
Robust Tests in Online Decision-Making

Gi-Soo Kim1, Jane P. Kim2, Hyun-Joon Yang2

1Department of Industrial Engineering & Artificial Intelligence Graduate School, UNIST
2Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine

gisookim@unist.ac.kr, janepkim@stanford.edu, yanghyun@stanford.edu

Abstract

Bandit algorithms are widely used in sequential decision
problems to maximize the cumulative reward. One potential
application is mobile health, where the goal is to promote
the user’s health through personalized interventions based
on user specific information acquired through wearable
devices. Important considerations include the type of, and
frequency with which data is collected (e.g. GPS, or
continuous monitoring), as such factors can severely impact
app performance and users’ adherence. In order to balance
the need to collect data that is useful with the constraint of
impacting app performance, one needs to be able to assess the
usefulness of variables. Bandit feedback data are sequentially
correlated, so traditional testing procedures developed for
independent data cannot apply. Recently, a statistical testing
procedure was developed for the actor-critic bandit algorithm.
An actor-critic algorithm maintains two separate models,
one for the actor, the action selection policy, and the other
for the critic, the reward model. The performance of the
algorithm as well as the validity of the test are guaranteed
only when the critic model is correctly specified. However,
misspecification is frequent in practice due to incorrect
functional form or missing covariates. In this work, we
propose a modified actor-critic algorithm which is robust to
critic misspecification and derive a novel testing procedure
for the actor parameters in this case.

Introduction
Bandit algorithms apply to sequential decision problems.
We assume a set of candidate actions, or arms, is revealed
sequentially to a learning agent along with side information
called contexts. The agent can pull one arm at a time and
receives a corresponding reward. The expected value of the
reward is an unknown function of the context information of
the chosen action. The goal of the agent is to adaptively learn
an action allocation policy so as to achieve high cumulative
reward. The main challenge is the exploration-exploitation
trade-off, which represents the dilemma between pulling
arms that the agent is uncertain about for the sake of learning
(exploration) and pulling the best arm based on current,
limited knowledge (exploitation).

Bandit algorithms can be particularly useful in the context
of personalizing health interventions in Mobile Health
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(Tewari and Murphy 2017). The goal of Mobile Health
(mHealth) apps is to promote the user’s health through
personalized interventions tailored to the user specific
information acquired through devices such as phones or
wearable devices. One important issue related to mHealth
apps is that the frequency of data queries (e.g. queries to the
Health Kit API) impacts the app performance. As queries
become increasingly frequent, the processing time slows
down the app from the user perspective, which can result
in low adherence to the app and hence low reward. Hence,
the frequency of data queries and the reward feedback go
hand in hand. Beyond performance related costs, there could
also be costs of ethical valence (e.g. privacy) associated with
querying data and thus it is important to collect only data that
are correlated with the reward. Currently, there is little work
on assessing the utility of variables collected by wearables.

We consider testing the utility of context variables for
an actor-critic bandit algorithm (Lei, Tewari, and Murphy
2017). An actor-critic bandit algorithm maintains two
separate parameterized models, one for the actor, the action
allocation policy, and the other for the critic, the reward
model. The focus of this work is on testing the variables
used in the actor model, which requires that asymptotic
distributions of the actor parameter estimates are known.
Lei, Tewari, and Murphy (2017) proved that when the
reward model is linear and is correctly specified by the critic,
then the actor parameter estimates converge in probability
to the parameters of the optimal policy and asymptotically
follow a normal distribution.

Based on the asymptotic normality of the actor parameter
estimates, we can apply a Z-test to assess the significance
of the actor parameters. The validity of model-based tests,
such as those of Lei, Tewari, and Murphy (2017), relies on
the assumption that the linear model is correctly specified;
in other words, that the assumed statistical model represents
the true reward function. Linear functions may, however,
fail to accurately represent the true nature of the reward
function, and often there is no a priori reason to hypothesize
the reward should be of a certain functional form. When
the parameterized critic model is not correctly specified
(i.e. the true reward model is of a different form than the
working model), asymptotic normality may not hold. In this
paper, we propose a new actor-critic algorithm and a testing
procedure that is robust to the misspecification of the critic
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model. The main contributions of our paper are as follows:

• We propose a new actor-critic algorithm where the
actor parameter estimates converge to the parameters
of the optimal policy even when the reward model is
misspecified by the critic.

• We show that in the new algorithm, critic and actor
parameter estimates asymptotically follow a normal
distribution.

• We conduct experiments on synthetic data and real data
and show that our testing procedure appropriately assess
the significance of the parameters.

Related Works on Robust Bandits
Our work is distinct from the limited literature on robust
bandits. First, the focus of the existing works (Tang et al.
2021; Hao et al. 2019; Zhu et al. 2018) is on the robustness
to the noise of the rewards. For example, Tang et al.
(2021) and Hao et al. (2019) developed Upper-Confidence
Bound (UCB) algorithms without requiring to specify the
tail property of the reward, and Zhu et al. (2018) developed
an actor-critic (AC) algorithm that is robust to outliers.
These methods however, are built upon the linearity of
the reward model. Ghosh, Chowdhury, and Gopalan (2017)
developed a new algorithm that maintains the sublinear
regret in a model with large deviations from linearity, but is
restricted to the case where the action feature set is fixed over
time. Hence even under large deviations, the problem can
still be addressed by a multi-armed bandit algorithm with
regret scaling with the number of arms instead of feature
dimension.

