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Abstract

Optimization of real-world black-box functions defined over
purely categorical variables is an active area of research. In par-
ticular, optimization and design of biological sequences with
specific functional or structural properties have a profound im-
pact in medicine, materials science, and biotechnology. Stan-
dalone search algorithms, such as simulated annealing (SA)
and Monte Carlo tree search (MCTS), are typically used for
such optimization problems. In order to improve the perfor-
mance and sample efficiency of such algorithms, we propose
to use existing methods in conjunction with a surrogate model
for the black-box evaluations over purely categorical variables.
To this end, we present two different representations, a group-
theoretic Fourier expansion and an abridged one-hot encoded
Boolean Fourier expansion. To learn such representations,
we consider two different settings to update our surrogate
model. First, we utilize an adversarial online regression setting
where Fourier characters of each representation are considered
as experts and their respective coefficients are updated via
an exponential weight update rule each time the black box
is evaluated. Second, we consider a Bayesian setting where
queries are selected via Thompson sampling and the posterior
is updated via a sparse Bayesian regression model (over our
proposed representation) with a regularized horseshoe prior.
Numerical experiments over synthetic benchmarks as well
as real-world RNA sequence optimization and design prob-
lems demonstrate the representational power of the proposed
methods, which achieve competitive or superior performance
compared to state-of-the-art counterparts, while improving the
computation cost and/or sample efficiency, substantially.

1 Introduction
A plethora of practical optimization problems involve black-
box functions, with no simple analytical closed forms, that
can be evaluated at any arbitrary point in the domain. Opti-
mization of such black-box functions poses a unique chal-
lenge due to restrictions on the number of possible function
evaluations, as evaluating functions of real-world complex
processes is often expensive and time consuming. Efficient
algorithms for global optimization of expensive black-box
functions take past queries into account in order to select
the next query to the black-box function more intelligently.

*Work done while at IBM Research.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Black-box optimization of real-world functions defined over
purely categorical type input variables has not been studied
in the literature as extensively as its integer, continuous, or
mixed variables counterparts.

Categorical type variables are particularly challenging
when compared to integer or continuous variables, as they
do not have a natural ordering. However, many real-world
functions are defined over categorical variables. One such
problem, which is of wide interest, is the design of optimal
chemical or biological (protein, RNA, and DNA) molecule
sequences, which are constructed using a vocabulary of fixed
size, e.g. 4 for DNA/RNA. Designing optimal molecular se-
quences with novel structures or improved functionalities is
of paramount importance in material science, drug and vac-
cine design, synthetic biology and many other applications,
see (Dixon et al. 2010; Ng et al. 2019; Hoshika et al. 2019;
Yamagami et al. 2019). Design of optimal sequences is a dif-
ficult black-box optimization problem over a combinatorially
large search space (Stephens et al. 2015), in which function
evaluations often rely on either wet-lab experiments, physics-
inspired simulators, or knowledge-based computational algo-
rithms, which are slow and expensive in practice. Another
problem of interest is the constrained design problem, e.g.
find a sequence given a specific structure (or property), which
is inverse of the well-known folding problem discussed in
(Dill and MacCallum 2012). This problem is complex due to
the strict structural constraints imposed on the sequence. In
fact, one of the ways to represent such a complex structural
constraint is to constrain the next choice sequentially based
on the sequence elements that have been chosen a priori.
Therefore, we divide the black box optimization problem
into two settings, depending on the constraint set: (i) Generic
Black Box Optimization (BBO) problem referring to the un-
constrained case and (ii) Design Problem that refers to the
case with complex sequential constraints.

Let xt be the t-th sequence evaluated by the black box
function f . The key question in both settings is the follow-
ing: Given prior queries x1, x2 . . . xt and their evaluations
f(x1) . . . f(xt), how to choose the next query xt+1? This
selection must be devised so that over a finite budget of
black-box evaluations, one is closest to the minimizer in an
expected sense over the acquisition randomness.

In the literature, for design problems with sequential con-
straints, MCTS (Monte Carlo Tree Search) based search al-
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gorithms are often used with black box function evaluations.
In the generic BBO problems in the unconstrained scenario,
Simulated Annealing (SA) based techniques are typically
used as search algorithms. A key missing ingredient in the
categorical domain is a surrogate model for the black-box
evaluations that can interpolate between such evaluations
and facilitate cost-free approximate evaluations from the sur-
rogate model internally in order to reduce the need for fre-
quently accessing real black-box evaluations, thus leading
to improved sample efficiency in both generic and design
black-box optimization problems. Due to the lack of efficient
interpolators in the categorical domains, existing search algo-
rithms suffer under constrained computational budgets, due
to reliance on only real black-box evaluations.

