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Abstract

In this paper, we propose two new definitions of local differ-
ential privacy for belief functions. One is based on Shafer’s
semantics of randomly coded messages and the other from the
perspective of imprecise probabilities. We show that such ba-
sic properties as composition and post-processing also hold
for our new definitions. Moreover, we provide a hypothesis
testing framework for these definitions and study the effect of
“don’t know” in the trade-off between privacy and utility in
discrete distribution estimation.

Introduction
Differential privacy (DP) is a mathematically rigorous def-
inition of privacy which addresses the paradox of learning
nothing about an individual while learning useful informa-
tion about a population (Dwork et al. 2006; Dwork and
Roth 2014). In particular, local differential privacy (LDP)
is a model of differential privacy with the added restric-
tion that even if an adversary has access to the personal
responses of an individual in the database, that adversary
will still be unable to learn too much about the user’s per-
sonal data (Kasiviswanathan et al. 2008; Kairouz, Oh, and
Viswanath 2016; Duchi, Jordan, and Wainwright 2013). The
uncertainty in standard LDP mechanisms is usually pro-
vided by randomization which associates each input with
a probability function over all possible outputs. The pro-
totypical example of an LDP mechanism is the random-
ized response survey technique proposed in (Warner 1965).
Current randomized response mechanisms equate privacy-
preserving with lying and are designed on the assumption
that users abide by the data collection protocol which allows
respondents to lie with a known probability. However, re-
cent research results from the perspective of the respondents
show that, in practice, although these mechanisms allow the
respondents to maintain privacy, the procedures may con-
fuse respondents, fail to address the concerns of the users
and hence yield nonresponse or noncompliance (Xiong et al.
2020; Cummings, Kaptchuk, and Redmiles 2021; Ramoka-
pane et al. 2021). An effective differential privacy commu-
nication can increase data-sharing rates (Xiong et al. 2020).
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To address noncompliance and nonresponse, we propose
in this paper to design differential privacy mechanisms
which incorporate “don’t know” or nonresponse as an alter-
native outcome or allow imprecision in the mechanism de-
sign. In practice, people may prefer not to response or say “I
don’t know” to withhold sensitive information which mini-
mizes the questionable ethical consequences of lying in their
eyes (Bullek et al. 2017). By addressing such ethical privacy
concerns, our new mechanisms aims to increase respon-
dents’ willing to share their data. Here we study this new
type of privacy mechnisms from a more general Dempster-
Shafer perspective by representing uncertainty in privacy
mechanisms with belief functions (Dempster 1967; Shafer
1976). The Dempster-Shafer theory (also known as the the-
ory of evidence or the theory of belief functions) is a well-
known uncertainty theory for its expressiveness in repre-
senting ignorance. The theory improves the root concepts
of probabilities “yes” and “no” that sum to one, by append-
ing a third probability of “don’t know” (Dempster 2008).
As the world of statistical analysis moves more and more to
“big data” and associated “complex systems”, the Dempster-
Shafer theory provides a middle ground with the third prob-
ability “don’t know” and can be expected to become increas-
ingly important in privacy protection.

Our first and main contribution in this paper is to propose
two new definitions of LDP (one is ϵ-local differential pri-
vacy according to Shafer (ϵ-SLDP) (Definition 1) and the
other according to Walley (ϵ-WLDP) (Definition 13)) and
to provide a statistical framework for these two definitions
as the trade-offs between type I and II errors in a natural
hypothesis-testing problem (Theorems 5 and 18). Our sec-
ond contribution is to characterize the effect of “don’t know”
in the trade-off between privacy and utility in discrete distri-
bution estimation problem. The privacy mechanisms in the
two definitions associate each input x with a belief func-
tion on the output set Y . The difference between these two
definitions comes from their different semantics of belief
functions. The first definition is motivated by Shafer’s in-
terpretation of belief functions as randomly coded messages
(Shafer and Tversky 1985). In this semantics, we generalize
Warner’s randomized response mechanism by allowing an-
swering “don’t know” with probability 1− p− q where p is
the probability of answering truthfully and q the probability
of lying. For the discrete distribution estimation problem of
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a generalized Warner’s model, we study the effect of “don’t
know” on the trade-off between the privacy loss and the es-
timation accuracy. The most important and difficult step is
to compute the variance of the maximum likelihood esti-
mation of the parameter π, the true proportion of the peo-
ple with the sensitive property. We employ some combina-
torial techniques to obtain a formula for the estimation ac-
curacy (Theorem 10). We show that, when the probability of
“don’t know” increases, the overall effect of the trade-off for
this generalized model decreases, and when this probability
equals 0, the effect is optimal and the trade-off is the same as
that for the standard Warner’s model (Figure 2). In the sec-
ond definition, we adopt the imprecise-probability semantics
to accommodate unknown response probabilities in privacy
mechanisms and interpret belief function bel as the set of all
probability functions pr which are consistent with bel (Wal-
ley 1990). Both the privacy loss and estimation accuracy are
defined with respect to those consistent probability functions
according to the worst-case analysis. Moreover, we compare
the trade-offs between privacy and estimation accuracy for
these two definitions (ϵ-SLDP and ϵ-WLDP) and Warner’s
randomized response mechanism (Figure 5).

