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Abstract

Entropy estimation is an important problem in information the-
ory and statistical science. Many popular entropy estimators
suffer from fast growing estimation bias with respect to di-
mensionality, rendering them unsuitable for high-dimensional
problems. In this work we propose a transform-based method
for high-dimensional entropy estimation, which consists of
the following two main ingredients. First by modifying the
k-NN based entropy estimator, we propose a new estimator
which enjoys small estimation bias for samples that are close
to a uniform distribution. Second we design a normalizing
flow based mapping that pushes samples toward a uniform
distribution, and the relation between the entropy of the orig-
inal samples and the transformed ones is also derived. As a
result the entropy of a given set of samples is estimated by
first transforming them toward a uniform distribution and then
applying the proposed estimator to the transformed samples.
Numerical experiments demonstrate the effectiveness of the
method for high-dimensional entropy estimation problems.

Introduction
Entropy is one of the most fundamental concepts in infor-
mation theory, and has also found vast applications in other
disciplines such as physics, statistics and machine learning.
For example, in the data science contexts, various applica-
tions rely critically on the estimation of entropy, including
goodness-of-fit testing (Vasicek 1976; Goria et al. 2005), sen-
sitivity analysis (Azzi, Sudret, and Wiart 2020), parameter
estimation (Ranneby 1984; Wolsztynski, Thierry, and Pron-
zato 2005), and Bayesian experimental design (Sebastiani
and Wynn 2000; Ao and Li 2020).

As a concept of the average surprisal in a variable’s possi-
ble outcomes, entropy provides a natural answer to measuring
the uncertainty of probability distribution of interest. In this
work we focus on the continuous version of entropy that takes
the form,

H(X) = −
∫

log[px(x)]px(x)dx, (1)

where px(x) is probability density function of a random vari-
able X . Despite the rather simple definition, entropy only
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admits an analytical expression for a limited family of dis-
tributions and needs to be evaluated numerically in general.
When the distribution of interest is analytically available, in
principle its entropy can be estimated by numerical integra-
tion schemes such as the Monte Carlo method. However, in
many real-world applications, the distribution of interest is
not analytically available, and one has to estimate the entropy
from the i.i.d. realizations drawn from the target distribution,
which makes exact computation of the entropy difficult or
even impossible.

Entropy estimation has attracted considerable attention
from various communities in the last a few decades, and a
large number of methods have been developed to directly
evaluate entropy from realizations. In this work we only con-
sider non-parametric approaches which do not assume any
parametric model of the target distribution, and those meth-
ods can be broadly classified into two categories. The first
line of methods, known as the plug-in estimators, are to es-
timate the unknown probability density, and then compute
the integral in Eq. (1) using numerical integration or Monte
Carlo (see (Beirlant et al. 1997) for a detailed description).
Some examples of density estimation approaches that have
been studied for plug-in methods are kernel density estima-
tor (Joe 1989; Hall and Morton 1993), histogram estimator
(Györfi and Van der Meulen 1987; Hall and Morton 1993) and
field-theoretic approach (Chen, Tareen, and Kinney 2018). A
major limitation of this type of methods is that they rely on
an effective density estimation, which is a difficult problem
in its own right, especially when the dimensionality of the
problem is high. A different strategy is to directly estimate
the entropy from the independent samples of the random
variable. Methods following this line include sample-spacing
(Miller 2003) and k-nearest neighbors (k-NN) (Kozachenko
and Leonenko 1987; Kraskov, Stögbauer, and Grassberger
2004) based estimators. The latter is particularly appealing
among the existing estimation methods for its theoretical and
computational advantages and has been widely used in prac-
tical problems. More recent variants and extensions of the
k-NN methods include (Gao, Ver Steeg, and Galstyan 2015;
Berrett et al. 2019).

Entropy estimation becomes increasingly more difficult
as the dimensionality grows, and such difficulty is mainly
due to the estimation bias, which decays very slowly with
respect to sample size for high-dimensional problems. For
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example in many popular approaches including the k-NN
method (Kozachenko and Leonenko 1987), the estimation
bias decays at the rate of O(N−γ/d) where N is the sample
size, d is the dimensionality, and γ is a positive constant
(Krishnamurthy et al. 2014; Kandasamy et al. 2015; Gao,
Oh, and Viswanath 2018; Sricharan, Wei, and Hero 2013).
As a result very few if not none of the existing entropy es-
timation methods can effectively handle high-dimensional
problems without strong assumptions on the smoothness of
the underlying distribution ((Kandasamy et al. 2015)).