Second, we consider the AC algorithm, which, apart
from ε-greedy, is unique in that asymptotic distributions
of the parameter estimates are known; there are currently
no established statistical testing procedures for the UCB
or Thompson sampling algorithms. We consider the impact
of misspecification on the validity of inferential testing
of the utility of contextual variables (i.e. significance of
actor parameters in the AC algorithm). To the best of
our knowledge, no other work addresses the robustness
of inferential testing in the context of the actor-critic
algorithm. In a related work on the ε-greedy bandit, Chen,
Lu, and Song (2020) derived the asymptotic properties of
a weighted least squares estimator (LSE) for misspecified
reward models. The authors demonstrated that the weighted
LSE has asymptotic normal distribution with the mean being
the least false linear parameter. While both this and our
approach offer robust tests, ours offers a directed approach
to exploration, which may be efficient and desirable in the
mobile health setting where the action space is large.

Preliminaries
Problem Formulation
We first formulate the bandit problem. At each time t, the
learning agent can pull one arm among N alternative arms.
The i-th arm (i = 1, · · · , N ) returns a random reward
rt,i with unknown mean when it is pulled. Prior to arm
selection, a finite-dimensional context vector bt,i ∈ Rd

for each arm i is revealed to the agent. The agent tailors
his(her) choice based on this contextual information. Let
at denote the arm index pulled at time t. Then the goal
of the agent is to maximize the cumulative sum of the
rewards rt,at over a finite time horizon T . We assume that
the full set of contexts bt = {bt,1, · · · , bt,N} and the full
set of rewards rt = {rt,1, · · · , rt,N} are independently and
identically (i.i.d.) distributed over time. Also, without loss
of generality, we assume the L2-norm of bt,i is bounded by
1, i.e., ||bt,i||2 ≤ 1.

Notations
We denote the L2-norm of a vector x as ||x||2, the set of
natural numbers from 1 to N as [N ], the set of all natural
numbers as N, the d-dimensional identity matrix as Id×d,
and the d-dimensional vector with all elements equal to 0 as
0d.

Actor-Critic Bandit Algorithm for Linear Rewards
Under linear reward assumption E[rt,i|bt,i] = bTt,iµ

∗ for
some µ∗ ∈ Rd with ||µ∗||2 ≤ 1, Lei, Tewari, and
Murphy (2017) proposed the actor-critic bandit algorithm
(Algorithm 1) which learns two parametrized models, the
critic and the actor. The critic for the i-th arm is a linear
function of the i-th context variable with parameter µ ∈ Rd,
bTt,iµ. The actor is the action allocation probability and is
parametrized by a softmax function with parameter θ ∈
Rd, i.e., the probability of pulling the i-th arm at time t
is πθ(bt, i) = exp(bTt,iθ)/{

∑N
j=1 exp(bTt,jθ)}. Lei, Tewari,

and Murphy (2017) define the optimal parameter θ∗ as the
value that maximizes the penalized expected reward,

θ∗ = argmax
θ

E

[
N∑
i=1

bTt,iµ πθ(bt, i)

]
− λθT θ,

where λ > 0 and the expectation is taken over the
distribution of bt. The penalty term −λθT θ1 is introduced
to constrain the norm of θ. Due to the penalty, there exists
γ > 0 such that γ < πθ∗(bt, i) < 1 − γ for every
i with high probability. This guarantees treatment variety,
which prevents habituation and increases user engagement
in many applications including mHealth. Also, when the
expected rewards of the arms are the same so that the
E
[∑N

i=1 b
T
t,iµ πθ(bt, i)

]
term does not change according to

the values of θ, θ∗ is unique at θ∗ = 0d.
The estimator µ̂ of the critic parameter µ is the

Ridge estimator using the context and reward pair of the
chosen arms. The estimator θ̂ of the policy parameter
θ is the maximizer of the estimate of the penalized
expected reward, 1

t

∑t
τ=1

∑N
i=1 r̂τ,iπθ(bτ , i)−λθT θ, where

r̂τ,i is the truncated estimate of the reward defined in
Algorithm 1, line 5. When the true critic parameter µ∗ has
||µ∗||2 ≤ 1 and µ̂t converges to µ∗, the truncated reward
estimate r̂t,i approaches the untruncated estimate, bTt,iµ̂t.

1The presented penalty form is a special case of the penalty
proposed in Lei, Tewari, and Murphy (2017).
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Algorithm 1: Actor-Critic algorithm for linear reward [Lei
et al.,2017]

1: Set B = ξId×d, y = 0d, λ > 0, ξ > 0.
2: for t = 1, · · · , T do
3: Pull arm at according to probability{

πθ̂t−1
(bt, i)

}N
i=1

and get reward rt,at .
4: Critic update:

B ← B+bt,atb
T
t,at , y ← y+bt,atrt,at , µ̂t ← B−1y.

5: r̂τ,i ← max(−2,min(2, bTτ,iµ̂t)) for i ∈ [N ], τ ∈ [t].
6: Actor update:

θ̂t ← argmax
θ

1

t

t∑
τ=1

N∑
i=1

r̂τ,iπθ(bτ , i)− λθT θ.

7: end for

The boundedness of r̂τ,i and the penalty term ensures that θ̂t
is bounded. This guarantees that there exists γ > 0 such that
γ < πθ̂t(bt, i) < 1 − γ for every i. This prevents πθ̂t(bt, i)
from concentrating on a single arm and induces a degree of
exploration.