Dempster-Shafer Theory
Let Ω be a frame and A = 2Ω be the Boolean algebra
of propositions. |A| denotes the cardinality of a subset A.
A mass assignment (or mass function) over Ω is a map-
ping m : A → [0, 1] satisfying

∑
A∈A m(A) = 1. A

mass function m is called normal if m(∅) = 0. A be-
lief function is a function bel : A → [0, 1] satisfying the
conditions: bel(∅) = 0, bel(Ω) = 1 and bel(

⋃n
i=1 Ai) ≥∑

∅̸=I⊆{1,··· ,n}(−1)|I|+1bel(∩i∈IAi) where Ai ∈ A for
all i ∈ {1, · · · , n}. A mapping f : A → [0, 1] is a be-
lief function if and only if its Möbius transform is a mass
assignment (Page 39 in (Shafer 1976)). In other words, if
m : A → [0, 1] is a mass assignment, then it determines
a belief function bel : A → [0, 1] as follows: bel(A) =∑

B⊆A m(B) for all A ∈ A. Moreover, given a belief func-
tion bel, we can obtain its corresponding mass function m as
follows: m(A) =

∑
B⊆A(−1)|A\B|bel(B) for all A ∈ A.

Intuitively, for a subset event A, m(A) measures the be-
lief that an agent commits exactly to A, not the total belief
bel(A) that an agent commits to A. A subset A with non-
zero mass is called a focal set. The belief function bel is
called Bayesian if m(A) = 0 for all non-singletons A. The
corresponding plausibility function plm : 2Ω → [0, 1] is de-
fined by plm(A) =

∑
E∩A̸=∅ m(E) for all A ⊆ Ω. When-

ever the context is clear, we drop the subscript m. For m, bel
and pl, if we know any one of them, then we can determine
the other two. Without further notice, all mass functions in
this paper are assumed to be normal and all subsets are focal.

In this paper, we focus on only two semantics of belief
functions. The first one is Shafer’s semantics of belief func-
tions in terms of randomly coded messages. Suppose some-
one chooses a code at random from a list of codes, uses the
code to encode a message, and then sends us the result. We
know the list of codes and the chance of each code being
chosen–say the list is c1, · · · , cn, and the chance of ci being

chosen is pi. We decode the encoded message using each of
the codes and find that this always produces a message of
the form “the truth is in A” for some non-empty subset A
of the set of possibilities Ω. Let Ai denote the subset we get
when we decode using ci, and set m(A) =

∑
{pi : 1 ≤

i ≤ n,Ai = A} for each A ⊆ Ω. The number m(A) is the
sum of the chances for those codes that indicate A was the
true message; it is, in a sense, the total chance that the true
message was A. Notice that m(∅) = 0 and that the m(A)
sum to one. The quantity bel(A) =

∑
B⊆A m(B) is, in a

sense, the total chance that the true message implies A. If
the true message is infallible and the coded message is our
only evidence, then it is natural to call bel(A) our probabil-
ity or degree of belief that the truth lies in A. The second
interpretation of belief functions in this paper is from the
perspective of imprecise probabilities. Given a belief func-
tion bel, let Pbel denote the set of all probability functions
which are consistent with or dominate over bel. In other
words, Pbel = {pr : pr is a probability function on Ω and
pr ≥ bel} where pr ≥ bel means pr(E) ≥ bel(E) for
all E ⊆ Ω. Due to lack of information, uncertainty can’t be
represented by a probability function but by a belief function
bel. All consistent probability functions are possible. When-
ever enough information is available, we may specify a prob-
ability function from Pbel to represent the uncertainty. One
may refer to (Cuzzolin 2021) and (Dwork and Roth 2014)
for a detailed introduction to belief functions and DP.

Local Differential Privacy
Let X be a private source of information defined on a dis-
crete, finite input alphabet X = {x1, · · · , xk} and Y be an
output alphabet Y = {y1, · · · , yl} that need not be identical
to the input alphabet X . In this paper, we will represent a
privacy mechanism Q via a row-stochastic matrix. For sim-
plicity, we also use Q to denote this matrix. Q is called an
evidential privacy mechanism if each row of the matrix Q is
a mass function on Y . In other words, each evidential pri-
vacy mechanism Q maps X = x to Y ∈ E with Q(x)
which can be represented by a mass mQ

x (E) (belief belQx (E)
or plausibility plQx (E)) where mQ

x (belQx (E) or plQx (E)) is
a mass (belief or plausibility) function on Y for all x ∈ X .
Since mQ

x (∅) = 0 for all x, we write the mechanism Q as a
k × (2l − 1) matrix. Whenever the context is clear, we usu-
ally drop the superscript Q. In this paper, we assume that all
the alphabet sets are finite. In other words, an evidential pri-
vacy mechanism is just a standard LDP mechanism whose
instructions are defined by random sets instead of probabil-
ity functions.

LDP according to Shafer
For an evidential privacy mechanism Q, let rQS =

maxx,x′∈X,E⊆Y
mQ

x (E)

mQ

x′ (E)
and ϵQS = ln(rQS ).

Definition 1 For any ϵ > 0, the mechanism Q is called ϵ-
locally differential private according to Shafer (ϵ-SLDP for
short) if −ϵ ≤ ϵQS ≤ ϵ. And ϵQS is called the privacy loss of
Q according to Shafer and ϵ is a privacy budget. ✁
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In other words, by observing E, the adversary cannot reli-
ably infer whether X = x or X = x′ (for any pair x and
x′). Indeed, the smaller the ϵ is, the closer the likelihood
ratio of X = x to X = x′ is to 1. Therefore, when ϵ is
small, the adversary cannot recover the true value of X re-
liably. In this definition, we adopt Shafer’s interpretation as
randomly coded messages. Each subset of Y is treated as an
individual message or response. The mechanism randomly
chooses a code c and uses it to encode a message E ⊆ Y .
And mx(E) is equal to the chance of choosing c. If we set
2Y \ {∅} as the output alphabet, then the above Q is simply
the standard local differential private mechanism. In partic-
ular, if each row of Q is Bayesian, then Q is essentially
a standard randomized mechanism and the ϵ-SLDP is just
the standard ϵ-LDP for randomized privacy mechanisms.
Almost all basic properties for privacy-preserving random-
ized mechanisms can be generalized to the setting of belief
functions. Let rQpl,S = maxx,x′∈X,E⊆Y

plQx (E)

plQ
x′ (E)

and rQbel,S =

maxx,x′∈X,E⊆Y
belQx (E)

belQ
x′ (E)

. Denote ϵQpl,S := ln(rQpl,S) and

ϵQbel,S := ln(rQbel,S).

