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Abstract

Uncertainty estimation is an essential step in the evaluation
of the robustness for deep learning models in computer vi-
sion, especially when applied in risk-sensitive areas. How-
ever, most state-of-the-art deep learning models either fail
to obtain uncertainty estimation or need significant modifica-
tion (e.g., formulating a proper Bayesian treatment) to obtain
it. Most previous methods are not able to take an arbitrary
model off the shelf and generate uncertainty estimation with-
out retraining or redesigning it. To address this gap, we per-
form a systematic exploration into training-free uncertainty
estimation for dense regression, an unrecognized yet impor-
tant problem, and provide a theoretical construction justify-
ing such estimations. We propose three simple and scalable
methods to analyze the variance of outputs from a trained
network under tolerable perturbations: infer-transformation,
infer-noise, and infer-dropout. They operate solely during the
inference, without the need to re-train, re-design, or fine-tune
the models, as typically required by state-of-the-art uncer-
tainty estimation methods. Surprisingly, even without involv-
ing such perturbations in training, our methods produce com-
parable or even better uncertainty estimation when compared
to training-required state-of-the-art methods. Code is avail-
able at https://github.com/lumi9587/train-free-uncertainty.

Introduction
Deep neural networks have achieved remarkable or even
super-human performance in many tasks (Krizhevsky,
Sutskever, and Hinton 2012; He et al. 2015; Silver et al.
2016). While most previous work in the field has focused on
improving accuracy in various tasks, in several risk-sensitive
areas such as autonomous driving (Chen et al. 2015) and
healthcare (Zhang et al. 2019), reliability and robustness are
arguably more important and interesting than accuracy.

Recently, several novel approaches have been proposed
to take into account an estimation of uncertainty during
training and inference (Huang et al. 2018). Some use prob-
abilistic formulations for neural networks (Graves 2011;
Hernández-Lobato and Adams 2015; Wang, Shi, and Ye-
ung 2016; Shekhovtsov and Flach 2018) and model the dis-
tribution over the parameters (weights) and/or the neurons.
Such formulations naturally produce distributions over the
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possible outputs (Ilg et al. 2018; Yang, Hu, and Ramanan
2019). Others utilize the randomness induced during train-
ing and inference (e.g., dropout and ensembling) to obtain
an uncertainty estimation (Gal and Ghahramani 2016; Lak-
shminarayanan, Pritzel, and Blundell 2017; Kendall, Badri-
narayanan, and Cipolla 2015).

All methods above require specific designs or a special
training pipeline in order to involve the uncertainty esti-
mation during training. Unfortunately, there are many cases
where such premeditated designs or pipelines cannot be im-
plemented. For example, if one wants to study the uncer-
tainty of trained models released online, retraining is not
always an option, especially when only a black-box model
is provided or the training data is not available. Moreover,
most models are deterministic and do not have stochastic-
ity. A straightforward solution is to add dropout layers into
proper locations and finetune the model (Gal and Ghahra-
mani 2016). However, this is impractical for many state-
of-the-art and published models, especially those trained on
large datasets (e.g. ImageNet (Deng et al. 2009)) with a vast
amount of industrial computing resources. In addition, mod-
els that have already been distilled, pruned, or binarized fall
short of fitting re-training (Han, Mao, and Dally 2015; Hou,
Yao, and Kwok 2016).

To fill this gap, we identify the problem of training-free
uncertainty estimation: how to obtain an uncertainty estima-
tion of any given model without re-designing, re-training,
or fine-tuning it. We focus on two scenarios: black-box un-
certainty estimation (BBUE), where one has access to the
model only as a black box, and gray-box uncertainty esti-
mation (GBUE), where one has access to intermediate-layer
neurons of the model (but not the parameters). Our work is
a systematic exploration of this unrecognized yet important
problem.

We propose a set of simple and scalable training-free
methods to analyze the variance of the output from a trained
network, shown in Fig. 1. Our main idea is to add a tolerable
perturbation into inputs or feature maps during inference and
use the variance of the output as a surrogate for uncertainty
estimation.

The first method, which we call infer-transformation, is
to apply a transformation that exploits the natural charac-
teristics of a CNN – it is variant to input transformation
such as rotation (Cohen and Welling 2016). Transformations
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have been frequently used as data augmentation but rarely
evaluated for uncertainty estimation. The second method,
infer-noise, is to inject Gaussian noise with a zero-mean and
a small standard deviation into intermediate-layer neurons.
The third one, called infer-dropout, is to perform inference-
time dropout in a chosen layer. Although at first blush infer-
dropout is similar to MC-dropout, where dropout is per-
formed during both training and inference in the same lay-
ers, they are different in several aspects: (1) Infer-dropout is
involved only during inference. (2) Infer-dropout can be ap-
plied to arbitrary layers, even those without dropout training.
Surprisingly, we find that even without involving dropout
during training, infer-dropout is still comparable to, or even
better than, MC-dropout for the purpose of uncertainty esti-
mation.