Lei, Tewari, and Murphy (2017) showed that under some
regular assumptions on the distribution of the contexts and
rewards, µ̂t and θ̂t converge in probability to µ∗ and θ∗

respectively and are asymptotically normally distributed,
hereby enabling a testing procedure.

Misspecification of Models
The validity of model-based testing is predicated on
correctly specified models. However, misspecification is
frequent in practice due to incorrect functional forms or
missing covariates. In the statistics literature, robustness has
been considered in the context of using models to test causal
effects from data collected in experiments. Linear and GLM
regression models (Rosenblum and Van Der Laan 2009)
and proportional and multiplicative hazards models (Kim
2013) have been shown to be robust to misspecification
when considering the test of the coefficient of the treatment
assignment in the context of randomized trials. However in
bandit settings, asymptotic normality is not guaranteed to
hold when the working model is incorrect. In this paper, we
consider the case where the critic is misspecified.

Inference from Bandit Feedback Data
Besides Lei, Tewari, and Murphy (2017), there is a recent
growing body of literature on deriving the distribution
of the parameter estimates from bandit feedback data.
Bandit feedback data are not i.i.d. but are correlated
due to adaptivity. This causes complexity in deriving the
distribution of the estimates. Zhang, Janson, and Murphy
(2021) recently showed the asymptotic distribution of
M-estimators from bandit data. This work considered
correctly specified reward models only. Chen, Lu, and
Song (2020) derived the asymptotic normality of the

ordinary and weighted least-squares estimators when data
are accumulated by a ε-greedy algorithm, in both cases
where the reward model is linear or not linear. When the
reward model is not linear, they proved that the estimator
with inverse-probability weighting converges to the normal
distribution with mean being the least false parameter in
terms of the population distribution of the contexts. Since
the action decision in ε-greedy algorithms is based on
reward estimate values, a robust test on the utility of the
variables could be conducted by testing the significance
of the least false parameters. However, as aforementioned
earlier, we note that ε-greedy performs uniform exploration
over context spaces which may be undesirable when the
action space is large.

Compatibility Condition in Actor-Critic Algorithm
The algorithm of Lei, Tewari, and Murphy (2017) and the
theoretical derivation therein exploit the fact that the true
reward model is linear. The true nature of the reward can
however be far from linear. Sutton et al. (2000) proved
the following Lemma 1 which implies that if the reward
model and policy model are both differentiable with respect
to their parameters and satisfy the compatibility condition,
the algorithm converges to the optimal policy πθ∗ though
the critic model may be misspecified. If we denote the
critic model parameterized by µ as mµ(·), the compatibility
condition states:

π̇θ(bt, i)/πθ(bt, i) = ṁµ(bt,i), (1)

where π̇θ(bt, i) = ∂
∂θπθ(bt, i) and ṁµ(bt,i) = ∂

∂µmµ(bt,i).

Lemma 1. (Theorem 2 of Sutton et al. (2000)) Let

J(θ) = Eb,r

[
N∑
i=1

rt,iπθ(bt, i)

]
− λθT θ, (2)

where Eb,r(·) denotes the expectation over both the context
and reward. Suppose the critic parameter µ minimizes

U(µ, θ) := Eb,r

[
N∑
i=1

{rt,i −mµ(bt,i)}2 πθ(bt, i)

]
,

and the actor parameter θ maximizes

J(µ, θ) := Eb

[
N∑
i=1

mµ(bt,i) πθ(bt, i)

]
− λθT θ.

Then if πθ(·) and mµ(·) satisfy the compatibility condition
(1), the actor parameter θ satisfies ∂

∂θJ(θ) = 0.

Sketch of Proof. The parameters µ and θ jointly solve
Uµ(µ, θ) = 0 and Jθ(µ, θ) = 0, where Uµ(µ, θ) =

− 1
2
∂
∂µU(µ, θ) and Jθ(µ, θ) = ∂

∂θJ(µ, θ). We have,

Uµ(µ, θ) = Eb,r

[
N∑
i=1

{rt,i −mµ(bt,i)} ṁµ(bt,i)πθ(bt, i)

]
(3)
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and

Jθ(µ, θ) = Eb

[
N∑
i=1

mµ(bt,i) π̇θ(bt, i)

]
− 2λθ (4)

Due to (1) and the facts that (3)= 0, and (4)= 0, the
parameter θ satisfies

∂

∂θ
J(θ) = Eb,r

[
N∑
i=1

rt,i π̇θ(bt, i)

]
− 2λθ = 0.

Note that in Lemma 1, J(θ) is defined in terms of the true
rewards rt,i’s, while J(µ, θ) replaces them with mµ(bt, i)’s.
If the true reward model is linear, i.e., if E[rt,i|bt,i] = bTt,iµ

∗,
and if mµ(bt, i) = bTt,iµ, then we have J(θ) = J(µ∗, θ).
However when the true model is not linear, J(θ) and J(µ, θ)
are completely different functions. Sutton et al. (2000) show
that (1) is satisfied when the actor model is a softmax
function and the critic model is linear in the same context
vectors as the policy, except they should be centered to have
weighted mean 0:

critic : mµ,θ(bt,i) =

bt,i −
N∑
j=1

πθ(bt, j)bt,j


T

µ (5)

actor : πθ(bt, i) =
exp

(
bTt,iθ

)∑N
j=1 exp

(
bTt,jθ

) (6)

The model (5) can be viewed as the approximation of the
advantage function (Baird III 1993). The advantage function
enables to discard variables that do not vary by arm (e.g.,
age of the user). We would still need such variables if
we model the reward instead of the advantage. From now
on we denote the model (5) as mµ,θ(·) instead of mµ(·)
to show its dependency on θ as well. Meanwhile, since∑N
i=1 π̇θ(bt, i) = 0, equation (4) is equivalent to

Jθ(µ, θ) = Eb

[
N∑
i=1

bTt,iµ π̇θ(bt, i)

]
− 2λθ.

