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Abstract
Goal Recognition Design (GRD) problems identify the mini-
mum number of environmental modifications aiming to force
an interacting agent to reveal its goal as early as possi-
ble. Researchers proposed several extensions to the original
model, some of them handling stochastic agent action out-
comes. While this generalization is useful, it assumes opti-
mal acting agents, which limits its applicability. This paper
presents the Suboptimal Stochastic GRD model, where we
consider boundedly rational agents that, due to limited re-
sources, might follow a suboptimal policy. Inspired by the-
ories on human behavior asserting that humans are (close to)
optimal when making perceptual decisions, we assume the
chosen policy has at most u suboptimal actions. Our con-
tribution includes (i) Extending the stochastic goal recogni-
tion design framework by supporting suboptimal agents in
cases where an observer has either full or partial observabil-
ity; (ii) Presenting methods to evaluate the ambiguity of the
model under these assumptions; and (iii) Evaluating our ap-
proach on a range of benchmark applications.

Introduction
Our ability to recognize other people’s plans and goals re-
lies on the assumption that most human behavior is goal-
oriented. Nowadays, our interactions are not limited to hu-
mans but also artificial agents; as human-machine interac-
tion and automated systems’ intelligence grows, so does the
need to understand each other’s objectives. Therefore, re-
searchers aim to provide AI agents with goal recognizing ca-
pabilities (Sukthankar et al. 2014). Research in goal recogni-
tion (GR) studies the problem of determining an agent’s goal
by observing its behavior (Sukthankar et al. 2014; Ramı́rez
and Geffner 2010). Therefore, one of GR’s main problems
is to deal with ambiguous behavior. While most researchers
focused on inferring the true goal promptly and correctly,
Keren, Gal, and Karpas (2014) proposed to modify the envi-
ronment aiming to reduce ambiguity for the observer. By do-
ing so, the re-designed environment induces an acting agent
to reveal its goal earlier. Keren, Gal, and Karpas (2014) call
this problem Goal Recognition Design (GRD).

Typically, a GRD problem: (1) Evaluates the GR setting
using a measure and (2) Finds minimal changes to the under-
lying environment aiming to optimize this measure. In their
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work, Keren, Gal, and Karpas (2014) proposed the worst-
case distinctiveness (wcd) measure, which finds the maxi-
mum number of actions an agent can execute without re-
vealing its goal. They modified the environment using action
removal. Current work on GRD considers deterministic and
stochastic settings (Keren, Gal, and Karpas 2015, 2016a,b;
Keren et al. 2020; Son et al. 2016; Wayllace et al. 2016;
Wayllace, Hou, and Yeoh 2017; Wayllace et al. 2020; Keren,
Gal, and Karpas 2021) with different assumptions regard-
ing observability, optimality, and type of goal recognition
(Cohen, Perrault, and Allen 1981). Work in the stochastic
GRD (S-GRD) framework assumes optimal acting agents in
scenarios where an observer has full or partial observabil-
ity (Wayllace et al. 2016, 2020). In this paper we relax the
optimality assumption for both cases and consider bound-
edly rational agents that might follow suboptimal policies.

Many intelligent agents use human prediction models,
studied in psychology and economics (Rosenfeld and Kraus
2018). Like humans, AI agents cannot account for every as-
pect of the world’s dynamics; so they will probably need
to deviate from optimal behavior. Therefore, we decided to
consider close to rational policies with a limited number
of suboptimal actions. Accounting for slightly suboptimal
policies arguably improves the goal recognition model since
there is a higher probability that one of them explains the
agent’s criteria. This decision also aligns with work on goal
recognizers using top-k planners to improve goal recogni-
tion in domains with unreliable observations (Sohrabi, Ri-
abov, and Udrea 2016; Riabov, Araghi, and Udrea 2020).

The contributions of this paper are: (i) Generalization of
the S-GRD framework to support suboptimal agents where
observers have full or partial observability; (ii) Delivery of
a method to compute the maximal non-distinctive cost un-
der these assumptions; (iii) Empirical evaluation of our ap-
proach on a range of benchmark applications.

Background
Markov Decision Process (MDP): A Stochastic Shortest
Path Markov Decision Process (SSP-MDP) (Mausam and
Kolobov 2012) is represented as a tuple 〈S, s0,A, T , C,G〉.
It consists of a set of states S; a start state s0 ∈ S; a set of
actions A; a transition function T : S × A × S → [0, 1]
that gives the probability T (s, a, s′) of transitioning from
state s to s′ when action a is executed; a cost function
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C : S × A × S → R that gives the cost C(s, a, s′) of ex-
ecuting action a in state s and arriving in state s′; and a
set of goal states G ⊆ S. The goal states are terminal, i.e.,
T (s, a, s′) = 1 and C(g, a, g) = 0 for all goal states g ∈ G
and actions a ∈ A. An SSP-MDP (MDP hereinafter) must
also satisfy the following two conditions: (1) There must ex-
ist a proper policy, which is a mapping from states to actions
with which an agent can reach a goal state from any state
with probability 1. (2) Every improper policy must incur an
accumulated cost of∞ from all states from which it cannot
reach the goal with probability 1. Solving an MDP is to find
an optimal policy π∗ with the smallest expected cost.

