown in blue.
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resented as a graph

Figure 2: Examples of qubit connectivity graphs for some
common quantum architectures

iff there exists an edge between the nodes that correspond to
the physical qubits, (Herbert and Sengupta 2018). This edge
could be either unidirectional or bidirectional, i.e., CNOT
can be performed either in one direction or in both direc-
tions. In this work, we consider only the bidirectional case,
while noting that the direction of a CNOT gate can be re-
versed by sandwiching it between a pair of Hadamard gates
acting on both control and target qubits (Garcia-Escartin and
Chamorro-Posada 2011).

Given a target hardware topology D and a quantum circuit
C, the task of qubit routing refers to transforming this quan-
tum circuit by adding a series of SWAP gates such that all
its gate operations then satisfy the connectivity constraints
of the target topology (Fig. 1c). Formally, for a routing algo-

rithm R, we can represent this process as follows:

R(C, D) → C′ (1)

Depth of C′ (transformed quantum circuit) will, in general,
be more than that of the original circuit due to the insertion
of additional SWAP gates. This comes from the definition of
the term depth in the context of quantum circuits. This can
be understood by decomposing a quantum circuit into series
of individual slices, each of which contains a group of gate
operations that have no overlapping qubits, i.e., all the in-
structions present in a slice can be executed in parallel (Fig.
1b). The depth of the quantum circuit then refers to the min-
imum number of such slices the circuit can be decomposed
into, i.e., the minimum amount of parallel executions needed
to execute the circuit. The goal is to minimize the overhead
depth of the transformed circuit with respect to the original
circuit.

This goal involves solving two subsequent problems of
(i) qubit allocation, which refers to the mapping of program
qubits to logic qubits, and (ii) qubit movement, which refers
to routing qubits between different locations such that inter-
action can be made possible (Tannu and Qureshi 2019). In
this work, we focus on the latter problem of qubit movement
only and refer to it as qubit routing. However, it should be
noted that qubit allocation is also an important problem and
it can play an important role in minimizing the effort needed
to perform qubit movement.

Related Work
The first major attraction for solving the qubit routing prob-
lem was the competition organized by IBM in 2018 to find
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the best routing algorithm. This competition was won by
Zulehner, Paler, and Wille (2019), for developing a Com-
puter Aided Design-based (CAD) routing strategy. Since
then, this problem has been presented in many different
ways. These include graph-based architecture-agnostic so-
lution by Cowtan et al. (2019), showing equivalence to the
travelling salesman problem by Paler, Zulehner, and Wille
(2021), machine learning based methods by Paler et al.
(2020), and heuristic approaches by Venturelli et al. (2017),
Baioletti, Rasconi, and Oddi (2021), Chand et al. (2019), etc.
A reinforcement learning in a combinatorial action space so-
lution was proposed by Herbert and Sengupta (2018), which
suggested used simulated annealing to search through the
combinatorial action space, aided by a Feed-Forward neu-
ral network to judge the long-term expected depth. This was
further extended to use Double Deep Q-learning and priori-
tized experience replay by Pozzi et al. (2020).

Recently, Monte Carlo tree search (MCTS), a popular re-
inforcement learning algorithm (Browne et al. 2012) previ-
ously proven successful in a variety of domains like playing
puzzle games such as Chess and Go (Silver et al. 2016), and
was used by Zhou, Feng, and Li (2020) to develop a qubit
routing solution.

Our Contributions
Our work demonstrates the use of MCTS on the task of
Qubit Routing and presents state of the art results. Following
are the novelties of this approach:

• We use an array of mutex locks to represent the current
state of parallelization, helping to reduce the depth of the
circuits instead of the total quantum volume, in contrast
to previous use of MCTS for qubit routing in Zhou, Feng,
and Li (2020).

• The actions in each timestep (layer of the output circuit)
belong to a innumerably large action space. We phrase
the construction of such actions as a Markov decision
process, making the training stabler and the results better,
particularly at larger circuit sizes, than those obtained by
performing simulated annealing to search in such action
spaces (Herbert and Sengupta 2018; Pozzi et al. 2020).
Such approach should be applicable to other problems of
a similar nature.

• Graph neural networks are used as an improved architec-
ture to help guide the tree search.

Finally, we provide a simple python package containing
the implementation of QRoute, together with an easy inter-
face for trying out different neural net architectures, com-
bining algorithms, reward structures, etc.