In our paper, we focus on regression tasks. Note that
for classification tasks, the softmax output is naturally a
distribution. Methods that use entropy for uncertainty esti-
mation qualify as a training-free method and have outper-
formed MC-Dropout (Bahat and Shakhnarovich 2018; Gal
and Ghahramani 2016; Hendrycks and Gimpel 2016; Wang
et al. 2019) (see the Supplement for experiment results). Re-
gression tasks are more challenging than classification prob-
lems since there is no direct output distribution. (Kuleshov,
Fenner, and Ermon 2018; Song et al. 2019). And our major
contributions are:
1. We perform a systematic exploration of training-free un-

certainty estimation for regression models and provide a
theoretical construction justifying such estimations.

2. We propose simple and scalable methods, infer-
transformation, infer-noise and infer-dropout, using a
tolerable perturbation to effectively and efficiently esti-
mate uncertainty.

3. Surprisingly, we find that our methods are able to gen-
erate uncertainty estimation comparable or even better
than training-required baselines in real-world large-scale
dense regression tasks.

Related Work
Probabilistic Neural Networks for Uncertainty Estima-
tion. Probabilistic neural networks consider the input and
model parameters as random variables which take effect as
the source of stochasticity (Nix and Weigend 1994; Welling
and Teh 2011; Graves 2011; Hernández-Lobato and Adams
2015; Wang, Shi, and Yeung 2016; Wang and Yeung 2020).
Traditional Bayesian neural networks model the distribution
over the parameters (weights) (MacKay 1992; Hinton and
Van Camp 1993; Graves 2011; Welling and Teh 2011) and
obtain the output distribution by marginalizing out the pa-
rameters. Even with recent improvement (Balan et al. 2015;
Hernández-Lobato and Adams 2015), one major limitation
is that the size of network at least doubles under this as-
sumption, and the propagation with a distribution is usually
computationally expensive. Another set of popular and effi-
cient methods (Gal and Ghahramani 2016; Teye, Azizpour,
and Smith 2018) formulate dropout (Srivastava et al. 2014)
or batch normalization (Ioffe and Szegedy 2015) as approx-
imations to Bayesian neural networks. For example, MC-
dropout (Gal and Ghahramani 2016) injects dropout into

some layers during both training and inference (Tsymbalov
et al. 2019). Unlike most models that disable dropout dur-
ing inference, MC-dropout feed-forwards the same exam-
ple multiple times with dropout enabled, in order to form a
distribution on the output. Meanwhile, other works (Wang,
Shi, and Yeung 2016; Shekhovtsov and Flach 2018) propose
sampling-free probabilistic neural networks as a lightweight
Bayesian treatment for neural networks.

Non-probabilistic Neural Networks for Uncertainty
Estimation. Other strategies (Zhao, Ma, and Ermon 2020)
such as deep ensemble (Lakshminarayanan, Pritzel, and
Blundell 2017; Huang et al. 2017; Ashukha et al. 2020) train
an ensemble of neural networks from scratch, where some
randomness is induced during the training process, i.e. the
initial weight is randomly sampled from a distribution. Dur-
ing inference, these networks will generate a distribution of
the output. Though simple and effective, training multiple
networks costs even more time and memory than Bayesian
neural networks. Another efficient method log likelihood
maximization (LLM) is to train the network to have both
original outputs and uncertainty predictions, by jointly op-
timizing both (Zhang et al. 2019; Poggi et al. 2020). Be-
sides the methods above focusing on uncertainty in classi-
fication models; there are also works investigating uncer-
tainty in regression models (Kuleshov, Fenner, and Ermon
2018; Song et al. 2019; Zelikman et al. 2020). However, all
methods above require re-training, introduce heavy imple-
mentation overhead, and sometimes make the optimization
process more challenging.

Methodology
Three Cases on Parameter Accessibility. We distinguish
among three cases based on accessibility of the original
model. 1. Black-box case: the model is given as a trained
black box without any access to its internal structure. 2.
Gray-box case: the internal representations (feature maps)
of the model is accessible (while the parameters are not)
and can be modified during inference. 3. White-box case: the
model is available for all modifications (e.g. its weights can
be modified, which requires training). In this paper we focus
on the black-box and gray-box cases, for which we offer,
correspondingly, two classes of methods. For the black-box
case, we propose infer-transformation, which exploits the
model’s dependence on input transformations, e.g. rotation-
s/flips. For the grey-box case, we propose infer-noise and
infer-dropout, which introduce an internal embedding/repre-
sentation manipulation - injecting a noise layer or a dropout
layer during inference. These three methods are illustrated
in Fig. 1. The description of our methods and a theoretical
construction are presented as below.