Lemma 2 If privacy mechanism Q is ϵ-SLDP , then −ϵ ≤
ϵQbel,S ≤ ϵ and −ϵ ≤ ϵQpl,S ≤ ϵ.

From Lemma 2, we know that ϵQS ≥ ϵQpl,S . But generally
we don’t have the converse that ϵQpl,S ≥ ϵQS . If we have sev-
eral building blocks for designing differentially private al-
gorithms, it is important to understand how we can combine
them to design more sophisticated algorithms.

Lemma 3 (Composition) Let Q1 be an ϵ1-SLDP evidential
privacy mechanism from X to Y1 and Q2 be an ϵ2-SLDP
evidential privacy mechanisms from X to Y2. Then their
combination Q1,2 defined by Q1,2(x) = (Q1(x), Q2(x)) is
ϵ1 + ϵ2-SLDP.

The composition of a data-independent mapping f with
an ϵ locally differential private algorithm Q is also ϵ locally
differential private.

Lemma 4 (Post-processing) Let Q be an ϵ-SLDP mecha-
nism from X to Y and f is a randomized algorithm from Y
to another finite alphabet set Z. Then f ◦ Q is an ϵ-SLDP
mechanism from X to Z.

Now we offer a hypothesis testing interpretation for the
above ϵ-SLDP . From an attacker’s perspective, the privacy
requirement can be formalized as the following hypothesis
testing problem for two datasets x and x′:

H0: the underlying dataset is x vs. H1: the underlying
dataset is x′.

The output of the mechanism Q serves as the basis for per-
forming the hypothesis testing problem. The distinguishabil-
ity of the two inputs x and x′ can be translated into the trade-
off between type I and type II errors (Dong, Roth, and Su
2021). For belief functions, it is natural to consider minimax

Figure 1: Trade-off between type I and II errors for SLDP

tests (Huber and Strassen 1973). Formally, consider a rejec-
tion rule ϕ : Y → [0, 1]. Let PQ

x and PQ
x′ denote the two sets

of probability functions dominating belQx and belQx′ respec-
tively. In other words, PQ

x = {pr ∈ ∆(Y ) : pr ≥ belQx }
and PQ

x′ = {pr ∈ ∆(Y ) : pr ≥ belQx′}. The lower power
of ϕ under x′ is defined as πx′ := infpr∈PQ

x′
Epr(ϕ). In the

setting of ϵ-SLDP , we assume that type I error αϕ is rep-
resented by suppr∈PQ

x
Epr(ϕ) and type II error by βϕ =

1 − infpr∈PQ

x′
Epr(ϕ). A test ϕ is called a level-α minimax

test if ϕ = argmin{βϕ : αϕ ≤ α}. The following theo-
rem is a generalization of the well-known result (Theorem
2.4 in (Wasserman and Zhou 2010)) for standard differential
privacy.

Theorem 5 For any evidential privacy mechanism Q, the
following two statements are equivalent:

1. Q is ϵ-SLDP;
2. If type I error αϕ ∈ [l, L], then type II error βϕ ∈

[u(L), U(l)] where u(α) := max{e−ϵ(1− α), 1− αeϵ}
and U(α) := min{eϵ(1− α), 1− αe−ϵ}.

Now we consider the hypothesis testing problem for the
composition and would like to distinguish between Q(x) ×
Q(x) and Q(x′) × Q(x′). The corresponding type I and II
errors α2

ϕ and β2
ϕ can be defined similarly. For simplicity,

we only show the two-fold composition and other multi-fold
compositions can be obtained similarly.

Corollary 6 For the hypothesis testing problem for the com-
position, if type I error α2

ϕ ∈ [l, L], then type II error
β2
ϕ ∈ [u2(L), U2(l)] where u2(α) := max{e−2ϵ(1 −

α),−α+ 2
eϵ+1 , 1−αe2ϵ} and U2(α) := min{e2ϵ(1−α), 1−

αe−2ϵ,−α+ 3−e−2ϵ

eϵ+1 }.

Both Theorem 5 and Corollary 6 can be visualized in Fig-
ure 1.

The discrete estimation problem is defined as follows.
Given a prior which is a vector π = (π1, . . . , πk) on the
probability simplex Sk = {p = (π1, . . . , πk) : πi ≥ 0(1 ≤
i ≤ k),

∑k
i=1 πi = 1}, samples X1, · · · , Xn are drawn

i.i.d. according to π. A privacy mechanism Q is then ap-
plied independently to each sample Xi to produce Y n =
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(Y1; · · · , Yn), the sequence of private observations. Observe
that the Yi’s are distributed according to m = πQ, which are
mass functions not necessarily probability functions when Q
is evidential. Our goal is to estimate the distribution vector
π from Y n within a certain privacy budget requirement. The
performance of the estimation may be measured via a loss
function. Here we use the mean square loss function. Q is
called optimal if the estimation error is the smallest. A clas-
sic example for discrete distribution estimation is Warner’s
randomized response method for survey research (Warner
1965).