Value Iteration (VI) (Bellman 1957) is one of the funda-
mental algorithms to find an optimal policy. The expected
cost V (s0) of an optimal policy π∗ for the starting state
s0 ∈ S and the expected cost V (s) for all states s ∈ S
are calculated using the Bellman equation (Bellman 1957):

V (s) = min
a∈A

∑
s′∈S

T (s, a, s′)
[
C(s, a, s′) + V (s′)

]
(1)

VI suffers from a limitation that it updates each state in every
iteration even if its expected cost has converged. Topologi-
cal VI (TVI) (Dai et al. 2011) addresses this limitation by
detecting the MDP structure and updating states grouped in
topological sequences. It first divides the MDP into strongly
connected components (SCCs) and repeatedly updates the
states in only one SCC until their values converge before
updating the states in another SCC. Since the SCCs form a
directed acyclic graph, states in an SCC only affect the states
in upstream SCCs. Thus, by choosing the SCCs in reverse
topological sort order, it no longer needs to consider SCCs
whose states have converged in a previous iteration. TVI is
guaranteed to terminate and to converge to an optimal value
function.

GRD and (PO)S-GRD: A Goal Recognition Design (GRD)
problem (Keren, Gal, and Karpas 2014) is represented as a
tuple T = 〈P,D〉, where P is an initial GR model andD is a
design model. P , in turn, is represented by the tuple 〈D,G〉,
where D captures the domain information and G is a set of
possible goal states of the agent. Stochastic GRD (S-GRD)
(Wayllace et al. 2016) extends the GRD framework by as-
suming that actions executed by the agent have stochastic
outcomes. The elements of D = 〈S, s0,A,T,C〉 are as de-
scribed in MDPs, except that the cost function C is restricted
to positive costs (assumed to be 1 for simplicity) and in case
of GRDs, the transition function T is deterministic.

In GRD problems, the worst-case distinctiveness (wcd) of
problem P is the length of the longest sequence of actions
that is the prefix in cost-minimal plans to distinct goals. For
S-GRDs, the wcd is the highest expected cost of policy pre-
fixes common to multiple goals. Wayllace et al. (2020) de-
fine the worst case distinctiveness of a stochastic GR prob-
lem P as: wcd = max

π̂∈Π̂G

∑
~τ

Pπ̂(~τ)DC(~τ) (2)

where: (i) Π̂G =
⋃
g∈G Π̂g is the set of all legal

policies of P for all possible goals. (ii) The probabil-
ity of trajectory ~τ = 〈s0, a1, s1 . . . , an, sn〉 is Pπ̂(~τ) =

Πn
i=1Iπ̂(si−1)=aiP (si|si−1, ai); I is the indicator function

that takes value 1 when π̂(si−1) = ai and 0 otherwise. (iii)
The distinctiveness cost DC(~τ) of a trajectory ~τ is

max
i∈{0...n} s.t. |G(ob(〈s0,...,ai,si〉))|>1

i∑
j=1

C(sj−1, aj , sj) (3)

G(ob(~τ)) represents the set of goals satisfied by the ob-
served sequence of a trajectory. In S-GRD ob(~τ) = ~τ
whereas in POS-GRD, ob(~τ) contains only a subset of the
states, not the actions.

A design model D (Keren, Gal, and Karpas 2018) in-
cludes the set of applied modifications, a modification func-
tion defining their effects, and a constraint function to spec-
ify the modification sequences used. The seminal work sug-
gests action removal (Keren, Gal, and Karpas 2014) and
Wayllace et al. (2020) propose state sensor refinement as
possible modifications.

The objective in (POS-)GRD is to find a feasible modifi-
cation sequence that, when applied to the initial goal recog-
nition model P , will minimize the measure of the problem.

Augmented MDP for (PO)S-GRD: In (PO)S-GRD prob-
lems, the set of possible goals for a particular state is
not Markovian as it depends on the path used to reach
that state. For this reason, (PO)S-GRD algorithms use aug-
mented MDPs to compute the measure where states incorpo-
rate the set of possible goals given the trajectory used. Any
augmented state whose successors have less than two possi-
ble goals becomes an absorbing state. The value of wcd is
the largest expected cost at the initial augmented state. TVI-
like algorithms are used to compute wcd (Wayllace, Hou,
and Yeoh 2017; Wayllace et al. 2020).

Suboptimal Stochastic Goal Recognition
Design (SS-GRD)

The difficulty of GR arises when the observed partial tra-
jectory can explain multiple goals. GRD tries to reduce the
complexity of GR by decreasing the size of those ambiguous
policies. However, the number and length of non-distinctive
trajectories explode when assuming suboptimality and par-
tial observability. Moreover, simultaneously considering all
ambiguous policies to compute the wcd under the new as-
sumptions may generate infinite loops, i.e., the agent’s opti-
mal policy is to stay in cycles to accumulate an infinite cost.
This work presents methods to tackle the complexity added
by the new assumption and shows that none of the optimiza-
tions in previous work are applicable. Since policy enumer-
ation is required to compute wcd exactly, our method min-
imizes policy re-evaluation and focuses on optimizing the
design part.