Black-Box Uncertainty Estimation:
Infer-Transformation
Given a black-box model, we explore the behavior of the
outputs for different transformed versions of the input.
Specifically, we transform the input with tolerable pertur-
bations, e.g. perturbations that do not cause significant in-
crease in the loss, and then use the variance of the perturbed
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Figure 1: Method description of our training-free uncertainty estimation: apply infer-transformation T (left) and infer-noise or
infer-dropout P (right) to a trained neural network F during inference.

outputs as estimated uncertainty. Here we focus on trans-
formations that preserve pertinent characteristics of the in-
put, such as rotations, flips, etc. Formally, given an input
image X, our measured uncertainty is defined as V[Z] =
VT [T

′ ◦ F ◦ T (X)], where T ∈ T is a transformation, T ′

is T ’s inverse operation, and F is a function representing
the black-box neural network. Z = T ′ ◦ F ◦ T (X) is a
sample from the perturbed output distribution. Note that it
is possible to sample Z = F (X), where T happens to be a
360-degree rotation.

Gray-Box Uncertainty Estimation: Infer-Noise and
Infer-Dropout
Given a gray-box model, we consider another class of meth-
ods for generating multiple outputs from a distribution: ran-
domly perturbing latent codes. Compared with the black-
box case, this provides finer granularity on modulating the
perturbation strength to ensure tolerability. Specifically, we
propose infer-noise, which introduces Gaussian noise at an
intermediate layer of the trained model, and infer-dropout,
which uses dropout instead. For infer-noise, the noise will
be added to the feature maps of a certain layer. This noise is
randomly sampled multiple times during inference to form
a set of diverse outputs. For infer-dropout, random dropout
is performed for multiple forwards to generate output sam-
ples, the variance of which is then used as uncertainty es-
timation. Formally, given an input image X, our measured
uncertainty is defined as V[Z] = VP [F2 ◦ P ◦ F1(X)],
where P is sampled from a perturbation set P (e.g. Gaus-
sian noise with σ = 1). F1 is the function of network lay-
ers before the perturbation P , F2 represents network layers
after P , and F2 ◦ F1(X) is the gray-box network F (X).
Z = F2 ◦ P ◦ F1(X) is a sample from the perturbed output
distribution. Note that it is possible to sample Z = F (X),
where P happens to be a perturbation noise of all zeros.

Correlation between Sensitivity and Uncertainty
In this section, we provide a theoretical justification for us-
ing sensitivity as a surrogate of uncertainty. Specifically,
we will show that sensitivity and uncertainty have a non-
negative correlation in a simplified setting with mild as-
sumptions.

Notations. We use random variables X and Y to denote
the input data point and target label. Z0 = F2 ◦ F1(X) and
Z = F2◦P ◦F1(X) denote the model predictions of original
and perturbed input, respectively.

Furthermore, µ(X) = EP [Z|X] and σ(X)2 = VP [Z|X]
denote the expectation and the variance of the model predic-
tion of perturbations of a certain input X . We call σ(X) (or
σ for short) the sensitivity of the model for the input X . We
use e = |Z0 − Y | to denote the error of the model’s pre-
diction. We consider e as an indicator of the model’s uncer-
tainty: a larger prediction error means that the model should
have been less certain at this input. We use ρ(·, ·) to denote
the Pearson correlation between two random variables.

Assumptions. To analyze the correlation between sensi-
tivity and uncertainty, we make the following assumptions:

1. Heterogeneous perturbation: ϵ1 = Z0−µ(X)
σ(X) ∼ N (0, 1).

This assumption says the model prediction given an un-
perturbed input ‘looks like’ a random draw from the
model predictions of perturbed inputs.

2. Random bias: ϵ2 = Y − µ(X) ∼ N (0, B2). This as-
sumption says the bias of the model prediction ‘looks
like’ white noise with bounded variance B2.

3. Independence: ϵ1 ⊥⊥ ϵ2 and (ϵ1, ϵ2) ⊥⊥ σ. Basically, we as-
sume the randomness in ϵ1, ϵ2 and the sensitivity σ are
statistically independent.

Empirically, we find these assumptions are satisfied to some
degree (see detailed results in the Supplement).

Correlation Analysis. The following theorem analyzes
the correlation between sensitivity σ and uncertainty e.

Theorem 1. With the above assumptions satisfied, we have:

ρ(σ, e) =

√
2

π

(1− λ2)

(1− 2
πλ

2)
ρ(σ, σB) (1)

where σB =
√
σ2 +B2 and λ2 = (E[σB ])2

E[σ2
B ]

.

We make several remarks on the derived correlation be-
tween sensitivity and uncertainty.

1. ρ(σ, e) ≥ 0: It holds because σ and σB always have non-
negative correlation. It means statistically, sensitivity has
the same ‘direction’ as uncertainty.