Example 7 According to prototypical Warner’s randomized
response mechanism QW , the respondent answers truthfully
with probability p and lies with probability 1−p. Let π be the
true proportion of the people having property P . A sample
of Y1, · · · , Yn of respondents are drawn with replacement
from the population and their responses are distributed i.i.d.
according to (q1, q2) = (π, 1 − π)QW . So q1 = πp + (1 −
π)(1−p) and q2 = π(1−p)+(1−π)p. Arrange the indexing
of the sample so that the first n1 respondents say ”Yes” and
the remaining n−n1 answers ”No”. We obtain the maximum
likelihood estimation of π as π̂ = p−1

2p−1 + n1

(p−1)n . It can be
shown (Warner 1965; Holohan, Leith, and Mason 2017) that
this distribution estimation π̂ is unbiased and its mean square
error or variance is the following formula:

V ar[π̂] =
−(π − 1

2 )
2 + 1

4

n
+

1
4(2p−1)2 − 1

4

n
(1)

Within the privacy budget of ϵ, the optimal privacy mecha-
nism is

QWRR =
1

eϵ + 1

(
eϵ 1
1 eϵ

)
.

Now we are generalizing the above Warner’s model by al-
lowing a third response “I don’t know” and representing the
corresponding uncertainty with a mass function. Let Q2×3

denote a known row-stochastic matrix as follows:

Q2×3 =

(
p q 1− p− q
q p 1− p− q

)
where p, q ∈ [0, 1]. Q2×3 may be regarded as a generalized
Warner’s randomized response mechanism where a respon-
dent answers truthfully with probability p, tells a lie with q
and don’t respond or respond ”I don’t know” with probabil-
ity 1− p− q. We may assume in this paper that p > 1

2 .

Remark 8 In the following we choose to work with such
a simple form Q2×3 of LDP for belief functions. A more
general form can be studied similarly, but unfortunately we
couldn’t obtain closed forms for (approximate) estimation
and error as we achieve below for this simple form Q2×3.
The maximum likelihood estimation problem for the more
general form can be naturally formalized as a mixture of
the conditional mass functions associated with the evidential
privacy mechanism with the mixture proportions as the un-
known prior distribution of the sensitive population.We can
apply EM algorithm to approximate the prior distribution

and compute its Fisher information and further the standard
error of the approximation (Agrawal and Aggarwal 2001).
However, the simple form provides us with a neat formula
of estimation error (Theorem 10) and hence a formula for
the privacy-utility trade-off. Indeed the simple form for ev-
idential mechanism is enough to illustrate the effect of the
answer “I don’t know” or nonresponse on the privacy-utility
trade-off. Both the simulation experiments and Figure 2 af-
terwards are based on the above analysis. In this paper we
mainly focus on this simple form Q2×3. But we expect that
such a simple form to evidential privacy mechanisms is the
same as Warner’s 2 × 2 mechanism to the standard LDP.
For standard LDP, every approximate DP algorithm can be
simulated by a (leaky) variant of Warner’s 2× 2 mechanism
(a well-known result in optimal composition (Murtagh and
Vadhan 2018; Kairouz, Oh, and Viswanath 2017)). From a
broader and deeper perspective, we believe that every ap-
proximate evidential privacy mechanism can be simulated
by some variant of our 2 × 3 mechanisms in this paper. In
this sense, our contribution is similar to Warner’s contribu-
tion to standard LDP.

A simple random sample of n people is drawn with re-
placement from the population. Let Zi denote the i-th sam-
ple element. Recall that π is the true proportion of the people
with the sensitive property P . Zi is distributed according to
the following (q1, q2, q3):

( q1 q2 q3 ) = ( π 1− π )

(
p q 1− p− q
q p 1− p− q

)
In other words, q1 = πp+(1−π)q, q2 = πq+(1−π)p, and
q3 = 1−p−q. Note that q1+q2+q3 = 1. It implies that Zi

says “Yes”, “No” and “don’t know” with probabilities q1, q2
and q3 respectively. Arrange the indexing of the sample so
that the first n1 sample elements say Y es, the next n2 say
No and the last n3 say “don’t know” where n1, n2 and n3

are natural numbers such that n1 + n2 + n3 = n. So the
likelihood of the sample is L(π) = qn1

1 qn2
2 qn3

3 . By taking
its logarithm and then setting its derivative to be zero, we
obtain n1

q1
− n2

q2
= 0. So we obtain the maximum likelihood

estimation (MLE) of π as follows:

π̂ =
n2q − n1p

(n1 + n2)(q − p)
. (2)

Now we want to compute the expectation of π̂. From Zi, we
define three new random variables Zi1 = I[Zi=Y es], Zi2 =
I[Zi=No] and Zi3 = I[Zi=don’t know] (where I denotes the
indicator function). Then Zi = Zi1 + Zi2 + Zi3, N1 =∑n

i=1 Zi1, N2 =
∑n

i=1 Zi2 and N3 =
∑n

i=1 Zi3. So
N1 +N2 +N3 = n. We obtain the conditional expectation
of the MLE.

Theorem 9 E[ N2q−N1p
(N1+N2)(q−p) |N1 +N2 ̸= 0] = π.

Theorem 10 V ar(π̂|N1 + N2 ̸= 0) = 1
(q−p)2 [πp + (1 −

π)q][πq + (1 − π)p]A = [−(π − 1
2 )

2 + 1
4 (

p+q
p−q )

2]A where

A =
∑

0≤N3<n
1

n−N3

(
n
N3

)
(1− q3)

n−N3qN3
3 .
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The formula in Theorem 10 is essential to our analysis
of the trade-off between privacy loss and estimation accu-
racy. One may refer to the supplementary materials for a de-
tailed proof (of independent interest). In this paper, we adopt
from (Grab and Savage 1954) a good approximation of A as

1
(n+1)(p+q)−1 . In particular, with this approximation, when

p + q = 1, V ar[π̂|N1 + N2 ̸= 0] =
−(π− 1

2 )
2+ 1

4
1

(2p−1)2

n ,
which is exactly the estimation error of Warner’s model (
Eq. (1)).