The problem in hand considers two interested parties:
boundedly rational agents aiming to achieve a goal and ob-
servers trying to detect the agent’s real goal as early as pos-
sible. Agents can execute up to u suboptimal actions (which
could have stochastic outcomes). We require that an agent
selects only proper and stationary policies and assume they
are unaware of the recognition process (i.e., keyhole goal
recognition). Low sensor resolution may limit observers, in
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which case they cannot perceive the agent’s executed ac-
tions, and some states can be indistinguishable from others.
We aim to find a limited set of environmental modifications
to help the observer’s task without hindering the agent’s ob-
jective. Due to the offline property of GRD problems, we
need to account for all possible sequences of observations
generated by an agent.

Model
The model for SS-GRD problems accounts for a stochastic
environment, the observer’s capability of perceiving the ac-
tor’s behavior, and the degree of agent’s suboptimality. Our
model has two components: the initial GR model and the de-
sign model. The design model describes how to modify the
initial GR setting to reduce ambiguity. We formulate each
component separately before defining the SS-GRD problem
formally. This section also considers wcd as the measure to
evaluate a GR model and redefines it for SS-GRD.

Stochastic Goal Recognition (Stochastic GR)
Definition 1 (Stochastic Goal Recognition Model). A
stochastic goal recognition problem P is a tuple P =
〈M,G, u,N , Co〉, where: (1) M = 〈S, s0,A, T , C〉 is an
SSP-MDP without a goal. The four first elements model the
world mechanics, and the cost function C : S×A×S→ R+

specifies the agent’s cost C(s, a, s′) of taking action a at
state s and arriving to state s′. (2) G is a set of candidate
goals, i.e., ∀g ∈ G, G ⊆ S; g is a possible goal of the agent.
(3) u ≥ 0 is the degree of suboptimality allowed, where
u = 0 represents optimal agents. (4) N is a sensor func-
tion that defines the observer’s degree of observability. In
partially-observable (PO) models, each state s is associated
with an observation N (s), which we refer to the projected
observation of s. The set S is partitioned into observation
sets O1, ...,On such that ∀s, s′ : N (s) = N (s′) ⇐⇒
∃i : s, s′ ∈ Oi. In fully-observable (FO) models, N is
an identity function. (4) Co is the observer’s cost function
Co : S ×A × S → R+ that assigns a potentially different
cost to each agent’s action.

The model considers distinct cost functions for agents and
observers, allowing each to specify their preferences with-
out affecting the other. For example, two ambiguous poli-
cies with the same cost for the agent but of different lengths
would be indifferent to the agent, but the observer should
prefer the shorter one. In this paper, we assigned a cost of 1
to all actions in both cases.

S0

S1

S2

S3

g1

g0

a1

a2

a3

a4

a 5

O1

O2 O3

O4

a6 a7

(a)

S0

S1

S2

S3

a1

a2

O101

O201

a6 a7

(b)

Figure 1: PO SS-GRD. (a) Original MDP. (b) Non-
distinctive Observations.

To illustrate the PO setting, consider Fig. 1(a), where cir-
cles represent states, dashed arrows denote non-observable
actions, and green bubbles stand for observations (O1−O4)
that group undistinguishable states. All actions have a cost
of execution equal to 1; agents executing action a1 have a
90% probability of succeeding, and if choosing action a2

have a 50% probability of transitioning in states S2 or S3.
Observers only perceive sequences of observations, and an
acting agent could follow one of the multiple legal trajecto-
ries. In our example, the sequence 〈O1, O2〉will not provide
new information to an observer; she will not know whether
the agent executed action a1 or a2, nor could she discern
whether the agent transitions between states S2 and S3.

Design Model
The design model describes the characteristics of applicable
modifications.

Definition 2 (Design Model). A design model in S-GRD is
a tuple D = 〈M, δ, φ, Cm, k〉 where: (1)M is a finite set of
applicable modifications. A modification set is a combina-
tion of modifications ~m = {m1,m2, . . .mn} withmi ∈M.
We refer to ~M as the set of all those combinations. (2)
δ : M × P → P is a modification function, specifying
the effect of modifications on the stochastic GR model. (3)
φ : ~M×P → {⊥,>} is a constraint function that specifies
the allowable modification sets. (4) Cm : M→ R+ defines
the cost Cm(m) to apply modification m ∈ M to a stochas-
tic GR model. (5) k is a user-defined parameter that limits
the size of a modification set.

In this paper, Cm(m) = 1 for all proposed modifications.
Similar to previous work, the constraint function prevents
changes that increase the original costs to reach each goal.

The resultant model after the correct application of a set
of modifications is defined as:

Definition 3 (Application of a Set of Modifications). Given
a stochastic goal recognition model P and a modification set
~m ∈ ~M such that ~m = {m1,m2, . . .mn}; mi ∈ M; and
φ(~m) = >; the set ~m applied to P gives a new stochastic
GR model P ~m = δ(mn, . . . , δ(m1, P )).

Evaluating the Stochastic Goal Recognition
Problem
GRD problems use design optimization to minimize am-
biguous paths and consequently to facilitate GR. Therefore,
they require a measure or criterion to assess the difficulty of
performing GR in a given model. Traditionally, the measure
used is called the worst-case distinctiveness (wcd). In this
subsection, we redefine wcd for the SS-GRD problem.