The main goal of this work is to provide an effective en-
tropy estimation approach which can achieve faster bias de-
caying rate under mild smoothness assumption, and thus can
apply to high-dimensional problems (i.e., ones of 20 dimen-
sions or higher 1). The method presented here consists of
two main ingredients. We propose two truncated k-NN esti-
mators based on those by (Kozachenko and Leonenko 1987)
and (Kraskov, Stögbauer, and Grassberger 2004) respectively,
and also provide the bounds of the estimation bias in these
estimators. Remarkably our theoretical results suggest that
the estimators achieve zero bias for uniform distributions,
while there is no such a result for any existing k-NN based
estimators, according to the bias analysis that are available to
date (Gao, Oh, and Viswanath 2018; Singh and Póczos 2016;
Biau and Devroye 2015). This property offers the possibility
to significantly improve the performance of entropy estima-
tion by mapping the data points toward a uniform distribution.
Therefore the second main ingredient of the method is the
normalizing flow (NF) technique (Rezende and Mohamed
2015; Papamakarios et al. 2021) which constructs a sequence
of invertible and differentiable mappings that transform a
simple base distribution such as standard Gaussian into a
more complicated distribution whose density function may
not be available. Specifically we use the Masked Autoregres-
sive Flow (Papamakarios, Pavlakou, and Murray 2017), a
NF algorithm originally developed for density estimation,
combined with the probability integral transform, to push
the original data points towards the uniform distribution. We
then estimate the entropy of the resulting near-uniform data
points with the proposed truncated k-NN estimators, and
derive that of the original ones accordingly (by adding an
entropic correction term due to the transformation). There-
fore, by combining the truncated k-NN estimators and the
normalizing flow model, we are able to decode a complex
high-dimensional distribution represented by realizations,
and obtain an accurate estimation of its entropy. Finally, we
provide several complex high-dimensional distributions to
demonstrate the performance of the proposed scheme and
apply it to Bayesian experimental design problems.

1We note that in many statistical applications, problems of 20
dimensions are not regarded as “high-dimensional”. However, the
well-known minimax bias results (e.g., (Han et al. 2020; Birgé
and Massart 1995)) indicate that without the strong smoothness
assumption ((Kandasamy et al. 2015)), the curse of dimensionality
is inevitable, and as a result problems of 20 dimensions or higher
are deemed “high-dimensional” in entropy estimation.

k-NN Based Entropy Estimation
We provide a brief introduction to two traditional k-NN based
entropy estimators in this section. We start with the original
k-NN entropy estimator proposed by (Kozachenko and Leo-
nenko 1987), where the k-th nearest neighbor is contained
in the smallest possible closed ball. Next, we introduce a
popular variant of the k-NN estimator proposed in (Kraskov,
Stögbauer, and Grassberger 2004), and this method uses the
smallest possible hyper-rectangle to cover at least k points.
We finally discuss some theoretical analysis of estimation
errors in the estimators.

Kozachenko-Leonenko Estimator
Recall the definition of entropy in Eq. (1). Given a den-
sity estimator p̂x(x) for px(x) and a set of N i.i.d. samples
S = {x(i)}Ni=1 drawn from px(x), the entropy of the random
variable X can be estimated as follows:

Ĥ(X) = −N−1
N∑
i=1

log p̂x(x(i)). (2)

The Kozachenko-Leonenko (KL) estimator depends on a
local uniformity assumption to obtain the estimate p̂x(x). For
each x(i), one first identifies the k-nearest neighbors (in terms
of the p-norm distance) of it, and defines the smallest closed
ball covering all these k neighbors as:

B(x(i), εi/2) = {x ∈ Rd
∣∣ ‖x− x(i)‖p ≤ εi/2},

where εi be twice the distance between x(i) and its k-th
nearest neighbor among the set S. We shall refer to the closed
ball B(x(i), εi/2) as a cell centered at x(i), and let qi be the
mass of the cell B(x(i), εi/2) , i.e.,

qi(εi) =

∫
x∈B(x(i),εi/2)

px(x)dx.