Corollary 11 Let f(q) =
−(π− 1

2 )
2+ 1

4 (
p+q
p−q )

2

(n+1)(p+q)−1 . Then f ′(q) >

0. In other words, V ar(π̂) is increasing with respect to q.

This proposition tells us that, within the privacy budget
of ϵ, one can increase the estimation accuracy by saying “I
don’t know” as much as possible instead of lying.

Corollary 12 Fix p+q = c. The optimal ϵ-LDP mechanism
is

QGWRR =

(
eϵ

eϵ+1c
1

eϵ+1c 1− c
1

eϵ+1c
eϵ

eϵ+1c 1− c

)

In order to emphasize the dependency of the privacy ma-
trix Q2×3 on the parameters p and q, we denote Q2×3 as
Q2×3(p, q), the privacy loss ln(pq ) as ϵS(p, q) and the esti-
mation error V ar(π̂|N1 +N2 ̸= 0) as νS(p, q).

This trade-off formula can be actually easily obtained.
What we can achieve is an analysis rather than simulation.
Let p+ q = c and eϵ = p

q = p
1−c−p . So we get p = 1−c

e−ϵ+1 .
If we substitute this formula into the error formula in The-
orem 10, then we get a formula of estimation error in terms
of the privacy loss. Simulation experiments are carried out
to verify the trade-off in the privacy mechanism. In order
to reduce the sampling error on the experimental results,
the following results are the average of 1000 experimental
outcomes. The trade-off between the privacy loss ϵS(p, q)
and the accuracy νS(p, q) can be illustrated in the follow-
ing Figure 1. The figure shows clearly the impact of “don’t
know” with probability 1 − p − q on the trade-off between
ϵS(p, q) and νS(p, q). When 1− p− q = 0 or p+ q = 1, the
black curve for the trade-off between ϵS(p, q) and νS(p, q)
is exactly for Warner’s randomized response mechanism. If
p+q = c where c is a constant, the trade-off curve is similar
to that for Warner’s mechanism. Moreover, when the con-
stant c gets smaller or the probability of “don’t know” gets
larger, the curve moves further away from that for Warner’s
model. Figure 2 tells us that Warner’s model is optimal
among those generalized Q2×3-mechanisms. Next we ex-
plore the effect of the sample size on the accuracy of the es-
timation. We set the sample size to be 10, 100, 500, 1000 and
fix q3 = 0.1. From the experimental results (Figure 3), we
can see that when the privacy loss is relatively large, differ-
ent sample sizes can achieve similar estimations. However,
when the privacy budget is relatively small, with the increase
of the sample size, the estimation variance gets smaller and
smaller.

Figure 2: The trade-off in Shafer’s semantics

LDP according to Walley
For an evidential privacy mechanism Q, let rWQ =

maxprx∈P
bel

Q
x
,prx′∈P

bel
Q
x′

prx(E)
prx′ (E) . And the logarithm ϵWQ =

ln(rWQ ) quantifies the privacy loss of the privacy mechanism
Q in Walley’s semantics of imprecise probabilities. There is
another definition of LDP for belief functions in the setting
of imprecise probabilities:

Definition 13 For any ϵ > 0, Q is called ϵ-locally differ-
ential private according to Walley (ϵ-WLDP for short) if,
−ϵ ≤ ϵWQ ≤ ϵ. And ϵQW is called the privacy loss of Q ac-
cording to Walley and ϵ is a privacy budget. ✁

In other words, the privacy loss for ϵ-WLDP is defined
by consistent probability functions in the worst case. So, ϵ-
WLDP fits well with the worst-case analysis behind the
philosophy of differential privacy and also with the conser-
vative principle of least commitment in the theory of be-
lief functions (Denoeux 2014). Lemma 2 and the following
Lemma 14 provide a simple mathematical characterization
of SLDP and WLDP, where we can see clearly the main dif-
ference between Definitions 1 and 13.

Lemma 14 (Alternative formulations) If privacy mecha-
nism Q is ϵ-WLDP , then, for all x, x′ ∈ X and E ⊆ Y :
e−ϵ ≤ plx(E)

belx′ (E) ≤ eϵ.

Lemma 15 (Composition) Let Q1 be an ϵ1-WLDP evi-
dential privacy mechanism from X to Y1 and Q2 be
an ϵ2-WLDP evidential privacy mechanisms from X to
Y2. Then their combination Q1,2 defined by Q1,2(x) =
(Q1(x), Q2(x)) is ϵ1 + ϵ2-WLDP.

Lemma 16 (Post-processing) Let Q be an ϵ-WLDP mecha-
nism from X to Y and f is a data-independent randomized
algorithm from Y to another finite alphabet set Z. Then f◦Q
is an ϵ-WLDP mechanism from X to Z.

For the hypothesis testing problem, recall that Q denotes
an evidential privacy mechanism and ϕ : Y → [0, 1] is a
rejection rule. In order to translate ϵ-WLDP into the trade-
off between type I and II errors, we have to divide them
into two different types of errors: one is pessimistic and
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Figure 3: Impact of sample sizes on the estimation accuracy. The horizontal axis represents the privacy budget ϵ and the vertical
axis represents the estimate π̂.

the other optimistic. For the rejection rule ϕ, the pessimistic
type I and II are defined as αpe

ϕ = suppr∈P
bel

Q
x

Epr(ϕ) and

βpe
ϕ = suppr∈P

bel
Q
x′
Epr(1− ϕ), respectively. They are actu-

ally the same as those errors in ϵ-SLDP . Also we define the
optimistic type I and II errors as αop

ϕ := infpr∈P
bel

Q
x

Epr(ϕ)

and βop
ϕ := infpr∈P

bel
Q
x′
Epr(1− ϕ), respectively.