Worst-Case Distinctiveness (wcd) Contrary to Keren,
Gal, and Karpas (2019), we propose that the cost used
should be the cost for the observer (Co in Def. 1) as the op-
timization is for the observer’s benefit. i.e., we reduce the
ambiguity of the problem so that the observer infers the
real goal sooner. At a high level, we propose the wcd for
stochastic settings corresponds to the highest expected cost
or penalty an observer could experience while the acting
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agent does not reveal its goal. The argument is that observer
and agent might have unrelated priorities. An agent could
use a lot of energy executing one action or could execute
several actions using the same power in total. However, as
long as each action takes the same amount of time (non-
durative), an observer would prefer shorter trajectories (i.e.,
fewer actions) regardless of the cost they have for the agent.
This decision will affect the solution when both costs are
different, i.e. when C 6= Co.

Note that the formal definition of wcd for SS-GRD is the
same as for POS-GRD (Wayllace et al. 2020). However, the
components are different. Definitions 4 to 6 introduce the
new elements.
Definition 4 (Agent’s Strategies). Given the initial stochas-
tic GR model P0 = 〈M,G, u,N , Co〉 the agent’s strategies
are the set of all policies Πu

g of MDP M for goal g ∈ G
within the limits imposed by u.
Definition 5 (Legal Policies). Given the agent’s strategies
Πu
g for goal g ∈ G, the set ΠG =

⋃
g∈G Πu

g is the set of all
legal policies of P for all possible goals.

In other words, the set of legal policies contains every pol-
icy that an agent can generate for every candidate goal ac-
cording to the limitations imposed by the model through the
parameter u. In this paper, u controls the suboptimal policies
allowed. Note that this definition subsumes the optimal case
where the set of legal policies contains only optimal policies
(u = 0).

The worst-case distinctiveness of a stochastic GR prob-
lem P is as defined by Eq. 2, where ΠG follows Definition 5
and the distinctiveness costDC(~τ) of a trajectory ~τ uses the
cost function for the observer Co, i.e., Eq. 3 becomes:

max
i∈{0...n} s.t. |G(ob(〈s0,...,ai,si〉))|>1

i∑
j=1

Co(sj−1, aj , sj) (4)

DC(~τ) is well-defined for proper policies, and DC is 0
for an empty trajectory (i = 0).
Definition 6 (Expected Distinctiveness). The expected dis-
tinctiveness ED(π̂) of a policy π̂ is the expected distinc-
tiveness cost of its trajectories,

∑
~τ Pπ̂(~τ)DC(~τ). Where

DC(~τ) is given by Eq. 4

Objective of SS-GRD
An SS-GRD problem is a tuple T = 〈P0,D〉 where P0 is
the initial stochastic GR model and D is the design model,
which specifies the rules to generate alternative stochastic
GR models P by applying modification sets to P0. The ob-
jective of an SS-GRD problem is to find a set of modifi-
cations ~m = {m1 . . .mn}, such that ~m is feasible (i.e.,
φ(~m) = > ∧ |~m| ≤ k), and which minimizes the wcd of
the resulting model P∆

0 := (Pm1
0 )...mn . That is:

~mo = argmin
~m∈ ~M:φ(~m)=>∧|~m|≤k

wcd(P0)

Solving SS-GRD
Bounded Suboptimality
In multiple real-world scenarios, the agent may not act op-
timally, even if it is rational. Moreover, the effectiveness of

GRD depends on accurately modeling the agent’s interac-
tion with the environment. Assuming an utterly irrational
agent is usually not practical since it is unlikely that an agent
with a goal or purpose presents such behavior. Addition-
ally, erratic behaviors might cause infinite wcd. Therefore,
we decided to consider a boundedly rational agent. Initially,
we tried to find a set of top-k suboptimal policies that act-
ing agents could take (Dai and Goldsmith 2009) where the
next best policy differs from the previous one in only one
state. However, as Dai and Goldsmith (2010) mention, there
are usually multiple “trivially extended policies” that differ
from another only in a non-reachable state. Additionally, the
tie-breaking rule uses a lexicographic order, which some-
times excludes policies with the same expected cost. There-
fore, even if it is computationally more demanding, we de-
cided to find all policies with up to u suboptimal actions.1
A newly generated policy differs from the previous one in
one of its reachable states. Since generating legal (subopti-
mal) policies could use different methods, and due to space
constraints, we present the pseudocode of the proposed al-
gorithm in the appendix. After running this algorithm, all
actions to reach goal g carry information of the legal poli-
cies that use them.

Computing wcd
In GRD problems for stochastic environments, the set of
possible goals for a particular state depends on the observed
path of the agent to that state (Wayllace, Hou, and Yeoh
2017; Wayllace et al. 2020). Therefore, the original MDP
is augmented with goal information to represent all possible
observations that all allowed trajectories may generate. The
wcd is equal to the largest expected cost at the initial state of
such augmented MDP.