Method
The QRoute algorithm takes in an input circuit and an in-
jective map, M : Q → N , from logical qubits to nodes
(physical qubits). Iteratively, over multiple timesteps, it tries
to schedule the gate operations that are present in the input
circuit onto the target hardware. To do so, from the set of
unscheduled gate operations, P , it takes all the current op-
erations, which are the first unscheduled operation for both

the qubits that they act on, and tries to make them into lo-
cal operations, which are those two-qubit operations that in-
volve qubits that are mapped to nodes connected on the tar-
get hardware.

In every timestep t, QRoute starts by greedily schedul-
ing all the operations that are both current and local in P .
To evolve M, it then performs a Monte Carlo tree search
(MCTS) to find an optimal set of SWAPs by the evaluation
metrics described in the Section such that all operations in
the current timestep put together form a parallelizable set,
i.e., a set of local operations such that no two operations in
the set act on the same qubit. The number of states we can
encounter in the action space explodes exponentially with
the depth of our search, therefore an explicit search till the
circuit is done compiling is not possible. Therefore we cut
short our search at some shallow intermediate state, and use
a neural network to get its heuristic evaluation.

The following subsections describe in greater detail the
working of the search and the heuristic evaluation.

State and Action Space
Definition 0.1 (State) It captures entire specification of the
state of compilation at some timestep t. Abstractly, it is de-
scribed as:

st = (D, Mt, Pt, Lt) (2)

where, D is the topology of target hardware, and Mt and
Pt represents the current values of M and P respectively.
Lt is the set of nodes that are locked by the gate operations
from the previous timestep and therefore cannot be operated
in the current timestep.

Definition 0.2 (Action) It is a set of SWAP gates (repre-
sented by the pair of qubits it acts on) such that all gates
are local, and its union with the set of operations that were
scheduled in the same timestep forms a parallelizable set.

We are performing a tree search over state-action pairs.
Since the number of actions that can be taken at any timestep
is exponential in the number of connections on the hardware,
we are forced to build a single action up, step-by-step.

Definition 0.3 (Move) It is a single step in a search proce-
dure which either builds up the action or applies it to the
current state. Moves are of the following two types:

1. SWAP(n1, n2): Inserts a new SWAP on nodes n1 and n2

into the action set. Such an insertion is only possible if
the operation is local and resulting set of operations for
the timestep form a parallel set.

2. COMMIT: Finishes the construction of the action set for
that timestep. It also uses the action formed until now
to update the state st (schedules the SWAP gates on the
hardware), and resets the action set for the next step.

In reality, different gate operations take different counts
of timesteps for execution. For example, if a hardware re-
quires SWAP gate to be broken down into CNOT gates,
then it would take three timesteps for complete execution
(Garcia-Escartin and Chamorro-Posada 2011). This means,
operations which are being scheduled must maintain mu-
tual exclusivity with other other operations over the nodes

9937



1-3

5-94-6

6-87-4

2

8-6

9-5

3-1

X X

1 X X 1 X X

1 1 X X11 X X

1-3

5-94-6

6-87-4

2

8-6

9-5

3-1

X X

1 X X 1 X X

1-3

57-4

6-44-6

3-1

8

9

2

X

1 1 X X11 X X

1-3

5-94-6

6-87-4

2

8-6

9-5

3-1

X X

1 X X 1 X X

1-3

57-4

6-44-6

3-1

8

9

2

X

1 1 X X11 X X

Update

Update

Update

Update

1-3

57-4

6-44-6

3-1

8

9

2

X

Model

Evaluation
(value function)

��������� ���������

������������
��
�

Figure 3: Iteration of a Monte Carlo tree search: (i) select - recursively choosing a node in the search tree for exploration using
a selection criteria, (ii) expand - expanding the tree using the available actions if an unexplored leaf node is selected, (iii) rollout
- estimating long term reward using a neural network for the action-state pair for the new node added to search tree, and (iv)
backup - propagating reward value from the leaf nodes upwards to update the evaluations of its ancestors.

which participates in them. This is essential to minimizing
the depth of the circuit since it models paralleizability of op-
erations.

However, constructing a parallelizable set and represent-
ing the state of parallelization to our heuristic evaluator is a
challenge. But an analogy can be drawn here to the nodes
being thought of as “resources” that cannot be shared, and
the operations as “consumers” (Dijkstra 2002). This moti-
vates us to propose the use of Mutex Locks for this purpose.
These will lock a node until a scheduled gate operation in-
volving that node executes completely. Therefore, this al-
lows our framework to naturally handle different types of
operations which take different amounts of time to complete.