Contributions: We address the above problem in our work.
Our main contributions are as follows:
1. We present two representations for modeling real-valued

combinatorial functions over categorical variables, which
we then use in order to learn a surrogate model for the
generic BBO problem and the design problem, with a
finite budget on the number of queries. The abridged one-
hot encoded Boolean Fourier representation is novel to
this work. The use of group-theoretic Fourier represen-
tation for modeling functions over categorical variables,
and in particular their optimization, is novel to this work.

2. Numerical experiments, over synthetic benchmarks as
well as real-world biological (RNA) sequence optimiza-
tion demonstrate the competitive or superior performance
of the proposed methods incorporating our representa-
tions over state-of-the-art counterparts, while substan-
tially reducing the computation time. We further evaluate
the performance of our algorithms in design problems
(inverse folding problem) and demonstrate the superior
performance of our methods in terms of sample efficiency
over the state-of-the-art counterparts.

2 Related Work
Black-Box Optimization: Hutter et al. (Hutter, Hoos, and
Leyton-Brown 2011) suggest a surrogate model based on
random forests to address optimization problems over cat-
egorical variables. The proposed SMAC algorithm uses a
randomized local search under the expected improvement
acquisition criterion to obtain candidate points for black-box
evaluations. Bergstra et al. (Bergstra et al. 2011) suggest a
tree-structured Parzen estimator (TPE) for approximating the
surrogate model, and maximizes the expected improvement
criterion to find candidate points for evaluation. For opti-
mization problems over Boolean variables, multilinear poly-
nomials (Ricardo Baptista 2018; Dadkhahi et al. 2020) and
Walsh functions (Leprêtre et al. 2019; Deshwal, Belakaria,
and Doppa 2021) have been used in the literature.

Bayesian Optimization (BO) is a commonly used approach
for optimization of black-box functions (Shahriari et al. 2015).
However, limited work has addressed incorporation of cate-
gorical variables in BO. Early attempts were based on convert-
ing the black-box optimization problem over categorical vari-
ables to that of continuous variables (Gómez-Bombarelli et al.
2018; Golovin et al. 2017; Garrido-Merchán and Hernández-
Lobato 2020). A few BO algorithms have been specifically

designed for black-box functions over combinatorial domains.
In particular, the BOCS algorithm (Ricardo Baptista 2018),
primarily devised for Boolean functions, employs a sparse
monomial representation to model the interactions among
different variables, and uses a sparse Bayesian linear regres-
sion method to learn the model coefficients. The COMBO
algorithm of (Oh et al. 2019) uses Graph Fourier Transform
over a combinatorial graph, constructed via graph Carte-
sian product of variable subgraphs, to gauge the smooth-
ness of the black-box function. However, both BOCS and
COMBO are hindered by associated high computation costs,
which grow polynomially with both the number of variables
and the number of function evaluations. More recently, a
computationally efficient black-box optimization algorithm
(COMEX) (Dadkhahi et al. 2020) was introduced to address
the computational impediments of its Bayesian counterparts.
COMEX adopts a Boolean Fourier representation as its sur-
rogate model, which is updated via an exponential weight
update rule. Nevertheless, COMEX is limited to functions
over the Boolean hypercube.

We generalize COMEX to handle functions over categori-
cal variables by proposing two representations for modeling
functions over categorical variables: an abridged one-hot
encoded Boolean Fourier representation and Fourier repre-
sentation on finite Abelian groups. The utilization of the
latter representation as a surrogate model in combinatorial
optimization algorithms is novel to this work. Factorizations
based on (vanilla) one-hot encoding has been previously
(albeit briefly) suggested in (Ricardo Baptista 2018) to en-
able black-box optimization algorithms designed for Boolean
variables to address problems over categorical variables. Dif-
ferent from (Ricardo Baptista 2018), we show that we can
significantly reduce the number of additional variables in-
troduced upon one-hot encoding, and that such a reduced
representation is in fact complete and unique. We incorpo-
rate the latter representation to extend a modified version of
BOCS to problems over categorical variables, efficiently.