Definition 17 For the above pessimistic errors, the follow-
ing function is called the pessimistic trade-off function:
T pe(Q(x), Q(x′))(α) := inf{βpe

ϕ : αpe
ϕ ≤ α}. For the

above optimistic errors, the following function is called
the optimistic trade-off function: T op(Q(x), Q(x′))(α) :=
sup{βop

ϕ : αop
ϕ ≤ α}. ✁

The following theorem is another generalization of the
well-known result (Theorem 2.4 in (Wasserman and Zhou
2010)) for standard differential privacy.

Theorem 18 For any evidential privacy mechanism Q, the
following two statements are equivalent:

1. Q is ϵ-WLDP;
2. For any α ∈ [0, 1], T pe(Q(x), Q(x′))(α) ≥ fpe

ϵ (α)
and T op(Q(x), Q(x′))(α) ≤ fop

ϵ (α) where fpe
ϵ (α) =

max{1 − αeϵ, 0, e−ϵ(1 − α)} and fop
ϵ (α) = min{1 −

αe−ϵ, eϵ(1− α)}.

For the composition, the adversary needs to distinguish
between Q(x) × Q(x) and Q(x′) × Q(x′). Similarly, we
can define pessimistic and optimistic type I and II er-
rors: α2,pe

ϕ , β2,pe
ϕ , α2,op

ϕ and β2,op
ϕ . Moreover, for the hy-

pothesis testing problem for the composition, we define
the pessimistic and optimistic trade-off functions similarly:
T pe
2 (Q(x) × Q(x), Q(x′) × Q(x′))(α) := inf{β2,pe

ϕ :

α2,pe
ϕ ≤ α}, and T op

2 (Q(x)×Q(x), Q(x′)×Q(x′))(α) :=

sup{β2,op
ϕ : α2,op

ϕ ≤ α}.

Corollary 19 For any α ∈ [0, 1], T pe
2 (Q(x) ×

Q(x), Q(x′) × Q(x′))(α) ≥ f2,pe
ϵ (α) and

T op
2 (Q(x) × Q(x), Q(x′) × Q(x′))(α) ≤ f2,op

ϵ (α)
where f2,pe

ϵ (α) = max{1−αe2ϵ,−α+ 2
eϵ+1 , e

−2ϵ(1−α)}
and f2,op

ϵ (α) = min{1−αe−2ϵ, e2ϵ(1−α),−α+ 3−e−2ϵ

eϵ+1 }.

Both Theorem 18 and Corollary 19 can be visualized in
Figure 4.

For simplicity, we consider the above evidential privacy
matrix

Q2×3 =

(
p q 1− p− q
q p 1− p− q

)
.

In Definition 1, 1−p−q quantifies the conditional probabil-
ity of the third response “I don’t know”. Similarly, in Defini-
tion 13, p and q are the probabilities of telling truthfully and
of lying respectively. However, 1−p−q measures the prob-
ability of unknown response strategy or possible noncompli-
ance. Unlike SLDP, there are only two responses “Yes” and
“No” for response mechanism according to WLDP and “I
don’t know” is not an option. In order to obtain a Warner-
style randomized response 2× 2 matrix, we redistribute the
mass 1−p−q on the unknown part to those masses on “Yes”
and “No” and get the following matrix:

Qλ =

(
p+ λ(1− p− q) q + (1− λ)(1− p− q)

q + (1− λ)(1− p− q) p+ λ(1− p− q)

)
When λ = 1, the associated privacy loss is the largest and
is the same as according to Definition 13. The respondent is
most conservative and make the worst-case analysis. On the
other hand, when λ = 0, the associated privacy loss is the
smallest. In this case, the respondent is the most optimistic
and assumes the best possibility. Similarly, we can obtain the
maximum likelihood estimation π̂ =

n1
n −(1−λ)(1−p−q)−q

p−q+(2λ−)(1−p−q) ,
and show that π̂ is an unbiased estimate of π. From Theo-
rem 10, we know that, when λ = 0, the variance V ar(π̂)(=
−(π−1/2)2+ 1

4(2p−1)2

n ) is the largest and is defined as the es-
timation accuracy of the privacy matrix Q2×3 according to
Walley.

According to Shafer’s semantics, the privacy loss for
the mechanism Q2×3 is defined as ϵS(p, q) = ln(pq ) and
its accuracy is νS(p, q) = V ar(π̂|N1 + N2 ̸= 0) =
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Figure 4: Trade-off between type I and II errors for WLDP

−(π− 1
2 )

2+
(p−q)2

4(p+q)2

(n+1)(p+q)−1 (Thm. (10)). In contrast, according to Wal-
ley’s semantics, the privacy loss for Q2×3 is defined as
ln( 1−q

q ), which is denoted as ϵW (p, q) and is equal to the
privacy loss of the associated matrix Q1 in Warner’s model.

Moreover its accuracy is
−(π− 1

2 )
2+ 1

4(2p−1)2

n , which is de-
noted as νW (p, q) and is exactly the accuracy for the matrix
Q0 in Warner’s model. In other words, both ϵW (p, q) and
νW (p, q) are obtained according to the worst-case analysis
from the perspectives of the respondent and adversary re-
spectively. Similarly, we may obtain ϵO(p, q) and νO(p, q),
the optimal privacy loss and estimation error among all
possible privacy mechanisms Qλ. Figure 5 illustrates the
relationships among the three trade-offs between privacy
and accuracy: (ϵS(p, q), νS(p, q)), (ϵW (p, q), νW (p, q)) and
(ϵO(p, q), νO(p, q)). The rectangle shown in the figure con-
sists of exactly the trade-offs between privacy and accuracy
for all possible Qλ with (ϵW (p, q), νW (p, q)) as the worst
and (ϵO(p, q), νO(p, q)) as the best.