It can be derived that the expectation value of log qi over εi
is given by

E(log qi) = ψ(k)− ψ(N), (3)

where ψ(x) = Γ′(x)
Γ(x) with Γ(x) being the Gamma func-

tion (Kraskov, Stögbauer, and Grassberger 2004). KL estima-
tor then assumes that the density is constant in B(x(i), εi),
which gives

qi(εi) ≈ cdεdi px(x(i)), (4)
where d is the dimension of X and

cd = Γ(1 +
1

p
)d/Γ(1 +

d

p
),

is the volume of the d-dimensional unit ball with respect to
p-norm. Combining (3) and (4) one can get an estimate of
the log-density at each sample point,

log p̂x(x(i)) = ψ(k)− ψ(N)− log cd − d log εi. (5)

Plugging the above estimates for i = 1, ..., N into (2) yields
the KL estimator:

ĤKL(X) = −ψ(k) + ψ(N) + log cd +
d

N

N∑
i=1

log εi. (6)
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KSG Estimator
As is mentioned earlier, the Kraskov-Stögbauer-Grassberger
(KSG) estimator is an important variant of ĤKL. Unlike KL
estimator that is based on closed balls, KSG estimator uses
hyper-rectangles to form the cells at each data point. Namely
one chooses the∞-norm as the distance metric (i.e p =∞),
and as a result the cell B(x(i), εi/2) becomes a hyper-cube
with side length εi. Next, we allow the hyper-cube to become
a hyper-rectangle: i.e., the cells admit different side lengths
along different dimensions. Specifically, for j = 1, ..., d, we
define εi,j to be twice of the distance between x(i) and its k-
th nearest neighbor along dimension j, and the cell centered
at x(i) covering its k-nearest neighbors becomes

B(x(i), εi,1:d/2) = {x = (x1, ..., xd) | |xj − x
(i)
j | ≤ εi,j/2,

for j = 1, ..., d},
(7)

where εi,1:d = (εi,1, ..., εi,d). This change leads to a different
formula for computing the mass of the cell B(x(i), εi,1:d/2),

E(log qi) ≈ ψ(k)− d− 1

k
− ψ(N). (8)

It is worth noting that the equality in Eq. (3) is replaced by
approximate equality in Eq. (8), because a uniform density
within the rectangle has to be assumed to obtain Eq. (8)
(see Lemma 2 in the supplementary information (SI) for
details). Using a similar local assumption as Eq. (4), the KSG
estimator is derived as,

ĤKSG(X) = −ψ(k)+ψ(N)+
d− 1

k
+

1

N

N∑
i=1

d∑
j=1

log εi,j .

(9)
We note that the KSG method was actually developed in
the context of estimating mutual information (Kraskov, Stög-
bauer, and Grassberger 2004), and has been reported to out-
perform the KL estimator in a wide range of problems (Gao,
Oh, and Viswanath 2018). As has been shown above, it is
straightforward to extend it to entropy estimation, and our
numerical experiments also suggest that it has competitive
performance as an entropy estimator, which will be demon-
strated in the numerical experiments.

Convergence Analysis
Another important issue is to analyze the estimation errors
in these entropy estimators and especially how they behave
as the sample size increases. In most of the k-NN based es-
timators including the two mentioned above, the variance
is generally well controlled, decaying at a rate of O(N−1)
with N being the sample size, while the main issue lies on
the estimation bias. In fact, the bias of estimator ĤKL has
been well studied, but that of ĤKSG receives very little at-
tention. Previous results related to the former are listed as
follows. The original (Kozachenko and Leonenko 1987) pa-
per established the asymptotic unbiasedness for k = 1 while
(Singh et al. 2003) obtained the same result for general k.
For distributions with unbounded support, (Tsybakov and

Figure 1: The schematic illustration of the truncated estimator.
The shaded area is that removed from the k-NN cell.