So we redefine

J(µ, θ) = Eb

[
N∑
i=1

bTt,iµ πθ(bt, i)

]
− λθT θ. (7)

We can find the value of θ satisfying (4) = 0 as the
maximizer of the redefined J(µ, θ).

Proposed Algorithm
We propose a new actor-critic algorithm which uses (5)
and (6) to model the reward and action selection policy.
We consider the case where the true functional form of the
reward model may not be linear. In this case, we re-define
the target parameters µ∗ and θ∗ as

θ∗ = argmax
θ

J(θ), µ∗ = argmin
µ

U(µ, θ∗),

where J(θ) is defined in (2) and

U(µ, θ) = Eb,r

[
N∑
i=1

{rt,i −mµ,θ(bt,i)}2 πθ(bt, i)

]
. (8)

Under (5) and (6) which satisfy the compatibility condition,
θ∗ = argmaxθJ(µ∗, θ), where J(µ, θ) is redefined in (7).

We assume that the arguments that achieve the
maximum(argmax) and minimum(argmin) both exist in the
parameter space that we consider. While the definition of
θ∗ is the same as the original definition, we notice that the
definition of µ∗ now depends on the value of θ∗.

Estimating Functions for µ∗ and θ∗

The target parameters µ∗ and θ∗ are the values that
jointly minimize (8) with respect to µ and maximize (7)
with respect to θ. To consistently estimate the parameters,
we use as estimating functions the empirical versions of
(8) and (7) that converge in probability to (8) and (7)
respectively. Suppose we use the residual mean square
(RMS) 1

t

∑t
τ=1{rτ,aτ − mµ,θ(bτ,aτ )}2 for (8), which is

computed on the context and reward pair of the chosen arms.
Let Ii(τ) = I(aτ = i) be the binary indicator taking value
1 if aτ = i and 0 otherwise. The expectation of the RMS is

E [RMS] = E

[
1

t

t∑
τ=1

N∑
i=1

{rτ,i −mµ,θ(bτ,i)}2Ii(τ)

]

= E

[
1

t

t∑
τ=1

N∑
i=1

{rτ,i −mµ,θ(bτ,i)}2E[Ii(τ)|Fτ−1]

]

= E

[
1

t

t∑
τ=1

N∑
i=1

{rτ,i −mµ,θ(bτ,i)}2πθ̂τ−1
(bτ , i)

]
,

where Ft−1 denotes a filtration at time t, the union of the
historyHt−1 of observations up to time t−1 and the context
bt at time t, i.e., Ft−1 = Ht−1 ∪ {bt} where Ht−1 =⋃t−1
τ=1{bτ , aτ , rτ,aτ }. Due to Azuma-Hoeffding’s inequality,

the RMS converges in probability to E[RMS] for any µ and
θ. A gap with (8) is caused by the udpate of θ̂τ at each time
point. To resolve this, we propose to minimize the following
importance-weighted RMS instead,

Û t(µ, θ) =
1

t

t∑
τ=1

{rτ,aτ −mµ,θ(bτ,aτ )}2 πθ(bτ , aτ )

πθ̂τ−1
(bτ , aτ )

(9)

=
1

t

t∑
τ=1

N∑
i=1

{rτ,i −mµ,θ(bτ,i)}2πθ(bτ , i)
Ii(τ)

πθ̂τ−1
(bτ , i)

(10)

Since E[Ii(τ)|Fτ−1] = πθ̂τ−1
(bτ , i), the expectation

of Û t(µ, θ) is exactly (8), and Û t(µ, θ) converges in
probability to (8) for any µ and θ.

We note here that if we had the guarantee that θ̂t
converges in probability to θ∗, then the RMS would
converge to (8) as well. However, the convergence of θ̂t to θ∗
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Algorithm 2: Actor-Improper Critic algorithm

1: Set λ > 0, C > 1, θ̂0 = 0d.
2: for t = 1, · · · , T do
3: Pull arm at according to probability{

πθ̂t−1
(bt, i)

}N
i=1

and get reward rt,at .

4: Critic update: µ̂t ← argmin
µ:||µ||2≤C

Û t(µ, θ̂t−1) (see (10))

5: Actor update: θ̂t ← argmax
θ

Ĵ t(µ̂t, θ) (see (11)).

6: end for

is guaranteed only when the compatibility condition holds,
which requires itself that the RMS converges to (8).

The empirical version of (7) is

Ĵ t(µ, θ) =
1

t

t∑
τ=1

N∑
i=1

bTτ,iµ πθ(bτ , i)− λθT θ, (11)

and its expectation is exactly (7). In the next section, we
prove that the values of µ and θ that minimize Û t(µ, θ)
with respect to µ and maximize Ĵ t(µ, θ) with respect to θ
converge in probability to µ∗ and θ∗ respectively.