2. ρ(σ, e) is monotonically decreasing w.r.t. to B: It holds
since ρ(σ, σB) decreases as B grows. Consider two ex-
tremes: (a) B = 0 (the prediction has no bias at all): σB

then degenerates to σ, leading to the highest sensitivity-
uncertainty correlation. (b) B = ∞ (the prediction has
unbounded bias). σB then degenerates to B, leading to
zero sensitivity-uncertainty correlation.
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Figure 2: Visualization of block-wise and pixel-wise uncertainty (variance) maps (log scale) generated by infer-transformation,
infer-dropout, MC-dropout (Gal and Ghahramani 2016), using SRGAN (Ledig et al. 2017) for the super resolution task. L1 loss
map (log scale) is also provided for comparison. Correlation between the L1 loss map and the uncertainty map is presented.

3. ρ(σ, e) is monotonically decreasing w.r.t. to λ2: It holds
since 1−λ2

1− 2
πλ2 decreases as λ2 grows. Note that λ2 is

bounded (between 0 and 1) and that λ2 indicates the vari-
ability of the sensitivity. Specifically, λ2 = 1 is equiva-
lent to V[σ] = 0, meaning that the sensitivity is constant
everywhere. In this extreme case, sensitivity has zero cor-
relation with uncertainty. Fortunately, in practice, we find
sensitivity always varies with different inputs. The vari-
ation is often large, leading λ2 relatively small. As a re-
sult, sensitivity usually has a high correlation with uncer-
tainty.

4. ρ(σ, e) ≤
√

2
π ≈ 0.8: Using sensitivity as a surrogate

can at most achieve pixel-wise correlation of
√

2/π. For
block-wise, patch-wise, and image-level correlation (see
the Experiment Section for definitions), we can apply
similar analysis to obtain higher upper bounds.

Theorem 1 establishes the correlation between sensitivity σ
and uncertainty e. In our experiments, we use σ2 as sensitiv-
ity for convenience since it achieves similar performance.

Epistemic Uncertainty and Aleatoric Uncertainty
Our model can estimate both epistemic uncertainty and
aleatoric Uncertainty (Kendall and Gal 2017). As in practice,
the model is not able to perfectly fit infinite data – all variants
of augmented “data” (including both data inputs and inter-
mediate features) applied with different perturbations – then
we will get a nonzero variance, which represents the epis-
temic uncertainty. In the meanwhile, our methods can also
be applied to measure aleatoric uncertainty for accessible
data. Given a data input fed into a trained model under mul-
tiple tolerable perturbations, outputs with higher variance
than those from other data inputs represent this data input
with relatively high aleatoric uncertainty. And we demon-
strate to use of such properties to implement active learning,
and results are shown in the Supplement.

Experiments
In this section, we evaluate our three proposed approaches
in two representative real-world large-scale dense regression
tasks, super single image resolution, and monocular depth
estimation.

Single Image Super Resolution
The task of Single Image Super Resolution (SR) is to recon-
struct a high-resolution (HR) image from a low-resolution
(LR) input. Here we focus on analyzing the state-of-the-art
SRGAN model (Ledig et al. 2017), which can restore photo-
realistic high-quality images. SRGAN always outputs deter-
ministic restorations since the conditional GAN (Mirza and
Osindero 2014) used in this model involves no latent vari-
able sampling. However, we can still evaluate its uncertainty
with our proposed methods.

We apply our methods to estimate uncertainty in one
open-source version of this work (Dong et al. 2017). The
package provides two models trained with different loss
functions: 1) SRresnet model with L2 loss and 2) SRGAN
model with a combination of L2 loss and adversarial loss.
We evaluate our methods on both models in the black-
box/gray-box settings.

Infer-Transformation. For infer-transformation, we ap-
ply a rotation of K × 90 degrees (K = 0, 1, 2, 3) as well as
horizontal flip to the LR input, feed it into the trained model
during the inference, and apply the inverse transformation
to its output. We could generate at most 8 samples using this
strategy, and then calculate the pixel-wise variance.

Infer-Noise. In infer-noise, we take the trained model and
add a Gaussian-noise layer, which has standard deviation
σ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5} and mean 0, at differ-
ent locations (layers). We choose 4 different locations for
noise injection, including the layers right after the input and
some intermediate layers (see details in the Supplement. For
each experiment, we only add the noise into one layer with a
specific σ value. Sample numbers of 8 and 32 are evaluated.
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Figure 3: Visualization of pixel-wise uncertainty (variance) maps from infer-transformation, infer-dropout, MC-dropout (Gal
and Ghahramani 2016) compared with the L1 loss map in depth estimation task. Correlation between the L1 loss map and the
uncertainty map is also presented.