When considering suboptimal policies, we cannot use the
same method. To illustrate the problem, consider Fig. 2(a),
where the start state is s0 and there are two possible goals:
g0 and g1. All actions are deterministic except for action a0,
which has 50% probability to transition from s0 to states
s1 or s2. The cost of executing an action is 1. Bold arrows
represent all non-distinctive actions, which, together with all
states, match the structure of the augmented MDP as defined
for S-GRD (Wayllace, Hou, and Yeoh 2017). Note that ac-
tions a1 and a2 form an infinite loop. Therefore, the largest
expected cost of this augmented MDP at s0 is infinite and
will not provide the wcd value. Further, we require the agent
to select proper and stationary policies, that is, a policy con-
taining actions a1 and a2 is not legal. Therefore, the wcd
computation should not consider that loop.

Intuitively, keeping track of the policies breaks infi-
nite loops. However, augmenting states with policy IDs
may create maximal augmented policies that do not cor-
respond to any legal policy. For instance, Fig. 2(c) shows
the resultant MDP of this example after augmenting states
and actions with policy IDs (shown in red numbers in
Fig. 2(b)). The policy marked in green highlights the largest
augmented policy; note that each trajectory maps to dif-

1The implementation also limits policies with expected costs
larger than five times the optimal cost.

9956



S0

S1

S2

a0 a 1 a 2 a 5 a 6

a3

a4

g1

g0

(a)

S0

1

S2

S1

g1

g0 2

S0

S1

S2 g1

g0 3

S0

S1

S2 g1

g0

4

S0

S1

S2 g1

g0 5

S0

S1

S2 g1

g0 6

S0

S1

S2 g1

g0

(b)

{2,3,4,5}

{1,6}

{1,2,5,6}

{2,3,4,5}

{3,4}

{1,2,5,6}
{1,2,5,6}

{1,2,3,4,5,6}

{1,6}

{1,2,3,4,5,6}

{3,4}

{1,6}

{2,3,4,5}

{3,4}

{1,2,3,4,5,6}

g0

g1

g1

g0

a0

a4

a4

a3
a3

a1

a2
{1,2,3,4,5,6}

S0

S2

S2
S1

S1

(c)

Figure 2: FO SS-GRD. (a) Original MDP. (b) All Legal Policies. (c) Policy-Aware Augmented MDP

ferent pairs of policy IDs ({1, 6} and {3, 4}). Due to
this problem, we should evaluate the non-distinctive part
of a policy only in the augmented space reachable by
that policy. By doing so, we are effectively computing
its expected distinctiveness (Def. 6). To evaluate policy
1, for instance, we should not consider augmented states
{〈S2, {3, 4}〉, 〈g1, {3, 4}〉, 〈g1, {2, 3, 4, 5}〉}.

In case of partial observability (PO), the non-distinctive
prefix of a policy depends not only on policies that share
the same actions, but also on policies sharing the same ob-
servable trajectories. For instance, consider Fig. 1(a). When
evaluating the ambiguity of policy formed by actions a1 and
a3, there is no legal policy for goal g1 sharing those actions.
However, all other policies share part of its observable tra-
jectory (~τ = 〈O1, O2〉).

We now define the policy-aware augmented MDP for SS-
GRD problems; later, we describe how to use it to find the
wcd of the problem.

Policy-Aware Augmented MDP: Let P =
〈M,G, u,N , Co〉 with u ≥ 0 be a GR model with
stochastic action outcomes, M = 〈S, s0,A, T , C〉 is an
MDP with positive costs C for the agent and no goal. The
states of an augmented MDP add a boolean variable posgρ
per possible policy to keep track of its validity given an
observed trajectory. Note that each policy with ID ρ also
serves to keep track of possible goals since they are legal for
a specific goal g. Terminal states of this MDP are those that
have less than two possible goals. To comply with Eq. 4, the
cost of an action transitioning to a terminal state is 0.

The policy-aware augmented MDP Πaug =
〈S′, s′0,A′, T ′, C′,G′〉 for SS-GRD is defined as fol-
lows:

• S′ = S × {>,⊥}|ΠG|: for each s ∈ S we create 2|ΠG|

augmented states, corresponding to all subsets of possible
legal policies.

• s′0 = s0 · 〈> . . .>〉: initially all policies are possible.
• A′ = A (action labels remain unchanged).

• T ′(s · 〈pos1
1 . . . pos

g
ρ〉, a, s′ · 〈pos′11 . . . pos′gρ 〉) =

T (s, a, s′) (∃i 6= j, b 6= d : posbi = posdj = >)∧ (5)

∀i ∈ {1 . . . , |ΠG|}(pos′gi = (posgi∧ (6)(
πi ∈ Πu

g ∧ πi(s) = a ∧ id(πi) = i) (7)

∨(N (s) = N (s′) (8)
∨(∃π ∈ ΠG ∧ ∃ŝ : N (s) = N (ŝ)∧ (9)
∃ŝ′ | T (ŝ, π(ŝ), ŝ′) > 0∧ (10)
N (s′) = N (ŝ′))

)
)) (11)

0 otherwise (12)

where id : ΠG → Z+ is a function mapping legal policies
to policy IDs. The probability of transitioning from state
s with 〈pos1