Computation
The proposed algorithm with the new estimating

functions is presented in Algorithm 2. At each iteration
of the algorithm, we find the value µ̂t which minimizes
Û t(µ, θ) with θ replaced with θ̂t−1 from the previous
iteration. Then we find the value θ̂t which maximizes
Ĵ t(µ, θ) with µ replaced with µ̂t. The inverse probability
1/πθ̂τ−1

(bτ , i) can have large value and cause instability of
the estimate µ̂t. To mitigate such instability, we solve µ̂t =

argmin
µ:||µ||2≤C

Û t(µ, θ) for some positive constant C. We later

show that if C is set such that µ∗ ∈ {µ : ||µ||2 ≤ C}, µ̂t and
θ̂t converge in probability to µ∗ and θ∗ respectively. Without
the constraint, µ̂t is just a weighted least-squares estimator
with importance weights πθ̂t(bτ , aτ )/πθ̂τ−1

(bτ , aτ )’s. We
later show that µ̂t with the constraint converges to the
weighted least-squares estimator as time accumulates.

Regret Bound
The proposed algorithm (Algorithm 2) is robust to the
misspecification of the critic model and converges to the
optimal action selection policy. We define the regret with
respect the optimal action selection policy as follows,

R(T ) =
T∑
t=1

N∑
i=1

E[rt,i|bt,i]
{
πθ∗(bt, i)− πθ̂t−1

(bt, i)
}
.

We can show that the proposed algorithm achieves a regret
that is upper-bounded byO(

√
T ) with high probability. This

upper bound is of same order as the regret upper bound
of Algorithm 1 which requires a restrictive assumption that
the linear model correctly specifies the reward model. We
provide the proofs in the Supplementary Material.

Asymptotic Properties and Testing Procedure
Statistical tests on the significance of the true parameter
values (µ∗ and θ∗) can be conducted if the distribution
of the estimates are known. In this section, we derive the
asymptotic distribution of µ̂t and θ̂t. We first state some
necessary assumptions.

Assumption 1. The distribution of contexts variables is
i.i.d. over time t, i.e.,

bt = {bt,1, · · · , bt,N}
i.i.d.∼ Pb,

where Pb is some distribution over RN×d. Also, the
distribution of rewards rt = {rt,1, · · · , rt,N} is i.i.d. over
time t.

Assumption 2. Contexts and rewards are bounded. Without
loss of generality, ||bt,i||2 ≤ 1 and |rt,i| ≤ 1.

Assumption 3. The optimal policy θ∗ is unique
and µ∗ is unique, and the joint equation[{

∂
∂µU(µ, θ)

}T
,
{
∂
∂θJ(µ, θ)

}T ]
= 0T2d has unique

solution at [µT , θT ] = [µ∗T , θ∗T ]. Moreover, for a fixed
value of µ, J(µ, θ) has unique maximum at θ = θ∗µ. Also for
a fixed value of θ, U(µ, θ) has unique minimum at µ = µ∗θ.

Assumption 4. Let b̄θ(t) =
∑N
i=1 πθ(bt, i)bt,i.

The matrix Eθ[(bt,at − b̄θ(t))(bt,at − b̄θ(t))
T ] =

E
[∑N

i=1 πθ(bt, i)(bt,i − b̄θ(t))(bt,i − b̄θ(t))T
]

is positive
definite for θ in a neighborhood of θ∗.

Assumption 1 is standard in literature (Langford and
Zhang 2007; Goldenshluger and Zeevi 2013; Bastani and
Bayati 2020) and is reasonable in many practical settings
such as clinical trials where arms have a stationary
distribution and do not depend on the past. The uniqueness
of µ∗ follows under mild conditions as it minimizes a convex
function (8) and because we can discard all the contextual
features which do not differ by arms. The uniqueness of θ∗
is a reasonable assumption as well since the penalty −λθT θ
in (2) introduces a degree of convexity. Also due to this
penalty ||θ∗||2 is bounded, so the optimal policy itself is a
policy that enforces a positive probability (γ) of uniform
exploration. Therefore, we have Eθ∗ [(bt,at − b̄θ∗(t))(bt,at −
b̄θ∗(t))T ] � γE

[∑N
i=1(bt,i − b̄θ∗(t))(bt,i − b̄θ∗(t))T

]
.

Positive-definiteness of the right-hand side imposes variety
in the arm features and is also a standard assumption in the
literature. (See Goldenshluger and Zeevi (2013) and Bastani
and Bayati (2020).) Hence, Assumption 4 is reasonable as
well.

We first show the following lemma which is crucial in
deriving the consistency of the estimates.

Lemma 2. Under Assumptions 2-4, the optimal policy
parameter θ∗ and µ∗ lie in a compact set. Also, the estimated
parameters µ̂t and θ̂t lie in a compact set for all t ∈ [T ].

Sketch of Proof. We first show the boundedness of µ∗.
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Since µ∗ is the minimizer of U(µ, θ∗), we have

µ∗ =

{
E

[
N∑
i=1

πθ∗(bt, i)(bt,i − b̄θ∗(t))(bt,i − b̄θ∗(t))T

]}−1

× E

[
N∑
i=1

πθ∗(bt, i)(bt,i − b̄θ∗(t))rt,i

]
.