Infer-Dropout. In infer-dropout, we take the trained
model and add a dropout layer with varied dropout
rates. We choose the dropout rate ω from the set
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5} and use the same set of lo-
cations as the infer-noise. For each experiment, we only add
the layer into one location with one specific dropout rate.
Sample numbers of 8 and 32 are evaluated.

Baselines. We compare our methods with three training-
required baselines. The first baseline is MC-dropout (Gal
and Ghahramani 2016) with a dropout rate ω ∈
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. For each experiment, we
add a dropout layer only into one location with one dropout
rate during training. The same dropout rate is used for sam-
pling during inference. We try different sample numbers of
8 and 32. The second baseline is deep ensemble (Lakshmi-
narayanan, Pritzel, and Blundell 2017). We follow this work
to train ensembles as 4 and 8 networks, respectively. We
train these networks with the same number of epochs un-
til they converge. During inference, each of them generates
a single deterministic output, with 4 or 8 samples generated
in total. The third baseline is a sampling-free method log-
likelihood maximization (LLM) (Zhang et al. 2019; Poggi
et al. 2020), where a network is trained to predict an output
distribution with log-likelihood maximization.

Monocular Depth Estimation
For depth estimation (Postels et al. 2019; Kendall and Gal
2017), we use one of the commonly applied models based
on a fully convolutional residual network (FCRN) (Laina
et al. 2016). We directly use the trained model released by
the original author; this is consistent with the scenarios of
black-box and gray-box cases since the code for training is
not released. We evaluate the model on NYU Depth Dataset
V2. For infer-transformation, we avoid applying 90-degree
rotation to input, since the orientation is strong prior to pre-
dicting depth which can violate the tolerability, and only
apply horizontal flip to generate 2 samples for uncertainty
estimation. For infer-dropout, we choose two locations (in-
termediate layers) to add the dropout layer. For infer-noise,
we choose three locations to add the noise layer (two in-
termediate layers and one layer before the final FC layer).

Then we conduct similar experiments as described in the SR
task. For the baseline MC-dropout, note that the model has a
dropout layer before the final fully connected (FC) layer dur-
ing training, we directly perform sampling from the existing
dropout layer. Sample numbers of 2 and 8 are evaluated for
both infer-dropout and infer-noise, see details in the Supple-
ment 1.

Experiment Results
Qualitative Results. Fig. 2 shows some qualitative results
for an example image in the SR task. We can see that the
variance maps generated in our task are consistent with the
level of ambiguity. Specifically, in our methods, high vari-
ance occurs in areas with high randomness and high fre-
quency. For the depth estimation task shown in Fig. 3, high
variance usually occurs in the area with high spatial resolu-
tion and large depth. As expected, these high-variance areas
usually correspond to large prediction errors.

Evaluation Metrics. Commonly used metrics to eval-
uate uncertainty estimation include Brier score (BS), ex-
pected calibration error (ECE), and negative log-likelihood
(NLL) (Lakshminarayanan, Pritzel, and Blundell 2017; Guo
et al. 2017). However, BS and ECE are for classification
tasks only and hence not applicable in our setting. We there-
fore use the following metrics for evaluations: (1) NLL,
which is defined in regression tasks by assuming a Gaus-
sian distribution. However, note that NLL depends on not
only the quality of uncertainty estimation but also the pre-
diction accuracy itself. Therefore contrary to previous belief,
we argue that it is not an ideal metric for evaluating uncer-
tainty estimation. (2) Area Under the Sparsification Error
(AUSE), which quantifies how much uncertainty estimation
coincides with the true errors (Ilg et al. 2018). (3) Correla-
tion between the estimated uncertainty and the error. Here
we define four variants of correlation (see details in the Sup-
plement): pixel-wise, mean, block-wise, and patch-wise cor-
relations to evaluate performance at the pixel, image, block,
and patch levels, respectively. The intuition is that in many
situations it is more instructive and meaningful when uncer-
tainty is visualized in each region (e.g. a region with a pos-

1Supplement in https://arxiv.org/pdf/1910.04858.pdf
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SRGAN model: Super Resolution
Condition Training Free (Ours) Training Required
Prediction Original Output Outputs Mean

Method Infer-trans Infer-drop Infer-noise MC-drop1 MC-drop2 Ensemble LLM
Samples 4 8 8 32 8 32 8 32 8 32 4 8 0

AUSE

mean L1 0.006 0.006 0.013 0.013 0.016 0.016 0.008 0.009 0.007 0.007 0.018 0.020 0.035
patch L1 0.021 0.022 0.029 0.030 0.040 0.039 0.029 0.029 0.025 0.025 0.033 0.033 0.044
block L1 0.023 0.023 0.032 0.031 0.044 0.043 0.030 0.029 0.028 0.028 0.033 0.033 0.042
pixel L1 0.128 0.121 0.154 0.141 0.173 0.162 0.141 0.131 0.137 0.129 0.152 0.144 0.137