Corollary 20 ϵW (p, q) is decreasing with respect to q and
νW (p, q) is decreasing with respect to p.

According to the corollary, we may compare two privacy
mechanisms Q2×3(p, q) and Q2×3(p

′, q′). If p ≥ p′ and q ≥
q′, then ϵW (p, q) ≤ ϵW (p′, q′) and νW (p, q) ≤ νW (p′, q′).
In this case, Q2×3(p, q) is preferred to Q2×3(p

′, q′). So the
trade-off in Walley’s semantics is similar to the minimax es-
timation for LDP (Duchi, Jordan, and Wainwright 2018).

Figure 5: Comparison of trade-offs in the two semantics

Conclusion
To the best of our knowledge, we are the first to explore
differential privacy from a different uncertainty perspective
than probability theory. The fact that differential privacy is
closely related to statistical analysis (Dwork and Roth 2014)
may explain why there are few research about DP in other
uncertainty theories which don’t support a practical statisti-
cal analysis. But belief functions are deeply rooted in fidu-
cial inference, an important school in statistics (Dempster
1967; Shafer 1982; Martin and Liu 2015; Martin 2019). It
is desirable to develop a belief-function theory of differen-
tial privacy. The LDP implicitly requires some assumptions
about the adversary’s view of belief functions in privacy
mechanism. There are many semantics for belief functions.
In this paper, we choose Shafer’s semantics as randomly en-
coded messages (Shafer and Tversky 1985) and Walley’s
interpretation as imprecise-probabilities (Walley 1990). Our
work in LDP is motivated by the nonresponse and noncom-
pliance issue in randomized response technique in (Warner
1965; Graeme, Imai, and Zhou 2015) and discrete distri-
bution estimation problem in (Kairouz, Oh, and Viswanath
2016; Kairouz, Bonawitz, and Ramage 2016; Wang et al.
2017; Huang and Du 2008) where the size of the input al-
phabet is no less than that of the output alphabet. However,
since the number of messages (or the size of the powerset of
the output set) is usually larger than that of the input set in
our LDP mechanisms, MLE is usually different from empir-
ical estimation in this case and their techniques don’t apply
here. Moreover, there is a rich literature to address nonre-
sponse in survey research (Little and Rubin 2002) but most
of them regard the issue as a missing-data problem and few
of them consider the privacy problem. There seems no ob-
vious LDP definitions for coarsening at random because the
outputs of coarsening mechanisms at different inputs are dif-
ferent and hence the adversary can easily distinguish these
two inputs. It may be interesting to explore the LDPs for
contamination models. There are 2 other possible definitions
of SLDP in terms of belief functions and plausibility func-
tions: e−ϵ ≤ belQx (E)

belQ
x′ (E)

≤ eϵ and e−ϵ ≤ plQx (E)

plQ
x′ (E)

≤ eϵ. Lemma

2 and the remarks afterwards actually show their relation-
ships. In future versions, we will elaborate these two differ-
ent definitions and their relations with Definition 1.

In this paper we show a binary composition theorem
for each definition (Corollaries 6 and 19). We believe that,
for our two definitions SLDP and WLDP, the composition
of the hypothesis-testing trade-off functions (Kairouz, Oh,
and Viswanath 2017; Balle et al. 2020) converges to some
(most probably random-set variant) form of Gaussian DP
(Dong, Roth, and Su 2021) according to some central limit
theorem (Chapter 3 in (Molchanov 2017)). In this paper,
we took the first step in this direction and showed the ef-
fect of the composition of hypothesis-testing trade-off func-
tions(Corollaries 1 and 4). Moreover, we would like to in-
vestigate LDP for belief functions from the perspective of
respondents (as in (Xiong et al. 2020)) and conduct a se-
ries of rigorous surveys to show that our new generalized
Warner’s mechanism including “don’t know” as an option
can indeed increase user’s willingness to participate.
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tial privacy. In International Conference on Artificial Intel-
ligence and Statistics, 2496–2506. PMLR.
Bullek, B.; Garboski, S.; Mir, D. J.; and Peck, E. M. 2017.
Towards understanding differential privacy: When do peo-
ple trust randomized response technique? In Proceedings of
the 2017 CHI Conference on Human Factors in Computing
Systems, 3833–3837.
Cummings, R.; Kaptchuk, G.; and Redmiles, E. M. 2021. ”
I need a better description”: An Investigation Into User Ex-
pectations For Differential Privacy. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Commu-
nications Security, 3037–3052.
Cuzzolin, F. 2021. The Geometry of Uncertainty - The Ge-
ometry of Imprecise Probabilities. Artificial Intelligence:
Foundations, Theory, and Algorithms. Springer. ISBN 978-
3-030-63152-9.
Dempster, A. 1967. Upper and lower probabilities induced
by a multivalued mapping. Annals of Math. Stat., 38: 325–
339.
Dempster, A. P. 2008. The Dempster-Shafer calculus for
statisticians. Int. J. Approx. Reason., 48(2): 365–377.
Denoeux, T. 2014. Likelihood-based belief function: Jus-
tification and some extensions to low-quality data. Int. J.
Approx. Reasoning, 55(7): 1535–1547.
Dong, J.; Roth, A.; and Su, W. 2021. Gaussian Differential
Privacy. Journal of the Royal Statistical Society: Series B
(JRSSB), to appear.
Duchi, J.; Jordan, M. I.; and Wainwright, M. J. 2013. Lo-
cal Privacy and Statistical Minimax Rates. In FOCS 2013,
26-29 October, 2013, Berkeley, CA, USA, 429–438. IEEE
Computer Society.
Duchi, J. C.; Jordan, M. I.; and Wainwright, M. J. 2018.
Minimax Optimal Procedures for Locally Private Estima-
tion. Journal of American Statistical Association, 113(521):
182–215.
Dwork, C.; McSherry, F.; Nissim, K.; and Smith, A. D. 2006.
Calibrating Noise to Sensitivity in Private Data Analysis.
In Halevi, S.; and Rabin, T., eds., Theory of Cryptography,