Due to Assumption 2, we have ||µ∗||2 ≤ 1/φ2 where

φ2 = λ

(
E

[
N∑
i=1

πθ∗(bt, i)(bt,i − b̄θ∗(t))(bt,i − b̄θ∗(t))T

])
and λ(·) denotes the minimum eigenvalue. Due to
Assumption 4 φ2 > 0, so µ∗ lies in a compact set. Now, since
θ∗ maximizes J(µ∗, θ), we have J(µ∗, 0d) ≤ J(µ∗, θ∗).
Due to ||µ∗||2 ≤ 1/φ2, Assumption 2, and Cauchy-Schwarz
inequality, we have J(µ∗, θ∗) ≤ 1

φ2 − λθ∗T θ∗. Also,
J(µ∗, 0d) ≥ − 1

φ2 . Therefore, we have − 1
φ2 ≤ 1

φ2 −

λθ∗T θ∗ which shows that ||θ∗||2 ≤
√

2
λφ2 . Due to line 4

of Algorithm 2, ||µ̂t||2 ≤ C so µ̂t clearly lies in a compact

set, and analogously, we can show that ||θ̂t||2 ≤
√

2C
λφ2 .

We now prove in Theorem 1 the consistency of the
estimates µ̂t and θ̂t.
Theorem 1. Consistency Let C∗ = 1/φ2. Under
assumptions 1-4, if C∗ ≤ C, (µ̂Tt , θ̂

T
t ) converges to

(µ∗T , θ∗T ) in probability.
Sketch of Proof. We denote Ω = {(µT , θT ) : ||µ||2 ≤

C, ||θ||2 ≤ 2
√

2C/(λφ2)}. Then Ω forms a compact set and
includes (µ∗T , θ∗T ). Since

∑N
i=1 b

T
τ,iµ πθ(bτ , i) is i.i.d. over

time τ for fixed µ and θ, we can apply Glivenko-Cantelli
Theorem to Ĵ t(µ, θ) and prove uniform convergence.

sup
(µT ,θT )∈Ω

∣∣∣Ĵ t(µ, θ)− J(µ, θ)
∣∣∣ P−→ 0. (12)

Due to the term Ii(τ)/πθ̂τ−1
(bτ , i), Û t(µ, θ) is not the mean

of i.i.d. variables and requires additional steps to prove the
uniform convergence. Define

Ũ t(µ, θ) =
1

t

t∑
τ=1

N∑
i=1

{rτ,i −mµ,θ(bτ,i)}2πθ(bτ , i).

Using martingale inequalities along with a covering
argument on the space Ω, we first show that |Û t(µ, θ) −
Ũ t(µ, θ)| converges uniformly to 0 in probability. Then we
apply Glivenko-Cantelli theorem to Ũ t(µ, θ) to finally prove

sup
(µT ,θT )∈Ω

∣∣∣Û t(µ, θ)− U(µ, θ)
∣∣∣ P−→ 0, (13)

Since (µ̂Tt , θ̂
T
t ) lies in Ω (Lemma 2), U(µ, θ)

T and J(µ, θ)T

are continuous on Ω, and (µ∗T , θ∗T ) is unique (Assumption
3), we can apply Theorem 9.4 in Keener (2010) to show
(µ̂Tt , θ̂

T
t )

P−→ (µ∗T , θ∗T ). Detailed proofs are presented in
the Supplementary Material.

Lemma 3. Suppose C∗ ≤ C. As t → ∞, µ̂t converges
in probability to the solution of Û tµ(µ, θ̂t−1) = 0, where
Û tµ(µ, θ) = ∂

∂µ Û
t(µ, θ) and Ĵ tθ(µ, θ) = ∂

∂θ Ĵ
t(µ, θ).

Sketch of Proof. We just need to show that the solution
µ̃t of Û tµ(µ, θ̂t−1) = 0 satisfies P (µ̃t ≤ C) −→

t→∞
1, i.e.,

P (µ̂t = µ̃t)→ 1. Note that the solution of Û tµ(µ, θ̂t−1) = 0
is a weighted least-squares estimator with weights wτ =
πθ̂t−1

(bτ , aτ )/πθ̂τ−1
(bτ , aτ ), covariates bτ,aτ − b̄θ̂t−1

(τ),
and outcomes rτ,aτ . The lemma holds due to Assumption 2,
4, and the consistency of θ̂t−1. Detailed proof can be found
in the Supplementary Material.

Theorem 2. Asymptotic Normality Under assumptions

1-4, if C∗ ≤ C,
√
t

((
µ̂t
θ̂t

)
−
(
µ∗

θ∗

))
converges in

distribution to a multivariate normal distribution with mean
0 and variance Ψ = Λ−1V ∗Λ−1 where

Λ =

[
U∗µµ U∗µθ
J∗θµ J∗θθ

]
,

V ∗ = lim
t→∞

1

t

t∑
τ=1

E

[[
uτ∗µ u

τ∗T
µ uτ∗µ j

τ∗T
θ

jτ∗θ uτ∗Tµ jτ∗θ jτ∗Tθ

] ∣∣∣∣∣Fτ−1

]
,

uτµ(µ, θ) = −
N∑
i=1

2{rτ,i −mµ,θ(bτ,i)}ṁµ,θ(bτ,i)

× Ii(τ)

πθ̂τ−1
(bτ , i)

πθ(bτ , i),

jτθ (µ, θ) =
N∑
i=1

bTτ,iµπ̇θ(bτ , i)− 2λθ,

Uµµ and Uµθ are second order partial derivatives of U
with respect to µ twice and with respect to µ and θ
respectively, the Jθµ and Jθθ are defined analogously,
and the U∗µµ, U