1 . . . pos
g
ρ〉 to state s′ with 〈pos′11 . . . pos′gρ 〉

(where posbi , pos
′b
i indicate whether policy with ID i, le-

gal for goal b is possible) depends on multiple factors.
The transition probability from a state where the true goal
was revealed is 0 (Line 5). Once discarded, a policy can-
not become possible (Line 6). A policy remains possible
if action a is part of the legal policy with ID i (Line 7)
or s and s′ emit the same observation (Line 8). Finally,
Lines 9-11 cover cases like action a1 and a2 in Fig. 1(a)
discussed before.
• C′(s · 〈pos1

1 . . . pos
g
ρ〉, a, s′ · 〈pos′11 . . . pos′gρ 〉) ={

Co(s, a, s′) ∀(s′ · 〈pos′11 . . . pos′gρ 〉) 6∈ G′

0 otherwise
We want to find policies with maximal cost for the ob-
server without including the cost of actions that transition
to a terminal state.
• G′ =

{
s · 〈pos1

1 . . . pos
g
ρ〉 | (∃posbi , ∀j 6= i, d 6= b :

posdj = ⊥)}: terminal states are those with less than two
possible goals.

Computing wcd - Practical Considerations:
As stated before, the highest expected cost at the start-

ing state of the policy-aware augmented MDP for SS-GRD
is not always equivalent to the wcd of the problem. There-
fore, we need to evaluate the non-distinctive prefix of every
legal policy (using the augmented MDP). There is no need
to generate all |S| × 2|ΠG| augmented states, just the reach-
able states using the policy to be evaluated. In the PO case,
we also need to generate states emitting the same observa-
tion sequences as the reachable states. For example, when
evaluating the policy to reach goal g0 in Fig. 1(a), there is
no need to generate augmented states of g1, but we should
augment states S2 and S3 since they share the observed se-
quence 〈O1, O2〉. While building this smaller augmented
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Procedure augMDP-PO(ρ,f, s0,S,Π
f
G, T ,N )

1 Stack ← ∅;S′ ← ∅;fi ← fo ← f, T ′ ←
null,G′ ← ∅;O ← null

2 sf0 ← 〈s0,f〉
3 Stack.push({sf0 });S′ ← S′ ∪ {sf0 }
4 while Stack 6= ∅ do
5 S0 ← Stack.pop
6 〈fi,fo, T ′,G′,S′,O〉 ←

CREATENODE(S0, T ,N , ρ,fi,fo, T ′,G′,S′)
7 foreach O ∈ N | O(O) 6= null do
8 S′′ ← O(O)
9 Stack ← S′′

10 end
11 end
12 return 〈fi,S′, T ′,G′〉

MDP, we can keep track of all policies that share all non-
distinctive actions. If multiple policies share their maximum
non-distinctive prefixes at the end, we group them, and there
is no need to re-evaluate other policies in the group. The
wcd is equivalent to the maximum expected cost among all
groups. In the worst case, we will need to evaluate individu-
ally all |ΠG| policies.

We present now the method used for PO settings, which
accounts for the observer’s partial observability as previ-
ously defined2. Procedure augMDP-PO finds groups of
policies sharing all their observable non-distinctive trajec-
tories and builds a partial augmented MDP to evaluate them.
In this procedure, N is the set of observation sets (Defini-
tion 1). Function O : N → 2S

′
is a mapping from N to the

power set of augmented states that models augmented states
grouped by their projected observations.

At a high level, the procedure represents observation sets
as nodes, and traverses these nodes in a DFS fashion. Each
node contains sets of unobservably connected states (Wayl-
lace et al. 2020), where all states emit the same observation
and share the set of possible goals. For example, in Fig. 1(b),
each green blob denotes a node. The node projecting obser-
vation O201 has two sets of unobservably connected states,
one formed by states S2 and S3, and the other by S1. Goals
g0 and g1, marked as subindex of the observation, are still
possible for states in this node.

The procedure receives as arguments the policy ID ρ of
the policy to be evaluated, the set f of all policy IDs, the
initial state s0, the set S of original states, the set Πf

G of all
legal policies marked with their respective IDs, the original
transition function T , and the sensor configuration modeled
by the sensor function N . First, all variables are initialized
and the start state s0 is augmented with the set of all pol-
icy IDs f (Lines 1-2). Next, a set containing the augmented
initial state is pushed to a stack and the set of augmented
states is updated (Line 3). Each stack entry is a set of aug-
mented states emitting the same observation and whose pre-
decessors emit a different observation. While traversing un-

2The appendix contains the procedure for FO settings

observably connected sates from S0, Procedure CREATEN-
ODE updates and returns (1) augmented MDP components,
(2) the function O mapping emitted observations to newly
expanded and unexplored augmented states, (3) the set fo
containing IDs of policies that share observable trajectories
with the evaluated policy, and (4) the ID set fi of policies
sharing actions with the policy of ID ρ (Lines 4-11). Finally,
Procedure AUGMDP-PO returns the set fi of policy IDs
and the components of an augmented MDP useful to evalu-
ate the group of policies signaled by fi (Line 12).