Van der Meulen 1996) proved that the bias bound decays
at a rate of O( 1√

N
) for d = 1. (Gao, Oh, and Viswanath

2018) generalized it to higher dimensions, obtaining a bias
bound of O(N−

1
d ) up to polylogarithmic factors. For distri-

butions compactly supported, usually densities satisfying the
β-Hölder condition are considered. (Biau and Devroye 2015)
gave a quick-and-dirty upper bound of bias, O(N−β), for a
simple class of univariate densities supported on [0, 1] and
bounded away from zero. (Singh and Póczos 2016) proved
the bias is around O(N−

β
d ) (β ∈ (0, 2]) for general d with

some additional conditions on the boundary of support. We
reinstate that all these works obtained a variance bound of
O(N−1).

It should be noted that the bias bounds given by previ-
ous studies typically depend on some properties of target
densities, such as smoothness parameter and Hessian ma-
trix, providing insights that these estimators perform well on
certain distributions that satisfy certain conditions. This mo-
tivates the idea that one can transform the given data points
toward a desired distribution for a more accurate entropy
estimation, which is detailed in next section.

Uniformizing Mapping Based Entropy
Estimation

In this section, we shall present an entropy estimation ap-
proach that is based on normalizing flow. As is mentioned
earlier, it consists of two main ingredients: a truncated ver-
sion of the k-NN entropy estimators, and a transformation
that can map data points toward a uniform distribution.

Truncated KL/KSG Estimators
For compactly supported distributions, a significant source
of bias comes from the boundary of the support, where the
k-NN cells are constructed including areas outside of the
support of the distribution density (Singh and Póczos 2016).
Intuitively speaking, incorrectly including such areas results
in an underestimate of the densities, leading to bias in the
estimator. We thus propose a method to reduce the estimation
bias by excluding the areas outside of the distribution support,
and remarkably the resulting estimator enjoy certain conver-
gence properties which enable us to design the NF based
estimation approach. The only additional requirement for
using these estimators is that the bound of support of density
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should be specified. Without loss of generality, we suppose
the target density is supported on the unit cube Q := [0, 1]d

in Rd. The procedure of our method is as follows: we first
determine all the cells using either KL or KSG, then examine
whether each k-NN cell covers area out of the distribution
support, and if so, truncate the cell at the boundary to exclude
such area. Mathematically the truncated KL (tKL) estimator
(with∞-norm), is given by

ĤtKL(X) = −ψ(k) + ψ(N) +
1

N

N∑
i=1

d∑
j=1

log ξi,j , (10)

where

ξi,j = min{x(i)
j + εi/2, 1} −max{x(i)

j − εi/2, 0};

and the truncated KSG (tKSG) esitmator is given by

ĤtKSG(X) = −ψ(k) + ψ(N) + (d− 1)/k

+
1

N

N∑
i=1

d∑
j=1

log ζi,j ,
(11)

where

ζi,j = min{x(i)
j + εi,j/2, 1} −max{x(i)

j − εi,j/2, 0}.

To numerically demonstrate the improvement of the truncated
estimators over the conventional version, we compare their
performances on multidimensional Beta distributions with
various shape parameters, and the results are reported in the
SI.

Next we shall theoretically analyze the bias of the truncated
estimators. Our analysis relies on some assumptions on the
density function px, which are summarized as below:
Assumption 1. The distribution px satisfies:

(a) px is continuous and supported on Q;
(b) px is bounded away from 0, i.e., C1 = inf

x∈Q
px(x) > 0;

(c) The gradient of px is uniformly bounded onQo, i.e., C2 =
sup

x∈Qo
||Opx(x)||1 <∞.

First we consider the bias of estimator ĤtKL and the fol-
lowing theorem states that, the bias in ĤtKL is bounded and
vanishes at the rate of O(N−

1
d ).

Theorem 1. Under Assumption 1 and for any finite k and d,
the bias of the truncated KL estimator is bounded by∣∣E[ĤtKL(X)]−H(X)

∣∣ ≤ C2

C
1+1/d
1

( k
N

) 1
d .

The variance of the truncated KL estimator is bounded by

Var[ĤtKL(X)] ≤ C 1

N
,

for some C > 0.

Proof. See the SI.

Note that C2 = 0 when px is uniform on Q, and the
following corollary follows directly:

Corollary 1. Under the assumption in Theorem 1, if X is
uniformly distributed on Q, then the truncated KL estimator
is unbiased.