∗
µθ, J

∗
θµ, J

∗
θθ, u

τ∗
µ , j

τ∗
θ are the values of

Uµµ, Uµθ, Jθµ, Jθθ, u
τ
µ, j

τ
θ evaluated at the true value

(µ∗T , θ∗T ). The asymptotic variance Ψ can be estimated by
replacing the expectation operation E(·) with the empirical
mean and plugging-in the estimates (µ̂Tt , θ̂

T
t ). Due to

Assumption 1 and consistency of (µ̂Tt , θ̂
T
t ), such plug-in type

estimator is consistent for the asymptotic variance.
Sketch of Proof. Due to Lemma 3 and linearization

method, for sufficiently large t,[
0d
0d

]
=

[
Û tµ(µ̂t, θ̂t)

Ĵ tθ(µ̂t, θ̂t)

]
=

[
Û tµ(µ∗, θ∗)

Ĵ tθ(µ
∗, θ∗)

]
+

[
Û tµµ(µ̃, θ̃) Û tµθ(µ̃, θ̃)

Ĵ tθµ(µ̆, θ̆) Ĵ tθθ(µ̆, θ̆)

](
µ̂t − µ∗
θ̂t − θ∗

)
where µ̃ = αµ̂t + (1 − α)µ∗, θ̃ = αθ̂t + (1 − α)θ∗, µ̆ =

βµ̂t+(1−β)µ∗ and θ̆ = βθ̂t+(1−β)θ∗ for some 0 ≤ α ≤ 1

and 0 ≤ β ≤ 1. Due to the consistency of (µ̂T , θ̂T ) and the
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Param. ε-greedy Param. AC Proposed
i = 1 i = 2

µi(i−1)d+1 0.91 0.93 θ1 0.77 0.99
µi(i−1)d+2 0.93 0.94 θ2 0.64 0.99
µi(i−1)d+3 0.96 0.90 θ3 0.74 0.99
µi(i−1)d+4 0.58 0.59 θ4 0.07 0.09

Table 1: Rejection rates of H0 for each parameter (Param.)
by ε-greedy (Chen, Lu, and Song 2020), Actor-Critic (Lei,
Tewari, and Murphy 2017), and Proposed algorithm

Law of Large Numbers,

√
t

(
µ̂t − µ∗
θ̂t − θ∗

)
= −

{[
U∗µµ U∗µθ
J∗θµ J∗θθ

]
+ oP (1)

}−1

×
√
t

[
Û tµ(µ∗, θ∗)

Ĵ tθ(µ
∗, θ∗)

]
Since the Ĵ tθ(µ

∗, θ∗) is the empirical mean of i.i.d.
variables with mean 0, we can apply the Central Limit
Theorem (CLT) to derive the asymptotic distribution. On the
other hand, Û tµ(µ∗, θ∗) is the empirical mean of uτµ(µ∗, θ∗)
which are not i.i.d. due to the term Ii(τ)/πθ̂τ−1

(bτ , i).
Instead, the uτµ(µ∗, θ∗)’s form a martingale difference
sequence. Hence, we can apply martingale CLT to√
t
[
Û tµ(µ∗, θ∗)T Ĵ tθ(µ

∗, θ∗)T
]

in whole and show that this
converges to a normal distribution with mean 0 and variance
V ∗.

Based on Theorem 2, a Z-test can be conducted for a
j-th variable (j = 1, · · · , d) using the test statistic Z =

θ̂t,j/
√

Ψd+j,d+j/t. We reject the null hypothesis H0 : θj =
0 with significance level α when 2(1−Φ(|Z|)) < α, where
Φ(·) is the cumulative distribution function of the standard
normal distribution.

Experiments
We conduct experiments to evaluate the performance
of the Proposed algorithm under a misspecified reward
model. We set N = 2 and d = 4. We generate the
context vectors bt,i from a multivariate normal distribution
N (0d, I

d×d) and truncate them to have L2-norm 1. We
generate the reward from a model nonlinear in bt,i,
rt,i = bTt,iµ − max(bTt,1µ, b

T
t,2µ) + ηt,i where µ =

(−0.577, 0.577, 0.577, 0)T and ηt,i is generated from
N (0, 0.012) independently over arms and time. To test the
validity of the proposed testing procedure, we set µ4 to 0
so that the corresponding variable does not affect the reward
and hence, will not be useful in the policy.

We implement the Proposed algorithm (Actor-Improper
Critic) along with the original Actor-Critic algorithm (Lei,
Tewari, and Murphy 2017) and the ε-greedy algorithm
using weighted LSE (Chen, Lu, and Song 2020). When
implementing the Proposed algorithm, we drop the
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Figure 1: Median (solid lines) and first and third quartiles
(dashed lines) of the cumulative rewards.

restriction on ||µ̂t||2 and compute the weighted least-squares
estimator for simplicity. Since the objective function J(µ, θ)
is not convex with respect to θ, we find the maximizer
through a grid search followed by pattern search based
on the Nelder-Mead method (Nelder and Mead 1965)
as suggested in Lei, Tewari, and Murphy (2017). When
implementing the ε-greedy algorithm, we stack the context
vectors into one vector bTt = [bTt,1, · · · , bTt,N ] and set the
working model for the reward of the i-th arm as fi(bt) =
bTt µ

i, where µi is a parameter of dimension Nd. We set the
exploration parameter λ in the AC and Proposed algorithms
to 0.001. In the ε-greedy algorithm, we use the value
ε = 0.01 which corresponds to the exploration probability
guaranteed by λ = 0.001 in the Proposed algorithm. We run
the bandit algorithms until time horizon T = 50 with 100
repetitions.