Sequence Design: For design problems, we focus on the
RNA sequence design problem (RNA inverse folding). The
goal is to find an RNA sequence consistent with a given sec-
ondary structure, as the functional state of the RNA molecule
is determined by the latter structure (Hofacker et al. 1994).
Earlier RNA design methods explore the search space by
trial and error and use classic cost function minimization
approaches such as adaptive random walk (Hofacker 2003),
probabilistic sampling (Zadeh et al. 2011), and genetic algo-
rithms (Taneda 2015). Recent efforts employ more advanced
machine learning methods such as different Monte Carlo
Tree Search (MCTS) algorithms, e.g. MCTS-RNA (Yang
et al. 2017) or Nested MCTS (Portela 2018), and reinforce-
ment learning that either performs a local search as in (East-
man et al. 2018) or learns complete candidate solutions from
scratch (Runge et al. 2019). In all these approaches, the as-
sumption is that the algorithm has access to a large number
of function evaluations, whereas we are interested in sample
efficiency of each algorithm.

Learning to Search: As an alternative to parameter-free
search methods (such as SA), (Swersky et al. 2020) suggests
to use a parameterized policy to generate candidates that
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maximize the acquisition function in Bayesian optimization
over discrete search spaces. Our MCTS-based algorithm is
similar in concept to (Swersky et al. 2020) in the sense that
the tabular value functions are constructed and maintained
over different time steps. However, we are maintaining value
functions rather than a policy network. Finally, while (Swer-
sky et al. 2020) trains a policy network, (Deshwal et al. 2020)
uses a rank learning algorithm to search.

Meta-heuristics: A variety of discrete search algorithms
and meta-heuristics have been studied in the literature for
combinatorial optimization over categorical variables. Such
algorithms, including Genetic Algorithms (Holland and Reit-
man 1978), Simulated Annealing (Spears 1993), and Particle
Swarms (Kennedy and Eberhart 1995), are generally ineffi-
cient in finding the global minima. In the context of biological
sequence optimization, the most popular method is directed
evolution (Arnold 1998), which explores the space by only
making small mutations to existing sequences. In the context
of sequence optimization, a recent promising approach con-
sists of fitting a neural network model to predict the black box
function and then applying gradient ascent on the latter model
(Killoran et al. 2017; Bogard et al. 2019; Liu et al. 2020). This
approach allows for a continuous relaxation of the discrete
search space making possible step-wise local improvements
to the whole sequence at once based on a gradient direction.
However, these methods have been shown to suffer from
vanishing gradients (Linder and Seelig 2020). Further, the
projected sequences in the continuous relaxation space may
not be recognized by the predictors, leading to poor conver-
gence. Generative model-based optimization approaches aim
to learn distributions whose expectation coincides with evalu-
ations of the black box and try to maximize such expectation
(Gupta and Zou 2019; Brookes, Park, and Listgarten 2019).
However, such approaches require a pre-trained generative
model for optimization.

Latent Space Optimization: The key idea is to employ an
encoder-decoder architecture to learn a continuous represen-
tation from the data and perform BO in a latent space (Gómez-
Bombarelli et al. 2018; Tripp, Daxberger, and Hernández-
Lobato 2020). This approach has two main drawbacks: it
could generate a large fraction of invalid structures, and it
requires a large database of relevant structures, for training
an auto-encoder, which may not be available in many appli-
cations with scarce data availability.

Variable-Length Sequence Optimization: Moss et al.
(Moss et al. 2020) propose an algorithm called BOSS for
optimization over strings of variable lengths. They use a
Gaussian process surrogate model based on string kernels
and perform acquisition function maximization for spaces
with syntactic constraints. On the contrary, our main focus is
on fixed length generic BBO and design problems.

Ensemble (Population-based) Methods: Angermueller
et al. (Angermüller et al. 2020) propose a population-based
approach which generates batches of sequences by sampling
from an ensemble of methods, rather than from a single
method. This sampling is carried out proportional to the
quality of sequences that each method has found in the past. A
similar ensemble concept has been used in (Sinai et al. 2020).
In our work, we focus on individual methods; however, we

add that since we are proposing two distinct representations
employed via different algorithms (online and Bayesian), and
the performance of each varies across different tasks, it would
be interesting to consider an ensemble method over different
algorithms as a future direction.