Corr

mean L1 0.931 0.930 0.884 0.882 0.774 0.780 0.942 0.943 0.938 0.936 0.692 0.694 0.484
patch L1 0.765 0.770 0.722 0.731 0.590 0.598 0.748 0.755 0.734 0.741 0.674 0.677 0.565
block L1 0.757 0.767 0.717 0.730 0.579 0.592 0.735 0.747 0.698 0.710 0.651 0.664 0.588
pixel L1 0.367 0.394 0.323 0.376 0.245 0.288 0.339 0.390 0.330 0.379 0.290 0.326 0.393

NLL 17.910 9.332 4.889 4.804 4.899 4.791 6.804 6.013 6.365 5.541 11.520 5.994 1.320
SRresnet model: Super Resolution

Condition Training Free (Ours) Training Required
Prediction Original Output Outputs Mean

Method Infer-trans Infer-drop Infer-noise MC-drop1 MC-drop2 Ensemble LLM
Samples 4 8 8 32 8 32 8 32 8 32 4 8 0

AUSE

mean L1 0.044 0.044 0.042 0.043 0.067 0.066 0.041 0.047 0.036 0.039 0.073 0.066 0.036
patch L1 0.045 0.044 0.048 0.047 0.055 0.055 0.046 0.045 0.040 0.041 0.066 0.066 0.037
block L1 0.047 0.045 0.049 0.048 0.062 0.061 0.048 0.046 0.041 0.042 0.073 0.070 0.031
pixel L1 0.164 0.153 0.165 0.155 0.190 0.181 0.163 0.152 0.150 0.144 0.194 0.185 0.133

Corr

mean L1 0.340 0.359 0.401 0.404 0.056 0.055 0.408 0.379 0.527 0.512 0.016 0.048 0.622
patch L1 0.501 0.520 0.508 0.518 0.371 0.385 0.535 0.545 0.547 0.542 0.323 0.361 0.648
block L1 0.462 0.486 0.498 0.509 0.358 0.370 0.505 0.521 0.531 0.529 0.274 0.286 0.673
pixel L1 0.237 0.269 0.258 0.303 0.172 0.216 0.264 0.309 0.288 0.322 0.184 0.206 0.393

NLL 107.243 43.071 5.155 4.955 4.941 4.788 8.430 7.221 8.018 6.688 13.559 7.906 1.422

Table 1: Mean/patch-wise/block-wise/pixel-wise AUSE and correlation between L1 loss and uncertainty, and NLL on SR
benchmark dataset Set 14. Our infer-transformation, infer-dropout and infer-noise are compared with MC-dropout (Gal and
Ghahramani 2016), deep ensemble (Lakshminarayanan, Pritzel, and Blundell 2017), and log likelihood maximization (LLM)
(Zhang et al. 2019). MC-drop1 uses the output of the original model as a prediction while MC-drop2 uses the mean of output
samples from the re-trained model (with added dropout) as prediction. Models evaluated: SRGAN and SRresnet.

sible tumor for a medical imaging application). Note that
block-wise correlation depends on specific segmentation al-
gorithms, while patch-wise correlation defines regions in an
algorithm-independent way. Similarly, we also define four
evaluation forms for AUSE.

For our training-free methods, these metrics are com-
puted between uncertainty and the error from the original
model (without perturbation), because we will still use the
original model for prediction. For training-required meth-
ods such as MC-dropout (i.e. MC-drop2 in Table 1) (Gal
and Ghahramani 2016), deep ensemble (Lakshminarayanan,
Pritzel, and Blundell 2017) and log likelihood maximization
(LLM) (Zhang et al. 2019; Poggi et al. 2020), the mean of
output samples are used as prediction. Meanwhile, we also
evaluate another MC-dropout variant, denoted as MC-drop1,
where the output of the original model is used as prediction,
to be consistent with training-free methods. The evaluation
results using metrics described above are shown in Table 1
and Table 2.

The Role of Tolerable Perturbations. Tolerable per-
turbations play a crucial role in obtaining effective uncer-
tainty estimation. Better tolerability means smaller decrease
in accuracy after perturbation. Fig. 4 shows the correlation
for different amount of perturbations (noise or dropout) in
different locations, and the corresponding predictive per-

formance C = |E[Z] − Y | (evaluated as L1 loss) after
perturbations. As we can see, the optimal cases to gener-
ate uncertainty maps with high correlation require that C
should remain small after perturbation (high tolerability).
Generally, our experiments suggest that perturbations lead-
ing to less than 20% relative drop of performance work well
for uncertainty estimation. This observation verifies Theo-
rem 1. Specifically, note that by definition (in the ‘Nota-
tions’ paragraph), E[Z] = µ(X); therefore given the ‘ran-
dom bias’ assumption (in the ‘Assumptions’ paragraph) that
Y−µ(X) ∼ N (0, B2), the expectation of C over all the pix-
els E[C] = E[|E[Z] − Y |] = EX [|µ(X) − Y |] =

√
2/πB.