The solution of the augmented MDP generated using Pro-
cedure AUGMDP-PO gives the expected cost of the largest
non-distinctive prefix of policies in Πf

i , i.e., policies with
IDs indicated by fi. The wcd is then computed using:

wcd(P ) = max
i=1...n

VΠf
i

(s′0) (13)

VΠf
i

(s′) =
∑

s′′∈S′

T ′(s′, π(s′), s′′)[C′(s′, π(s′), s′′) + VΠf
i

(s′′)]

(14)

where: π ∈ Πf
i and

n⋃
i=1

fi = f ∧
n⋂
i=1

fi = ∅

We use a VI-based algorithm that runs iterations of Eq. 14
for groups of policies with the same non-distinctive trajec-
tories, and find the maximum among all using Eq. 13. Since
this evaluation is costly, we store all partial results in a max
priority queue to minimize recomputation during design.

Design: Minimizing wcd
Keren, Gal, and Karpas (2018) cast the design model as a
tree where the root represents the initial GR model P0, and
each children a modified model Pm = δ(m,P ) with ex-
actly one modification m applied to the parent P , i.e., the
path from a node to the root gives set of applied modifica-
tions. The objective is to find the smallest modification set
whose application yields wcd reduction. The naı̈ve approach
to solve the problem consists of traversing the tree using
BFS and computing wcd for each node. In this subsection,
we (1) present two types of modifications, (2) characterize
their properties to prune the search space, and (3) describe
algorithms for faster wcd recomputation.

Action Removal (AR): Action removal consists of remov-
ing state-action pairs from the original MDP. It was first pro-
posed by (Keren, Gal, and Karpas 2014) as a method to mod-
ify GRD models. Similar to Wayllace et al. (2020), we (1)
detect sets of actions that cause unreachable goals with le-
gal policies and prune any superset of those actions, and (2)
prune actions used only by policies with distinctive prefixes.
Further, removing an action removes policies that contain
it, and since AR should not increase original costs, the wcd
never increases (formal proofs in the appendix).

The algorithm for faster wcd recomputation uses a max
priority queue Q created when computing wcd for the ini-
tial GR problem. Q contains groups of policies evaluated
together and their expected distinctiveness (ED) as the key
value. The high-level idea is to reevaluate only dequeued
groups of removed policies or those containing a single pol-
icy (since their ED will not change otherwise). In addition,
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Figure 3: wcd Reduction in FO and PO Settings. u = 1 (Top Row), u = 2 (Bottom Row).

we stop when the current wcd is higher than the top value in
Q (as wcd does not increase).

Sensor Refinement (SR): Sensor refinement refines a single
state to make it fully observable. This type of modification
was proposed by Wayllace et al. (2020) for POS-GRD prob-
lems. While we have the same objective, our method takes
advantage of the following two properties (detailed in the
appendix): (1) SR does not increase the ED of any legal
policy; and (2) Refining a state s can only affect the ED
of policies that reach states s′ projecting the same observa-
tion (s′|N (s) = N (s′)). Further, we leverage the fact that
the best solution is a fully-refined model. The algorithm re-
computes the wcd for a fully-refined problem and, similar
to POS-GRD, it refines all states within a single observation
set and if the wcd did not reduce, it prunes all subsets with
more than one element of that observation set. Faster wcd
recomputation uses the max priority queue Q created at the
time of computing wcd for the initial GR problem. The main
idea is to recompute the ED of policies at the top of Q until
we find a group of policies whose new ED is larger than the
next value in Q. There is no need of further evaluation since
it is guaranteed that wcd will not increase after refinement.

Note that the design performed may not be helpful if
agents do not execute policies that contribute to the wcd or
when the agent’s model is incorrect. Considering slightly
suboptimal policies improves the robustness of the solu-
tion in certain cases where the latter is true. For instance,
in Fig. 2(a), a system assuming optimal agents would re-
move no action. In contrast, considering suboptimal agents
will guide the design to remove actions a6 and a7. There is
no problem if the acting agent is effectively optimal in this
case. However, action removal could help the observer infer
the correct goal faster if the agent’s model was inaccurate.
In the original case, the wcd = 1.5 whereas after removing
actions a6 and a7, we obtain wcd = 1.1.

Empirical Evaluation
The objective of this section is to evaluate the usefulness and
scalability of our methods. We describe the settings used and
present and analyze the experimental results.

Data: We evaluated our approach on five modified plan-
ning domains: (1) GRID-NAVIGATION, (2) ROOM, (3)
BLOCKSWORLD, (4) BOXWORLD, and (5) ATTACK-
PLANNING (further details in the appendix).

Settings: We ran experiments in 39 instances with 36 differ-
ent configurations per instance, evaluating action removal in
FO and PO settings (FO-AR and PO-AR), and sensor refine-
ment in PO settings (PO-SR). We used a budget k of up to 3
modifications and allowed up to 2 suboptimal actions (u = 1
and u = 2). Experiments were conducted on a 2.10 GHz ma-
chine with 16 GB of RAM and a timeout of 52 hours. The
number of reachable states varies from 16 to 16,384, with
12 to 527,866 legal policies. The source code is available at
https://github.com/cwayllace/SS-GRD.