Batch (Offline) Optimization: Batch optimization tech-
niques (Angermueller et al. 2020; Brookes, Park, and List-
garten 2019; Fannjiang and Listgarten 2020) are a related
but fundamentally distinct line of work, where black-box
evaluations are carried out in sample batches rather than in
an active/sequential manner. To highlight the distinction be-
tween the two settings we iterate our problem setting: Given
query access to a combinatorial black box (i.e. it can be
queried on a single point), what is the best solution we can
obtain in a given number T of such queries. One wishes to
minimize the number of queries and hence goes for a highly
adaptive sequential algorithm.

3 Black-Box Optimization over Categorical
Variables

Problem Setting: Given the combinatorial categorical do-
main X = [k]n and a constraint set C ⊆ X , with n variables
each of cardinality k, the objective is to find

x∗ = arg min
x∈C

f(x) (1)

where f : X 7→ R is a real-valued combinatorial function.
We assume that f is a black-box function, which is computa-
tionally expensive to evaluate. As such, we are interested in
finding x∗ in as few evaluations as possible. We consider two
variations of the problem depending on how the constraint
set C is specified.

Generic BBO Problem: In this case, the constraint set
C = X . For example, RNA sequence optimization problem
that searches for an RNA sequence with a specific property
optimized lies within this category. A score for every RNA
sequence, reflecting the property we wish to optimize, is
evaluated by a black box function.

Design Problem: The constraint set is complex and is
only sequentially specified. For every sequence of x1x2 . . . xi
consisting of i characters from the alphabet [k], the choice of
the next character xi+1 ∈ C(x1x2 . . . xi) ⊆ [k] is specified
by a constraint set function C(x1 . . . xi). The RNA inverse
folding problem in (Runge et al. 2019) falls into this category,
where the constraints on the RNA sequence are determined
by the sequential choices one makes during the sequence
design. The goal is to find the sequence that is optimal with
respect to a pre-specified structure that also obeys complex
sequential constraints.

Proposed Techniques: To address this problem, we adopt
a surrogate model-based learning framework as follows. The
surrogate model (to represent the black-box function) is up-
dated sequentially via black-box function evaluations ob-
served until time step t. An acquisition function is then ob-
tained from the surrogate model. The selection of candidate
points for black-box function evaluation is carried out via an
acquisition function optimizer (AFO), which uses the acquisi-
tion function as an inexpensive proxy (to make many internal
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calls) for the black-box function and produces the next can-
didate point to be evaluated. We consider this problem in
two different settings: online and Bayesian. The difference
between the two settings is that in the former the acquisition
function is exactly our surrogate, whereas in the latter the ac-
quisition function is obtained by sampling from the posterior
distribution of the surrogate.

In the sequel, we propose two representations that can be
used in surrogate models for black-box combinatorial func-
tions over categorical variables. These representations serve
as direct generalizations of the Boolean surrogate model
based on Fourier expansion proposed in (Dadkhahi et al.
2020; Ricardo Baptista 2018) in the sense that they reduce to
the Fourier representation for real-valued Boolean functions
when the cardinality of the categorical variables is two. In
addition, both approaches can be modified to address the
more general case where different variables are of different
cardinalities. However, for ease of exposition, we assume that
all the variables are of the same cardinality. Finally, we intro-
duce two popular search algorithms to be used as acquisition
function optimizers in conjunction with the proposed surro-
gate models in order to select new queries for subsequent
black-box function evaluations.

3.1 Representations for the Surrogate Model
We present two representations for combinatorial functions
f : [k]n → R and an algorithm to update from the black-box
evaluations. The representations use the Fourier basis in two
different ways.

Abridged One-Hot Encoded Boolean Fourier Repre-
sentation: The one-hot encoding of each variable xi : i ∈ [n]
can be expressed as a (k − 1)-tuple (xi1, xi2, . . . , xi(k−1)),
where xij ∈ {−1, 1} are Boolean variables with the con-
straint that at most one such variable can be equal to −1 for
any given xi ∈ [k].