This corollary is the theoretical foundation of the proposed
method, as it suggests that if one can transform the data points
into a uniform distribution, the tKL method can yield an un-
biased estimate. In reality, it is usually impossible to map
the data point exactly into a uniform distribution to achieve
the unbiased estimate. To this end, Theorem 1 suggests that,
as long as the transformed samples are close to a uniform
distribution in the sense that C2 is small, the transformation
can still significantly reduce the bias. Since the main contri-
bution of the mean-square estimation error comes from the
bias (as the variance decays at the rate of O(N−1)), reducing
the bias therefore leads much more accurate estimation of the
entropy.

We next consider the bias of the tKSG estimator. The
second theorem shows that the expectation of ĤtKSG has the
same limiting behavior up to a polylogarithmic factor in N .
Theorem 2. Under Assumption 1 and for any finite k and d,
the bias of the truncated KSG estimator is bounded by∣∣E[ĤtKSG(X)]−H(X)

∣∣ ≤ C (logN)k+2

Ck+1
1 N

1
d

for someC > 0. The variance of the truncated KSG estimator
is bounded by

Var[ĤtKSG(X)] ≤ C ′ (logN)k+2

N
,

for some C ′ > 0.

Proof. See the SI.

As one can see from Theorem 2, while the uniform dis-
tribution leads to zero bias for ĤtKL, we can not obtain the
same result for ĤtKSG, which means no theoretical justifica-
tion for mapping the data points toward a uniform distribution
for this estimator. That said, the tKSG estimator and The-
orem 2 are still useful, and the reason for that is two-fold.
First as is mentioned earlier, no existing result on the bound
of bias is available for the KSG estimator to the best of our
knowledge, and to this end our analysis on tKSG is the first
known bias bound for this type of estimators, and may pro-
vide useful information for understanding the convergence
property of them. More importantly, our numerical exper-
iments demonstrate that mapping the data points toward a
uniform distribution does significantly improve the perfor-
mance of tKSG as well. In fact, we have found that tKSG
can achieve the same or slightly better results than tKL on
the transformed samples in our test cases.

Estimating Entropy via Transformation
As is mentioned earlier, based on the interesting convergence
properties of the truncated estimators in particularly tKL, we
want to estimate the entropy of a given set of samples by
mapping them toward a uniform distribution. To implement
this idea, an essential question to ask is that, how the entropy
of the transformed samples relates to that of the original ones.
Proposition 1 provides an answer to this question.
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Proposition 1 ((Ihara 1993)). Let f be a mapping: Rd →
Rd, X be random variable defined onRd following distribu-
tion px, and Z = f(X). If f is bijective and differentiable,
we have

H(X) = H(Z) +

∫
pz(z) log

∣∣∣∣ det
∂f−1(z)

∂z

∣∣∣∣dz, (12)

where pz(z) is the distribution of Z.

Therefore given a data set S = {x(i))}Ni=1 and a map-
ping Z = f(X), from Eq. (12) we can construct an entropy
estimator of X as,

Ĥ(X) = Ĥ(Z) +
1

n

n∑
i=1

log

∣∣∣∣ det
∂f−1(z(i))

∂z

∣∣∣∣, (13)

where Ĥ(Z) is an entropy estimator of Z (either tKL or
tKSG) based on the transformed samples SZ = {z(i) =
f(x(i))}ni=1.

We refer to such a mapping f(·) as a uniformizing map-
ping (UM) and the resulting method as a UM based entropy
estimator. A central question in implementation of the algo-
rithm is obviously how to construct a UM which can push the
samples toward a uniform distribution, which is discussed in
next section.

The bias of the UM based estimator relies on the property
of the UM (or equivalently the NF), on which we make the
following assumption:

Assumption 2. Let S = {x(i)}Ni=1 be the set of i.i.d samples
used to construct the UM and pSz be the resulting density of
Z in Eq. (13). Denote CN2 = sup

z∈Qo
||OpSz (z)||1, and assume

that CN2 satisfies: (1) CN2
P−→

N→∞
0; (2) There exist a positive

integer M and a positive real number C̄ < 1 such that:

∀N > M, CN2 ≤ C̄, a.s.