For every state-action pair, the application of a feasible
move m on it will result in a new state-action pair: (s, a) m−→
(s′, a′). This is a formulation of the problem of search as a
Markov Decision Process. Associated with each such state-
action-move tuple ((s, a),m), we maintain two additional
values that are used by MCTS:

1. N-value - The number of times we have taken the said
move m from said state-action pair (s, a).

2. Q-value - Given a reward function R, it is the aver-
age long-term reward expected after taking said move m
over all iterations of the search. (Future rewards are dis-
counted by a factor γ)

Q((s, a),m) = R((s, a),m) +

γ

∑
m′ N((s′, a′),m′) ·Q((s′, a′),m′)∑

m′ N((s′, a′),m′)
(3)

Monte Carlo Tree Search
Monte Carlo tree search progresses iteratively by executing
its four phases: select, expand, rollout, and backup as illus-
trated in Fig. 3. In each iteration, it begins traversing down
the existing search tree by selecting the node with the maxi-
mum UCT value (Eq. 4) at each level. During this traversal,
whenever it encounters a leaf node, it expands the tree by
choosing a move m from that leaf node. Then, it estimates
the scalar evaluation for the new state-action pair and back-
propagates it up the tree to update evaluations of its ances-
tors.

To build an optimal action set, we would want to select
the move m with the maximum true Q-value. But since true
Q-values are intractably expensive to compute, we can only
approximate the Q-values through efficient exploration. We
use the Upper Confidence Bound on Trees (UCT) objective
(Kocsis and Szepesvari 2006) to balance exploration and ex-
ploitation as we traverse through the search tree. Moreover,
as this problem results in a highly asymmetric tree, since
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Figure 4: Graph neural network architecture that approximates the value function and the policy function.

some move block a lot of other moves, while others block
fewer moves, we use the formulation of UCT adapted for
asymmetric trees (Moerland et al. 2018):

UCT((s, a),m) = Q((s, a),m) +

c

√∑
m N((s, a),m)

N((s, a),m)
× p(m|(s, a))

(4)

Here, the value p(m|(s, a)) is the prior policy function,
which is obtained by adding a Dirichlet noise to the policy
output of the neural network (Silver et al. 2017). As MCTS
continues probing the action space, it gets a better estimate
of the true values of the actions. This means that it acts as
a policy enhancement function whose output policy (Eq. 5)
can be used to train the neural network’s prior (π), and the
average Q-value computed can be used to train its scalar
evaluation (Eq. 6).

π(m|(s, a)) ∝ N((s, a),m)) (5)

V((s, a)) =
∑

m Q((s, a),m)∑
m N((s, a),m)

(6)

The details of how MCTS progresses have been elabo-
rated in the supplementary. Once it gets terminated, i.e., the
search gets completed, we go down the tree selecting the
child with the maximum Q-value at each step until a COM-
MIT action is found, we use the action set of the selected
state-action pair to schedule SWAPs for the current timestep,
and we re-root the tree at the child node of the COMMIT ac-
tion to prepare for the next timestep.

Neural Network Architecture
Each iteration of the MCTS requires evaluation of Q-values
for a newly encountered state-action pair. But these values
are impossible to be computed exactly since it would in-
volve an intractable number of iterations in exploring and

expanding the complete search tree. Therefore, it is favor-
able to heuristically evaluate the expected long-term reward
from the state-action pair using a Neural Network, as it acts
as an excellent function approximator that can learn the sym-
metries and general rules inherent to the system.

So, once the MCTS sends a state-action pair to the eval-
uator, it begins by committing the action to the state and
getting the resultant state. We then generate the following
featurized representation of this state and pass this represen-
tation through the neural-network architecture as shown in
Fig. 4.

1. Node Targets - It is a square boolean matrix whose rows
and columns correspond to the nodes on a target device.
An element (i, j) is true iff some logical qubits qx and
qy are currently mapped to nodes i and j respectively,
such that (qx, qy) is the first unscheduled operation that
qx partakes in.

2. Locked Edges - It is a set of edges (pairs of connected
nodes) that are still locked due to either of its qubits be-
ing involved in an operation in the current timestep or
another longer operation that hasn’t yet terminated from
the previous timesteps.