We consider the following representation for the combina-
torial function f :

fα(x) =
n∑

m=0

∑
I∈([n]

m)

∑
J∈[k−1]|I|

αI,JψI,J (x) (2)

where [k − 1]|I| denotes |I|-fold cartesian product of the
set [k − 1] = {1, 2, . . . , k − 1},

(
[n]
m

)
designates the set of

m-subsets of the set [n], and the monomials ψI,J (x) can be
written as

ψI,J (x) =
∏

{(i,j):i=I`,j=J`,`∈[|I|]}

xij (3)

A second order approximation (i.e. at m = 2) of the repre-
sentation in (2) can be expanded in the following way:

f̂α(x) = α0 +
∑
i∈[n]

∑
`∈[k−1]

αi`xi`

+
∑

(i,j)∈([n]
2 )

∑
(p,q)∈[k−1]2

αijpqxipxjq. (4)

Example. For n = 2 variables x1 and x2, each of which
with cardinality k = 3, we have the one-hot encoding of

(x11, x12) and (x21, x22) respectively. From Equation (4),
the one-hot encoding factorization for this example can be
written as

f(x) = α0 + α1x11 + α2x12 + α3x21 + α4x22
+ α5x11x21 + α6x11x22 + α7x12x21 + α8x12x22.

Note that the representation in Equation (2) has far less
terms than a vanilla one-hot encoding with all the combi-
nations of one-hot variables included (as suggested in (Ri-
cardo Baptista 2018)). The reason for this reduction is two-
fold: (i) (k − 1) Boolean variables model each categorical
variable of cardinality k, and more importantly (ii) each
monomial term has at most one Boolean variable xij from
its corresponding parent categorical variable xi (See the Ap-
pendix for the exact quantification of this reduction). The
following theorem states that this reduced representation is
in fact unique and complete.

Theorem 3.1. The representation in Equation (2) is complete
and unique for any real-valued combinatorial function.

Proof. See Appendix.

Fourier Representation on Finite Abelian Groups: We
define a cyclic group structure Z/kiZ over the elements of
each categorical variable xi (i ∈ [n]), where ki is the cardi-
nality of the latter variable. From the fundamental theorem of
abelian groups (Terras 1999), there exists an abelian group G
which is isomorphic to the direct sum (a.k.a direct product) of
the cyclic groups Z/kiZ corresponding to the n categorical
variables:

G ∼= Z/k1Z⊕ Z/k2Z⊕ . . .⊕ Z/knZ (5)

where the latter group consists of all vectors (a1, a2, . . . , an)
such that ai ∈ Z/kiZ and ∼= denotes group isomorphism.
We assume that ki = k (∀i ∈ [n]) for simplicity, but the
following representation could be easily generalized to the
case of arbitrary cardinalities for different variables.

The Fourier representation of any complex-valued function
f(x) on the finite abelian group G is given by (Terras 1999)

f(x) =
∑
I∈[k]n

αIψI(x) (6)

where αI are (in general complex) Fourier coefficients, [k]n

is the n-fold cartesian product of the set [k] and ψI(x) are
complex exponentials 1 (k-th roots of unity) given by

ψI(x) = exp(2πj〈x,I〉/k).

Note that the latter complex exponentials are the characters
of the representation, and reduce to the monomials (i.e. in
{−1, 1}) when the cardinality of each variable is two. A

1Note that in the general case of different cardinalities for dif-
ferent variables, I ∈ [k1] × [k2] × . . . × [kn] where × denotes
the cartesian product and the exponent denominator in the complex
exponential character is replaced by k = LCM(k1, k2, . . . , kn).
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second order approximation of the representation in (6) can
be written as:

f̂α(x) = α0 +
∑
i∈[n]

∑
`∈[k−1]

αi` exp(2πjxi /̀k) (7)

+
∑

(i,j)∈([n]
2 )

∑
(p,q)∈[k−1]2

αijpq exp(2πj(xip+xjq)/k).

For a real-valued function fα(x) (which is of interest here),
the representation in (6) reduces to

fα(x) = <
{ ∑
I∈[k]n

αIψI(x)

}
=
∑
I∈[k]n

αr,Iψr,I(x)−
∑
I∈[k]n

αi,Iψi,I(x) (8)

where

ψr,I(x) = cos(2π〈x,I〉/k) and ψi,I(x) = sin(2π〈x,I〉/k)

αr,I = <{αI} and αi,I = ={αI} (9)

See the Appendix for the proof of this representation. We note
that the number of characters utilized in this representation
is almost twice as many as that of monomials used in the
previous representation.