Based on Theorem 1 and Theorem 2, we can obtain a
bound of the bias of the UM based estimator.

Corollary 2. Suppose that the density function of the original
distribution is differentiable and the UM satisfies Assump-
tion 2. The bias of UM-tKL estimator is bounded by∣∣E[ĤUM−tKL(X)]−H(X)

∣∣ ≤ CNUM−tKL

( k
N

) 1
d , (14)

where lim
N→∞

CNUM−tKL = 0, and the bias of UM-tKSG esti-

mator is bounded by∣∣E[ĤUM−tKSG(X)]−H(X)
∣∣ ≤ CUM−tKSG (logN)k+2

N
1
d

,

(15)

where CUM−tKSG = C
(1+C̄)

(
(1+C̄)d+1

)
(1−C̄)k+1 and C is a posi-

tive constant.

Proof. See the SI.

Constructing UM via Normalizing Flow
We discuss in this section how to construct a UM via the
NF method. First since the image of f is [0, 1]d, we assume
that f is in the form of f = Φ ◦ g where g : Rd → Rd
and Φ : Rd → [0, 1]d is prescribed. Recall that pz is the
distribution of Z = f(X) with X following px, and we want
the function g by minimize the Kullback-Leibler divergence
(KLD) between pz and the uniform distribution pu:

min
g∈Ω

D(pz|pu) :=

∫
pz(z) log

[
pz(z)

pu(z)

]
dz, (16)

where z = Φ ◦ g(x) and Ω is a suitable function space. Solv-
ing Eq. (16) directly poses some computational difficulty as
the calculation involves the function Φ, the choice of which
may affect the computational efficiency. To simplify the com-
putation, we recall the following proposition:
Proposition 2 ((Papamakarios et al. 2021)). Let T : Y → Z
be a bijective and differentiable transformation, and pz(z) be
the distribution obtained by passing py(y) through T . Then
the equality

D(πy(y)||py(y)) = D(πz(z)||pz(z)) (17)

holds.
We now construct the mapping Φ with the cumulative

distribution function of the standard normal distribution, a
technique known as the probability integral transform, yield-
ing, for a given y ∈ Rd,

Φ(y) = (φ1(y1), ..., φd(yd)), φi(yi) =
1

2
(1 + erf(

y√
2

)),

where erf(·) is the error function. It should be clear that if y
follows a standard normal distribution, z = Φ(y) follows a
uniform distribution in [0, 1]d, and vice versa. Now applying
Proposition 2, we can show that Eq. (16) is equivalent to

min
g∈Ω

D(py(y)|q(y)), (18)

where y = g(x) follows distribution py(·) and q(·) is the
standard normal distribution. Now assume that g(·) is invert-
ible and let its inverse be h = g−1. We also assume that both
g and h are differentiable. Applying Proposition 2 to Eq. (18)
with T = h, we find that Eq. (18) is equivalent to

min
h∈Ω−1

D(px(x)|qh(x)), (19)

where Ω−1 = {g−1|g ∈ Ω} and qh is the distribution ob-
tained by passing q through the mapping h:

qh(x) = q
(
h−1(x)

) ∣∣∣∣ det

(
∂h−1

∂x

) ∣∣∣∣. (20)

Eq. (19) essentially says that we want to push a standard
normal distribution q toward a target distribution px, and
therefore solving Eq. (19) falls naturally into the framework
of NF, the details of which are provided in SI. Once the
mapping h(·) (or equivalently g−1(·)) is obtained, it can be
inserted directly into Algorithm 1 to estimate the sought
entropy. In practice, the samples are split into two sets, where
one of them is used to construct the UM and the other is used
to estimate the entropy.
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Figure 2: Left: RMSE plotted against the dimensionality d.
Right: RMSE (on a logarithmic scale) plotted against the
sample size N .

Numerical Experiments
Multivariate Normal Distribution
To validate the idea of UM based entropy estimator, a natural
question to ask is that how it works with a perfect NF transfor-
mation, that yields exactly normally distributed samples. To
answer this question, we first conduct the numerical tests with
the standard multivariate normal distribution, corresponding
to the situation that one has done a perfect NF.