Results: One way to evaluate the success of (POS-)GRD is
through wcd reduction of the modified problems. Intuitively,
if wcd reduces, an observer has a higher probability of rec-
ognizing the true goal earlier. Fig. 3 visualizes the wcd re-
duction with different budgets. Markers map instances (hori-
zontal axes) to their corresponding wcd value (vertical axes).
Blue marks represent the wcd value for the initial GR prob-
lem, red, yellow, and green markers denote the final wcd val-
ues for budgets of k = 1, k = 2, and k = 3 respectively.
In PO-SR settings, pink markers represent wcd values for
a fully-refined model. Comparisons should happen among
markers in the same vertical line; the lower the mark, the
smaller the wcd value. The top row shows values for in-
stances with up to one suboptimal action (u = 1) and the
bottom row for instances with up to two suboptimal actions
(u = 2). As expected, the original wcd values increase with
the number of suboptimal policies in all but five cases. Also,
in most cases, the larger the budget, the higher the reduction.

Due to the branching factor of the ROOM domain, (up to 6
successors per action), almost every policy reaches all states,
which creates vast augmented state spaces. Thus, only the
smallest instance finished the wcd computation on time and
so, we do not show results for ROOM.

We now present detailed observations per setting.

FO-AR: When considering u = 1, wcd reduced in 20 in-
stances with budgets of k = 1 and k = 2, and in 23 instances
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with k = 3. However, the reduction was higher with larger
budgets: 18 instances present a higher reduction with k = 2
and 11 instances with k = 3. For problems with u = 2,
wcd reduced in 16 instances with a budget of k = 1 and in
19 instances with k = 2 and k = 3. The reduction amount
increased in 14 instances from k = 1 to k = 2, and in 7
instances from k = 2 to k = 3.
PO-AR: Instances with u = 1 present a wcd reduction in
22 cases when k = 1, in 26 when k = 2, and in 22 when
k = 3. The reduction amount increased in 18 cases from
k = 1 to k = 2, and in 16 cases from k = 2 to k = 3.
When considering u = 2, we observe a wcd reduction in 15
instances with k = 1, in 20 when k = 2, and in 17 when
k = 3. A lower number of instances with a budget of k = 3
reduced their wcd value because some of them did not finish
on time. The reduction amount increased in 16 cases from
k = 1 to k = 2, and in 5 cases from k = 2 to k = 3.
PO-SR: In this setting, the optimal wcd value is equal to
the wcd of a fully-refined GR problem. Instances with u =
1 present a wcd reduction in 18 cases when k = 1 (12 of
which reached optimal values), in 18 cases when k = 2 (13
with optimal values), and in 17 cases when k = 3 (14 of
them with optimal values). The wcd reduction was higher in
6 cases when comparing k = 1 to k = 2, and in 2 cases when
using k = 3 instead of k = 2. When working with u = 2,
11 instances reduced wcd when k = 1 (6 of which were
optimal), 15 reduced when k = 2 (8 with optimal values),
and 14 when k = 3 (10 of them with optimal values). When
comparing the amount of reduction, 8 instances had higher
wcd reduction when using k = 2 instead of k = 1 and 5
when using k = 3 rather than k = 2.

We compared the running times of our algorithms against
a naı̈ve approach (no pruning and no faster wcd recompu-
tation) and the running times within settings. Fig. 4 summa-
rizes the tendency of running time (vertical axis, logarithmic
scale in seconds) of instances in the GRID-NAVIGATION do-
main for FO and PO settings using AR and k = 1. Lines
only allow us to connect the values for the same algorithm
visually. Greenish markers plot the average values obtained
for the optimized versions. In general, settings with a higher
number of suboptimal actions (u = 2) require more time to

find a solution since they handle the highest number of legal
policies. However, this could change if policy evaluation is
done in parallel. Finally, optimized versions outperform the
naı̈ve approach in 100% of the cases, with differences of up
to six orders of magnitude (tabulated data in the appendix).

Conclusion and Future Work
We presented the Suboptimal Stochastic Goal Recognition
Design (SS-GRD) problem, which assumes boundedly ra-
tional agents allowed to deviate from their optimal behavior
by executing a limited number of suboptimal actions. Ac-
tion outcomes are stochastic and observers could suffer from
partial observability, in which case, actions and some states
are not distinguished. The objective is to find the minimum
number of modifications such that, once applied to the envi-
ronment, the agent is forced to reveal its true goal earlier.

This paper formally defines the problem, adapts the worst-
case distinctiveness (wcd) measure defined for POS-GRD,
and provides and evaluates novel algorithms in several
benchmark applications. Our analysis shows that to find the
wcd in SS-GRD we need to keep track of the followed pol-
icy. Hence, an exact algorithm cannot avoid policy enumer-
ation, which affects the scalability of the solution. Domains
with a high branching factor and multiple loops such as
ROOM are problematic for this strategy.

While our algorithms outperform the naı̈ve approach, we
believe other measures either with aggregated policy costs or
independent of visited states would work better in stochastic
settings. For instance, defining a measure that considers only
the current state and its relation with the start state and pos-
sible goals could improve scalability, i.e., analyzing policy
suffixes instead of prefixes (Masters 2019).

Considering other assumptions such as dynamic environ-
ments or incomplete agent (or environment) models also
pose new challenges. Since the problem’s complexity in-
creases with the number of relaxed assumptions, it would
be interesting to investigate approximate solutions in real-
world scenarios.
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