3. Remaining targets - It is a list of the number of gate-
operations that are yet to be scheduled for each logical
qubit.

The SWAP operations each qubit would partake in de-
pends primarily on its target node, and on those of the nodes
in its neighborhood that might be competing for the same
resources. It seems reasonable that we can use a Graph Neu-
ral Network with the device topology graph for its connec-
tivity since the decision of the optimal SWAP action for
some node is largely affected by other nodes in its physical
neighborhood. Therefore, our architecture includes an edge-
convolution block (Wang et al. 2018), followed by some
fully-connected layers with Swish (Ramachandran, Zoph,
and Le 2017) activations for the policy and value heads. The
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Figure 5: Comparative performance of routing algorithms
on random circuits as a function of the number of two-qubit
operations in the circuit.

value function and the policy function computed from this
neural network are returned back to the MCTS.

Results
We compare QRoute against the routing algorithms from
other state-of-the-art frameworks on various circuit bench-
marks: (i) Qiskit and its three variants (Anis et al. 2021): (a)
basic, (b) stochastic, and (c) sabre, (ii) Deep-Q-Networks
(DQN) from (Pozzi et al. 2020), (iii) Cirq (Gidney et al.
2021), and (iv) t|ket⟩ from Cambridge Quantum Computing
(CQC) (Sivarajah et al. 2020). Qiskit’s transpiler uses gate
commutation rules while perform qubit routing. This strat-
egy is shown to be advantageous in achieving lower circuit
depths (Itoko et al. 2019) but was disabled in our simula-
tions to have a fair comparison. The results for DQN shown
are adapted from the data provided by the authors Pozzi et al.
(2020).

Random Test Circuits
The first benchmark for comparing our performance com-
prises of random circuits. These circuits are generated on
the fly and initialized with the same number of qubits as
there are nodes on the device. Then two-qubit gates are put
between any pair of qubits chosen at random. In our simu-
lations, the number of such gates is varied from 30 to 150
and the results for assessing performance of different frame-
works are given in Fig. 5. The experiments were repeated 10
times on each circuit size, and final results were aggregated
over this repetition.

Amongst the frameworks compared, QRoute ranks a very
close second only to Deep-Q-Network guided simulated an-
nealer (DQN). Nevertheless, QRoute still does consistently
better than all the other major frameworks: Qiskit, Cirq and
t|ket⟩, and it scales well when we increase the number of lay-
ers and the layer density in the input circuit. QRoute shows
equivalent performance to DQN on smaller circuits, and on
the larger circuits it outputs depths which are on average ≤ 4
layers more than those of DQN. Some part of this can be at-
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Figure 6: Plots of output circuit depths of routing algorithms
over small realistic circuits (≤ 100 gates), summed over the
entire dataset. The inset shows the results on the same data
comparing the best performant scheduler excluding and in-
cluding QRoute on each circuit respectively.

tributed to MCTS, in it’s limited depth search, choosing the
worse of two moves with very close Q-values, resulting in
the scheduling of some unnecessary SWAP operations.

Small Realistic Circuits
Next we test on the set of all circuits which use 100 or less
gates from the IBM-Q realistic quantum circuit dataset used
by Zulehner, Paler, and Wille (2018). The comparative per-
formance of all routing frameworks has been shown by plot-
ting the depths of the output circuits summed over all the cir-
cuits in the test set in Fig. 6. Since the lack of a good initial
qubit allocation becomes a significant problem for all pure
routing algorithms on small circuits, we have benchmarked
QRoute on this dataset from three trials with different initial
allocations.

The model presented herein has the best performance on
this dataset. We also compare the best result from a pool
of all routers including QRoute against that of another pool
of the same routers but excluding QRoute. The pool includ-
ing QRoute gives on average 2.5% lower circuit depth, in-
dicating that there is a significant number of circuits where
QRoute is the best routing method available.

On this dataset also, closest to QRoute performance is
shown by Deep-Q-Network guided simulated annealer. To
compare performances, we look at the average circuit depth
ratio (CDR), which is defined by (Pozzi et al. 2020):

CDR =
1

#circuits

∑
circuits

Output Circuit Depth
Input Circuit Depth

(7)

The resultant CDR for QRoute is 1.178, where as the re-
ported CDR for the DQN is 1.19. In fact, QRoute outper-
forms DQN on at least 80% of the circuits. This is signif-
icant because in contrast to the random circuit benchmark,
the realistic benchmarks consist of the circuits that are closer
to the circuits used in useful computation.
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Large Realistic Circuit
For final benchmark, we take eight large circuits ranging
from 154 gates to 5960 gates in its input from the IBM-
Quantum realistic test dataset (Zulehner, Paler, and Wille
2018). The results are plotted in Fig. 7. QRoute has the
best performance of all available routing methods: Qiskit
and t|ket⟩, on every one of these sampled circuits with on
an average 13.6% lower circuit depth, and notable increase
in winning difference on the larger circuits.