By Remark 2 of Theorem 1, ρ(σ, e) is monotonically de-
creasing w.r.t. to B, which is linear to E[C].

Interestingly, different methods have different ways of
achieving high tolerability: (1) For MC-dropout, involving
dropout during training increases the robustness of models
against perturbations, keeping the loss relatively small after
adding dropout layer in most locations during inference; (2)
for infer-dropout, adding dropout layer in intermediate loca-
tions (i.e. location 2 and location 3) where the information
is the most redundant (He et al. 2014), can effectively allevi-
ate disturbance; (3) for infer-noise, adding noise with small
standard deviation effectively limits the perturbation level.
More interestingly, we further find that for both MC-dropout
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FCRN model: Depth Estimation
Condition Training Free (Ours) Training Required
Prediction Original Output Outputs Mean
Method Infer-trans Infer-drop Infer-noise MC-drop1 MC-drop2

Samples 2 2 8 2 8 2 8 2 8

AUSE

mean L1 0.051 0.044 0.041 0.046 0.041 0.062 0.062 0.060 0.062
patch L1 0.106 0.109 0.092 0.108 0.091 0.127 0.126 0.122 0.125
block L1 0.056 0.057 0.047 0.053 0.045 0.065 0.065 0.063 0.065
pixel L1 0.165 0.168 0.135 0.167 0.134 0.208 0.193 0.207 0.193

Corr

mean L1 0.596 0.630 0.677 0.651 0.708 0.473 0.471 0.469 0.469
patch L1 0.324 0.306 0.409 0.312 0.411 0.258 0.268 0.266 0.269
block L1 0.354 0.354 0.449 0.364 0.447 0.215 0.220 0.220 0.221
pixel L1 0.208 0.182 0.284 0.188 0.288 0.075 0.134 0.076 0.134

NLL 8.634 8.443 4.889 3.526 1.006 12.365 9.842 12.503 9.866

Table 2: Mean/patch-wise/block-wise/pixel-wise AUSE and correlation between L1 loss and uncertainty, and NLL on NYU
Depth Dataset V2. Our infer-transformation, infer-dropout and infer-noise are compared with MC-dropout (Gal and Ghahra-
mani 2016). MC-drop1 uses the output of the original model as prediction while MC-drop2 uses the mean of output samples
from the re-trained model (with added dropout) as prediction. Models evaluated: FCRN model.

Figure 4: Top: predictive performance C = |E[Z] − Y | of perturbed model for MC-dropout (Gal and Ghahramani 2016),
infer-dropout and infer-noise. Various dropout rates and noise levels have been evaluated. Location 0 is right after the input;
location 1, 2, 3 are intermediate layers. Bottom: Correlation between error and variance with different locations and perturbation
strength. For infer-dropout, note that location 2 and 3 cause minimal increase in the predictive performance C = |E[Z] − Y |
measured by L1 loss after perturbation (i.e. high tolerability), leading to high correlation.

and infer-dropout, adding perturbation in intermediate layers
is usually the optimal choice for uncertainty estimation. Ap-
plying infer-dropout in these intermediate layers, we could
achieve comparable or even better performance compared to
training-required baselines. For infer-noise, locations do not
have a similar effect; one can therefore further tune the noise
strength σ to achieve a higher correlation. More details are
included as supplement.

Applications
We find several applications that can be benefited from the
uncertainty estimated in our methods. The first application
is to improve the quality of SR results. We propose a novel
method that takes the pixel-wise uncertainty map as a weight
term for the regression loss while keeping the original ad-
versarial loss; this could provide a more photo-realistic SR
output with finer structures and sharper edges. Another ap-
plication is active learning (Gal, Islam, and Ghahramani
2017), which aims to use uncertainty to choose the next
batch of data for annotation. Our result shows that active
learning based on our generated uncertainty maps can pro-

vide a higher data efficiency.