Specifically we test the four methods: KL, KSG, UM-tKL
and UM-tKSG, and we conduct two sets of tests: in the first
one we fix the sample size to be 1000 and vary the dimen-
sionality, while in the second one we fix the dimensionality
to be 40 and vary the sample size. All the tests are repeated
100 times and the Root-mean-square-error (RMSE) of the
estimates are calculated. In Fig. 2 (left), we plot the RMSE
(on a logarithmic scale) as a function of the dimensional-
ity. One can see from this figure that, as the dimensionality
increases, the estimation error in KL and KSG grows signif-
icantly faster than that in the two UM based ones, with the
error in KL being particularly large. Next in Fig. 2 (right)
we plot the RMSE against the sample size N (note that the
plot is on a log-log scale) for d = 40, which shows that for
this high-dimensional case, the two UM based estimators
yield much lower and faster-decaying RMSE than those two
estimators on the original samples. Overall these results sup-
port the theoretical findings that the estimation error can be
significantly reduced by mapping the target samples toward
a uniform distribution.

Multivariate Rosenbrock Distribution
In this example we shall see how the proposed method per-
forms when NF is included. Specifically our example is the
Rosenbrock type of distributions – the standard Rosenbrock
distribution is 2-D and widely used as a testing example
for various of statistical methods. Here we consider two
high-dimensional extensions of the 2-D Rosenbrock (Pa-
gani, Wiegand, and Nadarajah 2019): the hybrid Rosenbrock
(HR) and the even Rosenbrock (ER) distributions. The de-
tails of the two distributions including their density functions
are provided in SI. The Rosenbrock distribution is strongly
non-Gaussian, and that can be demonstrated by Fig. 3 (left)
which shows the samples drawn from 2-D Rosenbrock. As
a comparison, Fig. 3 (right) shows the samples that have
been transformed toward a uniform distribution and used in
entropy estimation.

In this example we compare the performance of seven

-5 0 5
0

10

20
Original samples

0 0.5 1
0

0.5

1
UM-transformed samples

Figure 3: Left: the original samples drawn from a 2-D Rosen-
brock distribution; Right: the UM-transformed samples used
in the entropy estimation.

estimators: in addition to the four used in the previous ex-
ample, we include an estimator only using NF (details in SI)
as well as two state-of-the-art entropy estimators: CADEE
(Ariel and Louzoun 2020) and the von-Mises based estimator
(Kandasamy et al. 2015). First we test how the estimators
scale with respect to dimensionality, where the sample size
is taken to be N = 500d. With each method, the experi-
ment is repeated 20 times and the RMSE is calculated. The
RMSE against the dimensionality d for both test distributions
is plotted in Figs. 4 (a) and (b). One can observe here that in
most cases, the UM based methods (especially UM-tKSG)
offer the best performance. An exception is that CADEE per-
forms better in low dimensional cases for HR, but its RMSE
grows much higher than that of the UM methods in the high-
dimensional regime (d > 15). Our second experiment is to
fix the dimensionality at d = 10 and vary the sample size,
where the RMSE is plotted against the sample size for both
HR and ER in Figs. 4 (c) and (d). The figures show clearly
that the RMSE of the UM based estimators decays faster than
other methods in both examples, with the only exception be-
ing CADEE in the small sample (≤ 104) regime of ER. It is
also worth noting that, though it is not justified theoretically,
UM-tKSG seems to perform slightly better than UM-tKL in
all the cases.

Application to Optimal Experimental Design
In this section, we apply entropy estimation to an optimal
experimental design (OED) problem. Simply put, the goal
of OED is to determine the optimal experimental conditions
(e.g., locations of sensors) that maximize certain utility func-
tion associated with the experiments. Mathematically let
λ ∈ D be design parameters representing experimental con-
ditions, θ be the parameter of interest, and Y be the observed
data. An often used utility function is the entropy of the data
Y , resulting in the so-called maximum entropy sampling
method (MES) (Sebastiani and Wynn 2000):

max
λ∈D

U(λ) := H(Y |λ), (21)

and therefore evaluatingU(λ) becomes an entropy estimation
problem. This utility function is equivalent to the mutual
entropy criterion under certain conditions (Shewry and Wynn
1987). This formulation is particularly useful for problems
with expensive or intractable likelihoods, as the likelihoods
are not needed if the utility function is computed via entropy
estimation. A common application of OED is to determine
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Figure 4: From left to right: RMSE vs. dimensionality for HR (a) and ER (b); RMSE vs. sample size for HR (c) and ER (d).