3.2 Surrogate Model Learning
Sparse Online Regression: We adopt the learning algorithm
of combinatorial optimization with expert advice (Dadkhahi
et al. 2020) in the following way. We consider the mono-
mials ψI,J (x) in (3) and the characters ψ`,I(x) in (9) as
experts. For each surrogate model, we maintain a pool of
such experts, the coefficients of which are refreshed sequen-
tially via an exponential weight update rule. We refer to the
proposed algorithm as Expert-Based Categorical Optimiza-
tion (ECO) and the two versions of the algorithm with the
two proposed surrogate models are called ECO-F (based on
the One-Hot Encoded Boolean Fourier Representation) and
ECO-G (based on Fourier Representation on Finite Abelian
Groups), respectively. See Appendix for more details.

Sparse Bayesian Regression: In order to incorporate the
uncertainty of the surrogate model in acquisition function
for exploration-exploitation trade-off, we adopt a Bayesian
setting based on Thompson sampling (TS) (Thompson 1933,
1935). In particular, we model the surrogate via a sparse
Bayesian regression model with a regularized horseshoe prior
(Piironen and Vehtari 2017). At each time step, we learn the
posterior using the data observed so far, and draw a sample
for the coefficients α from the posterior. We use the No-U-
Turn Sampler (NUTS) (Hoffman and Gelman 2014) in order
to sample the coefficients efficiently. See Appendix B for
more details. Our algorithm pursues the framework of BOCS
(Ricardo Baptista 2018), with the following differences for
improved performance and computational efficiency: BOCS
(i) employs a horseshoe prior (Carvalho, Polson, and Scott
2010; Makalic and Schmidt 2016) and (ii) uses a Gibbs sam-
pler. Experimentally, the regularized horseshoe prior outper-
forms the horseshoe prior, and the NUTS sampler leads to a
significant speed-up in computations (e.g. a 10× speed-up for

the RNA optimization problem), which is critical due to the
higher dimensionality of the categorical domains. We use the
proposed abridged one-hot encoded Fourier representation in
conjunction with this model, due to its lower number of coef-
ficients leading to a more manageable computation cost. We
refer to this algorithm as TS-based Categorical Optimization
(TCO-F).

3.3 Acquisition Function Optimizers
In this subsection, we discuss how two popular search algo-
rithms, namely Simulated Annealing (SA) and Monte Carlo
Tree Search (MCTS), can be utilized as acquisition function
optimizers (AFO) in conjunction with a surrogate model and
use cost-free evaluations of the surrogate model to select the
next query for the black box evaluation. In the literature, SA
has been used for the generic BBO problems, whereas MCTS
has been used for the design problems.

SA as AFO: Our AFO is devised so as to minimize f̂α(x),
the current estimate for the surrogate model. A simple strat-
egy to minimize f̂α(x) is to iteratively switch each variable
into the value that minimizes f̂α given the values of all the re-
maining variables, until no more changes occur after a sweep
through all the variables xi (∀i ∈ [n]). A strategy to escape
local minima in this context (Pincus 1970) is to allow for oc-
casional increases in f̂α by generating a Markov Chain (MC)
sample sequence (for x), whose stationary distribution is pro-
portional to exp(−f̂α(x)/s), where s is gradually reduced to 0.
This optimization strategy was first applied by (Kirkpatrick,
Gelatt, and Vecchi 1983) in their Simulated Annealing al-
gorithm to solve combinatorial optimization problems. We
use the Gibbs sampler (Geman and Geman 1984) to generate
such an MC by sampling from the full conditional distribu-
tion of the stationary distribution, which in our case is given
by the softmax distribution over {−f̂α(xi = `, x−i)/s}`∈[k],
for each variable xi conditional on the values of the remain-
ing variables x−i. By decreasing s from a high value to a
low one, we allow the MC to first search at a coarse level
avoiding being trapped in local minima.

Algorithm 1 presents our simulated annealing (SA) version
for categorical domains, where s(t) is an annealing schedule,
which is a non-increasing function of t. We use the annealing
schedule suggested in (Spears 1993), which follows an expo-
nential decay with parameter ` given by s(t) = exp(−`t/n).
In each step of the algorithm, we pick a variable xi (i ∈ [n])
uniformly at random, evaluate the surrogate model (possibly
in parallel) k times, once for each categorical value ` ∈ [k]
for the chosen variable xi given the current values x−i for
the remaining variables. We then update xi with the sampled
value in [k] from the corresponding softmax distribution.