The results from DQN and Cirq are not available for these
benchmarks as they are not designed to scale to such huge
circuits. In case of DQN, the CDR data results were not pro-
vided for the circuits over 200 gates, mainly because sim-
ulated annealing used in it is computationally expensive.
Similarly, for Cirq, it takes several days to compile each of
the near 5000 qubit circuits. In contrast, QRoute is able to
compile these circuits in at most 4 hours, and its compila-
tion process can be sped up by reducing the depth of the
search. Spending more time, however, helps MCTS to bet-
ter approximate the Q-values leading to circuits with lower
resulting depth.

Discussion and Conclusion
In this article, we have shown that the problem of qubit rout-
ing has a very powerful and elegant formulation in Rein-
forcement Learning (RL) which can surpass the results of
any classical heuristic algorithm across all sizes of circuits
and types of architectures. Furthermore, the central idea of
building up solutions step-by-step when searching in com-
binatorial action spaces and enforcing constraints using mu-
tex locks, can be adapted for several other combinatorial
optimization problems (Mazyavkina et al. 2020; Xing and
Tu 2020; Xu and Lieberherr 2019; Abe et al. 2019; Lat-
erre et al. 2018). Our approach is flexible enough to com-
pile circuits of any size onto any device, from small ones
like IBMQX20 with 20 qubits, to much larger hardware like
Google Sycamore (results provided in supplementary) with
53 qubits (the Circuit Depth Ratio for small realistic circuits
on Google Sycamore was 1.64). Also, it intrinsically deals
with hardware having different primitive instruction set, for
example on hardware where SWAP gates are not a primitive
and they get decomposed to 3 operations. QRoute enjoys
significant tunability; hyperparameters can be changed eas-
ily to alter the tradeoff between time taken and optimality of

decisions, exploration and exploitation, etc.
QRoute is a reasonably fast method, taking well under 10

minutes to route a circuit with under 100 operations, and
at most 4 hours for those with upto 5000 operations, when
tested on a personal machine with an i3 processor (3.7 GHz)
and no GPU acceleration. Yet more can be desired in terms
of speed. However, it is hard to achieve any significant im-
provement without reducing the number of search iterations
and trading off a bit of performance. More predictive neural
networks can help squeeze in better speeds.

One of the challenges of methods like DQN, that use Sim-
ulated Annealing to build up their actions is that the algo-
rithm cannot plan for the gates which are not yet waiting
to be scheduled, those which will come to the head of the
list once the gates which are currently waiting are executed
(Pozzi et al. 2020). QRoute also shares this deficiency, but
the effect of this issue is mitigated by the explicit tree search
which takes into account the rewards that will be accrued
in the longer-term future. There is scope to further improve
this by feeding the entire list of future targets directly into
our neural network by using transformer encoders to han-
dle the arbitrary length sequence data. This and other as-
pects of neural network design will be a primary facet of
future explorations. Another means of improving the perfor-
mance would be to introduce new actions by incorporating
use of BRIDGE gates (Itoko et al. 2019) and gate commu-
tation rules (Garcia-Escartin and Chamorro-Posada 2011)
alongside currently used SWAP gates. The advantage of for-
mer is that it allows running CNOT gates on non-adjacent
qubit without permuting the ordering of the logical qubits;
whereas, the latter would allow MCTS to recognize the re-
dundancy in action space, making its exploration and selec-
tion more efficient.

Finally, we provide an open-sourced access to our soft-
ware library. It will allow researchers and developers to im-
plement variants of our methods with minimal effort. We
hope that this will aid future research in quantum circuit
transformations. For review we are providing, the codebase
and a multimedia in the supplementary.

On the whole, the Monte Carlo Tree Search for building
up solutions in combinatorial action spaces has exceeded the
current state of art methods that perform qubit routing. De-
spite its success, we note that QRoute is a primitive imple-
mentation of our ideas, and there is great scope of improve-
ment in future.
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