Method UM-tKL UM-tKSG CADEE Equidistant KL KSG NF von-Mises
NMC -1.45 -2.73 -1.65 -1.56 -1.48 -1.81
(SE) (0.0073) (0.0074) (0.0072) (0.0076) (0.0072) (0.0049)

RMSE 0.73 0.48 0.86 — 3.60 1.05 0.88 1.31

Table 1: The reference entropy values of the observation time placements obtained by using all the methods. The smallest (best)
entropy value is shown in bold.

Figure 5: Top: some sample data paths of (x, y); Bottom: the
optimal observation times obtained by the eight methods.

the observation times for stochastic processes so that one
can accurately estimate the model parameters and here we
provide such an example, arising from the field of population
dynamics.

Specifically we consider the Lotka-Volterra (LV) predator-
prey model (Lotka 1925; Volterra 1927). Let x and y be the
populations of prey and predator respectively, and the LV
model is given by

ẋ = ax− xy, ẏ = bxy − y,
where a and b are respectively the growth rates of the prey
and the predator. In practice, often the parameters a and b are
not known and need to be estimated from the population data.
In a Bayesian framework, one can assign a prior distribution
on a and b, and infer them from measurements made on the
population (x, y). Here we assume that the prior for both a
and b is a uniform distribution U [0.5, 4]. In particular we as-
sume that the pair (x+εx, y+εy), where εx, εy ∼ N (0, 0.01)
are independent observation noises, is measured at d = 5
time points located within the interval [0, 10], and the goal
is to determine the observation times for the experiments.
As is mentioned earlier, we shall determine the observation
times using the MES method. Namely, the design parameter
in this example is λ = (t1, ..., td), the data Y is the pair
(x+ εx, y + εy) measured at t1, ..., td, and we want to find λ
that maximizes the entropy H(Y |λ).

A common practice in such problems is not to optimize
the observation times directly and instead parametrize them
using the percentiles of a prescribed distribution to reduce the

optimization dimensionality (Ryan et al. 2014). Here we use
a Beta distribution, resulting in two distribution parameters
to be optimized (see (Ryan et al. 2014) and SI for further
details). We solve the resulting optimization problem with
a grid search where the entropy is evaluated by the seven
aforementioned estimators each with 10,000 samples. We
plot in Fig. 5 the optimal observation time placements com-
puted with the seven aforementioned estimators, as well as
the equidistant placement for a comparison purpose. Also
shown in the figure are some sample paths of the popula-
tion (x, y) where we can see that the population samples are
generally subject to larger variations near the two ends and
relative smaller ones in the middle. Regarding the optimiza-
tion results, we see that the optimal time placements obtained
by the two UM based estimators and CADEE are the same,
while they are different from the results of other methods.
To validate the optimization results, we compute a reference
entropy value for the optimal placement obtained by each
method, using Nested Monte Carlo (NMC) (see (Ryan 2003)
and SI for details) with a large sample size (105 × 105), and
show the results in Table 1. Note that though the NMC can
produce a rather accurate entropy estimate, it is too expensive
to use directly in this OED problem. Using the reference val-
ues as the ground truth, we can further compute the RMSE of
these estimates (over 20 repetitions), which are also reported
in Table 1. From the table one observes that the placement
of observation times computed by the two UM methods and
CADEE yields the largest entropy values, which indicates
that these three methods clearly outperform all the other es-
timators in this OED problem. Moreover, from the RMSE
results we can see that the UM based methods (especially
UM-tKSG) yield smaller RMSE than CADEE, suggesting
that they are more statistically reliable than CADEE.

Conclusion
In summary we have presented a NF based entropy estimator,
which is supported by both theoretical analysis and numerical
experiments. We believe that the method can be useful in
a wide range of real-world applications involving entropy
estimation, for instance, experiment design, and we plan to
explore such applications in future studies.
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