MCTS as AFO: We formulate the design problem as an
undiscounted Markov decision process (S,A, T, R). Each
state s ∈ S corresponds to a partial or full sequence of
categorical variables of lengths in [0, n]. The process in
each episode starts with an empty sequence s0, the initial
state. Actions are selected from the set of permissible ad-
ditions to the current state (sequence) st at each time step
t, At = A(st) ⊂ A. The transition function T is deter-
ministic, and defines the sequence obtained from the jux-
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Algorithm 1: SA for Categorical Variables with Surrogate
Model

1: Inputs: surrogate model f̂α, annealing schedule s(t),
categorical domain X

2: Initialize x ∈ X
3: t = 0
4: repeat
5: i ∼ unif([n])
6: xi|x−i ∼ Softmax

(
{−f̂αt (xi=`,x−i)/s(t)}`∈[k]

)
7: t← t+ 1
8: until Stopping Criteria
9: return x

Algorithm 2: MCTS with Surrogate Reward

1: Inputs: surrogate model f̂α, search tree T
2: Initialize sbest = {}, rbest = −∞
3: repeat
4: sleaf ← Selection(πT )
5: T ← T ∪ {sleaf}
6: st ← Simulation(πRS , sleaf)

7: r ← −f̂α(st)
8: Backup(sleaf, r)
9: if r > rbest then

10: rbest ← r and sbest ← st
11: end if
12: until Stopping Criteria
13: return sbest

taposition of the current state st with the action at, i.e.
st+1 = T (st, at) = st ◦ at. The transitions leading to incom-
plete sequences yield a reward of zero. Complete sequences
are considered as terminal states, from which no further tran-
sitions (juxtapositions) can be made. Once the sequence is
complete (i.e. at a terminal state), the reward is obtained from
the current surrogate reward model f̂α. Thus, the reward
function is defined as R(st, at, st+1) = −f̂α(st+1) if st+1

is terminal, and zero otherwise.
MCTS is a popular search algorithm used for design prob-

lems. MCTS is a rollout algorithm which keeps track of
the value estimates obtained via Monte Carlo simulations in
order to progressively make better selections. The UCT selec-
tion criteria, see (Kocsis and Szepesvári 2006), is typically
used as tree policy, where action at at state st in the search
tree is selected via: πT (st) = arg maxa∈A(st)Q(st, a) +

c
√

lnN(st)/N(st,a), where T is the search tree, c is the explo-
ration parameter, Q(s, a) is the state-action value estimate,
and N(s) and N(s, a) are the visit counts for the parent state
node and the candidate state-action edge, respectively. For
the selection of actions in states outside the search tree, a
random default policy is used: πRS(st) = unif(At).

A summary of the proposed algorithm is given in Algo-
rithm 2. Starting with an empty sequence s0 at the root of the
tree, we follow the tree policy until a leaf node of the search
tree is reached (selection step). At this point, we append the
state corresponding to the leaf node to the tree and initialize a

value function estimate for its children (extension step). From
the reached leaf node we follow the default policy until a ter-
minal state is reached. At this point, we plug the sequence
corresponding to this terminal state into the surrogate reward
model −f̂α and observe the reward r. This reward is backed
up from the leaf node to the root of the tree in order to update
the value estimates Q(s, a) via Monte Carlo (i.e. using the
average reward) for all visited (s, a) pairs along the path.
This process is repeated until a stopping criterion (typically a
max number of playouts) is met, at which point the sequence
sbest with maximum reward rbest is returned as the output
of the algorithm.

Computational Complexity: The computational com-
plexity per time step associated with learning the surrogate
model via the Hedge algorithm, for both representations intro-
duced in 3.1, is inO(d) = O(km−1nm), and is thus linear in
the number of experts d. Moreover, the complexity of Algo-
rithm 1 is in O(kkm−1nm−1n) = O(kd), assuming that the
number of iterations in each SA run is in O(n). Hence, the
overall complexity of the algorithm is in O(kd). Finally, the
computational complexity of each playout in Algorithm 2 is
in O(kn), leading to an overall complexity of O(kd), assum-
ing O( dn ) playouts per time step. On the other hand, when
Bayesian regression is used to learn the surrogate model,
NUTS dominates the computation time with a complexity of
O(d5/4) per independent sample.