For each algorithm, we count the number of times the
null hypotheses H0 : θj = 0 (for AC and Proposed
algorithms) or H0 : µi(i−1)d+j = 0 (for ε-greedy) are
rejected at time T according to a Z-test with significance
level α = 0.05. We report the rejection rates of H0 in
Table 1. We observe that the AC algorithm (Lei, Tewari,
and Murphy 2017) fails to reject the null hypotheses
for the non-zero parameters θ1, θ2, and θ3 for at least
23% of the experiments. On the other hand, the Proposed
algorithm rejects the null hypotheses 99 times out of 100
times. As for the fourth parameter which has true value
0, both algorithms reject the null hypothesis with small
probability. We note that the significance level α lies in the
95% confidence interval [0.047, 0.133] computed from the
formula

[
p̂− 1.96

√
α(1− α)/n, p̂+ 1.96

√
α(1− α)/n

]
,

where p̂ = 0.09 is the rejection rate of H0 by the Proposed
algorithm and n = 100 is the number of experiments.
On the other hand, the ε-greedy algorithm rejects the null
hypothesis for the fourth parameter with more than 50%
frequency. We also note that the power of the tests for
the ε-greedy algorithm with weighted LSE is lower than
the Proposed algorithm. One possible reason for the low
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AC Proposed ε-greedy

Mean 5296.9 5557.7 5577.3
St.d. 139.3 152.7 274.9

Table 2: Mean and standard deviations (St.d.) of cumulative
rewards at T = 1000 by ε-greedy (Chen, Lu, and Song
2020), Actor-Critic (Lei, Tewari, and Murphy 2017), and
Proposed algorithm for the Recovery Record Dataset

performance in testing is due to the variance induced by
inverse probability weighting. The Proposed algorithm also
involves computation of the inverse of probabilities, but it is
used only in the ratio of probabilities πθ̂t(bτ , i)/πθ̂τ−1

(bτ , i)

which converges to 1 as θ̂τ−1 converges. As for the
cumulative rewards, we observe that the Proposed and the
ε-greedy algorithm show comparable performance.

Data Application
The Recovery Record Dataset contained patients’ adherence
behaviors to their therapy for eating disorders (daily meal
monitoring) and interactions with their linked clinicians
on the app. Clinician communication is often viewed as a
critical means to encourage adherence to monitoring, yet
there is little guidance of when and how clinicians should
communicate outside of office visits, and thus is done on
an ad-hoc and individual basis. The rewards (i.e. whether
the patient adhered to daily monitoring) were observed
for the actions chosen by the ad-hoc policies of clinicians
(i.e. send a message or not). A contextual bandit algorithm
can allow clinicians to tailor their communications (arms)
with patients who have preferences (contexts) to maximize
adherence to therapy (rewards).

We applied the offline policy evaluation method of Li
et al. (2011) to unbiasedly estimate the cumulative reward
that we would obtain under the AC, Proposed, and ε-greedy
algorithms. We repeated the evaluations on 30 bootstrap
samples. Table 2 shows the mean and standard deviations
of the cumulative rewards at time T = 1000. We remark
that although the Proposed and ε-greedy algorithms have
comparable cumulative rewards, ε-greedy suffers higher
variance. More details on the implementation and testing
results can be found in the Supplementary Material. We
show in the Supplementary material the rejection rates of
H0 for ε-greedy algorithms are closer to 0.5 as compared
to the Proposed algorithm, which implies that ε-greedy may
have lower power due to high variance.

Conclusion
The problem of testing the utility of variables collected by
wearables or sensors represents a practical need in mHealth
and is an inferential problem highlighted by Tewari and
Murphy (2017). In this paper, we considered testing the
utility of variables in the actor-critic bandit, but considered
inference when the models used in the algorithms are not
correctly specified. This work demonstrates that a robust
test can be constructed for the actor parameter. Such work

also illustrates that inferential procedures associated with
the actor-critic bandit inherit problems such as model
misspecification by virtue of the assumptions made in
model-based testing; however, existing tools in the literature
do not apply due to the unique structure of the objective
function. This paper adds to the literature by developing
a new statistical procedure to test the actor parameters
in the actor-critic bandit even when the reward model is
misspecified by the critic.

Strengths of this study include its contribution to
model-based estimation in the context of contextual bandit
algorithms, and the key property that these results are robust
even when the assumptions underlying the critic fail to be
correct.

The ability to test variables may offer guidance in
understanding what types of data (e.g. location or sensitive
information) are useful. Beyond the computational and
performance related impact of this work, such knowledge
could have societal impact in that it may discourage
unnecessary data collection, thereby mitigating potential
risks and threats to privacy. On the other hand, this method
may also provide supporting evidence that certain types of
data, perhaps either sensitive or costly variables, are in fact
useful. In such cases, the ethical tension between acquiring
sensitive information or choosing not to acquire it at the cost
of sub-optimal decision-making deserves disclosure and
careful discussion with stakeholders involved in and affected
by the algorithm. This work provides a means to gauge the
significance and assumptions made about the utility of data
that would otherwise go untested, as it commonly does at
present.

While the focus of this paper is on testing, future work that
focuses on implementation aspects of this procedure would
be beneficial, such as addressing the question of when these
tests should be performed in practice. The proposed method
suggests that one feasible method to conduct testing after a
large number of trials, but alternatives such as sequential or
repeated hypothesis testing merit further attention.
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