Conclusion & Discussion
In this work, we perform a systematic exploration into
training-free uncertainty estimation for dense regression, an
unrecognized yet important problem, and provide a the-
oretical construction justifying such estimations. We pro-
pose three simple, scalable, and effective methods, i.e. infer-
transformation, infer-noise, and infer-dropout, for uncer-
tainty estimation in both black-box and gray-box cases. Sur-
prisingly, our training-free methods achieve comparable or
even better results compared to training-required state-of-
the-art methods. Furthermore, we demonstrate adding toler-
able perturbations is the key to generating high-quality un-
certainty maps for all methods we studied. Meanwhile, we
find the optimal choice of the training-free uncertainty es-
timation method is task-dependent. We suggest using infer-
transformation for super-resolution and infer-noise for depth
estimation. The limitation of our works is the requirement of
well-trained neural networks. And our methods are not ap-
plicable to deep neural networks with random guesses.
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Ilg, E.; cCiccek, Ö.; Galesso, S.; Klein, A.; Makansi, O.;
Hutter, F.; and Brox, T. 2018. Uncertainty Estimates and
Multi-hypotheses Networks for Optical Flow. In ECCV,
677–693.
Ioffe, S.; and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167.
Kendall, A.; Badrinarayanan, V.; and Cipolla, R. 2015.
Bayesian segnet: Model uncertainty in deep convolu-
tional encoder-decoder architectures for scene understand-
ing. arXiv preprint arXiv:1511.02680.
Kendall, A.; and Gal, Y. 2017. What uncertainties do we
need in bayesian deep learning for computer vision? In
NIPS, 5574–5584.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In NIPS, 1097–1105.
Kuleshov, V.; Fenner, N.; and Ermon, S. 2018. Accurate
uncertainties for deep learning using calibrated regression.
In International Conference on Machine Learning, 2796–
2804.
Laina, I.; Rupprecht, C.; Belagiannis, V.; Tombari, F.; and
Navab, N. 2016. Deeper depth prediction with fully convo-
lutional residual networks. In 3DV, 239–248.
Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2017.
Simple and scalable predictive uncertainty estimation using
deep ensembles. In NIPS, 6402–6413.
Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham,
A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.;
et al. 2017. Photo-realistic single image super-resolution us-
ing a generative adversarial network. In CVPR, 4681–4690.
MacKay, D. 1992. A practical Bayesian framework for
backprop networks. Neural computation.
Mirza, M.; and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Nix, D. A.; and Weigend, A. S. 1994. Estimating the mean
and variance of the target probability distribution. In Pro-
ceedings of 1994 ieee international conference on neural
networks (ICNN’94), volume 1, 55–60. IEEE.
Poggi, M.; Aleotti, F.; Tosi, F.; and Mattoccia, S. 2020. On
the uncertainty of self-supervised monocular depth estima-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 3227–3237.

10049



Postels, J.; Ferroni, F.; Coskun, H.; Navab, N.; and Tombari,
F. 2019. Sampling-free Epistemic Uncertainty Estimation
Using Approximated Variance Propagation. arXiv preprint
arXiv:1908.00598.
Shekhovtsov, A.; and Flach, B. 2018. Feed-forward Prop-
agation in Probabilistic Neural Networks with Categorical
and Max Layers. In ICLR.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484.
Song, H.; Diethe, T.; Kull, M.; and Flach, P. 2019. Distribu-
tion calibration for regression. In International Conference
on Machine Learning, 5897–5906.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. JMLR, 15(1): 1929–1958.
Teye, M.; Azizpour, H.; and Smith, K. 2018. Bayesian un-
certainty estimation for batch normalized deep networks.
arXiv preprint arXiv:1802.06455.
Tsymbalov, E.; Makarychev, S.; Shapeev, A.; and Panov,
M. 2019. Deeper connections between neural networks and
Gaussian processes speed-up active learning. arXiv preprint
arXiv:1902.10350.
Wang, G.; Li, W.; Aertsen, M.; Deprest, J.; Ourselin, S.;
and Vercauteren, T. 2019. Aleatoric uncertainty estimation
with test-time augmentation for medical image segmenta-
tion with convolutional neural networks. Neurocomputing,
338: 34–45.
Wang, H.; Shi, X.; and Yeung, D.-Y. 2016. Natural-
parameter networks: A class of probabilistic neural net-
works. In NIPS, 118–126.
Wang, H.; and Yeung, D.-Y. 2020. A Survey on Bayesian
Deep Learning. CSUR, 53(5): 1–37.
Welling, M.; and Teh, Y. W. 2011. Bayesian learning via
stochastic gradient Langevin dynamics. In Proceedings
of the 28th international conference on machine learning
(ICML-11), 681–688.
Yang, G.; Hu, P.; and Ramanan, D. 2019. Inferring Distri-
butions Over Depth from a Single Image. arXiv preprint
arXiv:1912.06268.
Zelikman, E.; Healy, C.; Zhou, S.; and Avati, A. 2020.
CRUDE: Calibrating Regression Uncertainty Distributions
Empirically. arXiv preprint arXiv:2005.12496.
Zhang, Z.; Romero, A.; Muckley, M. J.; Vincent, P.; Yang,
L.; and Drozdzal, M. 2019. Reducing Uncertainty in Under-
sampled MRI Reconstruction with Active Acquisition. In
CVPR, 2049–2058.
Zhao, S.; Ma, T.; and Ermon, S. 2020. Individual calibration
with randomized forecasting. In International Conference
on Machine Learning, 11387–11397.

10050