Third Theory of Cryptography Conference, TCC 2006, New
York, NY, USA, March 4-7, 2006, Proceedings, volume 3876
of Lecture Notes in Computer Science, 265–284. Springer.
Dwork, C.; and Roth, A. 2014. The Algorithmic Founda-
tions of Differential Privacy. Found. Trends Theor. Comput.
Sci., 9(3-4): 211–407.
Grab, E. L.; and Savage, I. R. 1954. Tables of the Expected
Value of 1/X for Positive Bernoulli and Poisson Variables.
Journal of the American Statistical Association, 49(256):
169–177.
Graeme, B.; Imai, K.; and Zhou, Y.-Y. 2015. Design and
Analysis of the Randomized Response Technique. Jour-
nal of the American Statistical Association, 110(511): 1304–
1319.
Holohan, N.; Leith, D. J.; and Mason, O. 2017. Optimal Dif-
ferentially Private Mechanisms for Randomised Response.
IEEE Trans. Inf. Forensics Secur., 12(11): 2726–2735.
Huang, Z.; and Du, W. 2008. OptRR: Optimizing random-
ized response schemes for privacy-preserving data mining.
In 2008 IEEE 24th International Conference on Data Engi-
neering, 705–714. IEEE.
Huber, P. J.; and Strassen, V. 1973. Minimax tests and
Neyman-Pearson tests for capacities. The Annals of Statis-
tics, 1(2): 251–263.
Kairouz, P.; Bonawitz, K.; and Ramage, D. 2016. Discrete
Distribution Estimation under Local Privacy. In Balcan, M.;
and Weinberger, K. Q., eds., ICML 2016, New York City, NY,
USA, June 19-24, 2016, volume 48, 2436–2444. JMLR.org.
Kairouz, P.; Oh, S.; and Viswanath, P. 2016. Extremal Mech-
anisms for Local Differential Privacy. J. Mach. Learn. Res.,
17: 17:1–17:51.
Kairouz, P.; Oh, S.; and Viswanath, P. 2017. The Compo-
sition Theorem for Differential Privacy. IEEE Transactions
on Information Theory, 63(6): 4037–4049.
Kasiviswanathan, S. P.; Lee, H. K.; Nissim, K.; Raskhod-
nikova, S.; and Smith, A. D. 2008. What Can We Learn Pri-
vately? In FOCS 2008, October 25-28, 2008, Philadelphia,
PA, USA, 531–540. IEEE Computer Society.
Little, R.; and Rubin, D. 2002. Statistical analysis with miss-
ing data. Wiley. ISBN 9780471183860.
Martin, R. 2019. False confidence, non-additive beliefs, and
valid statistical inference. International Journal of Approxi-
mate Reasoning, 113: 39–73.
Martin, R.; and Liu, C. 2015. Inferential models: reasoning
with uncertainty, volume 145. CRC Press.
Molchanov, I. 2017. Theory of Random Sets, volume 87 of
Probability Theory and Stochastic Modelling. Springer.
Murtagh, J.; and Vadhan, S. P. 2018. The Complexity of
Computing the Optimal Composition of Differential Pri-
vacy. Theory Comput., 14(1): 1–35.
Ramokapane, K. M.; Misra, G.; Such, J.; and Preibusch, S.
2021. Truth or Dare: Understanding and Predicting How
Users Lie and Provide Untruthful Data Online. In Proceed-
ings of the 2021 CHI Conference on Human Factors in Com-
puting Systems, 1–15.

10032



Shafer, G. 1976. A Mathematical Theory of Evidence.
Princeton, N.J.: Princeton University Press.
Shafer, G. 1982. Belief function and parametric models
(with discussion). J. Roy. Statist. Soc. Ser. B, 23: 322–352.
Shafer, G.; and Tversky, A. 1985. Languages and Designs
for Probability Judgment. Cogn. Sci., 9(3): 309–339.
Walley, P. 1990. Statistical Reasoning with Imprecise Prob-
abilities. Chapman and Hall. ISBN 3-54029586-0.
Wang, T.; Blocki, J.; Li, N.; and Jha, S. 2017. Locally
Differentially Private Protocols for Frequency Estimation.
In Kirda, E.; and Ristenpart, T., eds., 26th USENIX Se-
curity Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017, 729–745. USENIX Associa-
tion.
Warner, S. 1965. Randomized Response: A Survey Tech-
nique for Eliminating Evasive Answer Bias. Journal of the
American Statistical Association, 60(309): 63–69.
Wasserman, L.; and Zhou, S. 2010. A statistical framework
for differential privacy. Journal of the American Statistical
Association, 105(489): 375–389.
Xiong, A.; Wang, T.; Li, N.; and Jha, S. 2020. Towards Ef-
fective Differential Privacy Communication for Users’ Data
Sharing Decision and Comprehension. In 2020 IEEE Sym-
posium on Security and Privacy, SP 2020, San Francisco,
CA, USA, May 18-21, 2020, 392–410. IEEE.

10033