4 Experiments and Results
In this section, we measure the performance of the proposed
representations, when used as surrogate/reward model in con-
junction with search algorithms (SA and MCTS) in BBO
and design problems. The learning rate used in exponential
weight updates is selected via the anytime learning rate sched-
ule suggested in (Dadkhahi et al. 2020) and (Gerchinovitz
and Yu 2011) (see Appendix). The maximum degree of in-
teractions used in our surrogate models is set to two for all
the problems; increasing the max order improved the results
only marginally (see Appendix). The sparsity parameter λ in
exponential weight updates is set to 1 in all the experiments
following the same choice made in (Dadkhahi et al. 2020).
Experimentally, the learning algorithm is fairly insensitive
to the variations in the latter parameter. In each experiment,
we report the results averaged over multiple runs (20 runs in
BBO experiments; 10 runs in design experiments)± one stan-
dard error of the mean. The experiments are run on machines
with CPU cores from the Intel Xeon E5-2600 v3 family.

BBO Experiments: We compare the performance of our
ECO/TCO algorithms in conjunction with SA with two base-
lines, random search (RS) and simulated annealing (SA), as
well as a state-of-the-art Bayesian combinatorial optimiza-
tion algorithm (COMBO) (Oh et al. 2019). In particular, we
consider two synthetic benchmarks (Latin square problem
and pest control problem) and a real-word problem in biology
(RNA sequence optimization). In addition to the performance
of the algorithms in terms of the best value of f(x) observed
until a given time step t, we measure the average computation
time per time step of our algorithm versus that of COMBO.
The decay parameter used in the annealing schedule of SA is
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DATA LATIN SQUARE PEST CONT. RNA OPT.

COMBO 170.4 151.0 253.8
ECO-F 1.5 1.4 2.0
ECO-G 3.6 3.3 5.7
TCO-F 55.7 53.2 67.0

Table 1: Average computation time per step (in Seconds).

set to ` = 3 in all the experiments. In addition, the number of
SA iterations T is set to 3× n and 6× n for ECO and TCO,
respectively. Intuitively, for the ECO algorithm, each of these
parameters creates an exploration-exploitation trade-off. The
smaller (larger) the value of ` or T , the more exploratory
(exploitative) is the behavior of SA. The selected values seem
to create a reasonable balance; tuning these parameters may
improve the performance of the algorithm. On the other hand,
the TCO algorithm has an exploration mechanism built into
it via Thompson sampling; hence, we use a higher number of
SA iterations to maximize exploitation in AFO.

Synthetic Benchmarks: We consider two synthetic prob-
lems: Latin square problem (Colbourn and Dinitz 2006), a
commonly used combinatorial optimization benchmark, and
the pest control problem considered in (Oh et al. 2019) (see
Appendix for the latter results). In both problems, we have
n = 25 categorical variables, each of cardinality k = 5.
A Latin square of order k is a k × k matrix of elements
xij ∈ [k], such that each number appears in each row and
column exactly once. When k = 5, the problem of finding
a Latin square has 161, 280 solutions in a space of dimen-
sionality 525. We formulate the problem of finding a Latin
square of order k as a black-box optimization by imposing
an additive penalty of 1 for any repetition of numbers in any
row or column. Hence, function evaluations are in the range
[0, 2k(k − 1)], and a function evaluation of 0 corresponds
to a Latin square of order k. We consider a noisy version of
this problem, where an additive Gaussian noise with 0 mean
and standard deviation of 0.1 is added to function evaluations
observed by each algorithm.

Figure 1 demonstrates the performance of different algo-
rithms, in terms of the best function value found until time t,
over 500 time steps. Both ECO-F and ECO-G outperform the
baselines with a considerable margin. In addition, ECO-G
outperforms COMBO at 130 samples. At larger time steps,
COMBO outperforms the other algorithms; however, this
performance comes at the price of a far larger computation
time. As demonstrated in Table 1, ECO-F and ECO-G offer
a speed-up of roughly 100 and 50, resp., over COMBO. We
note that TCO-F (not included in the plot) performs poorly
(similar to RS) on this problem, which can be attributed to
the strong promotion of sparsity by the regularized horse-
shoe prior and the fact that the Latin Square problem has a
dense representation (we observed a similar behavior from
the horseshoe prior of (Ricardo Baptista 2018)).

RNA Sequence Optimization Problem: Consider an
RNA sequence as a string A = a1 . . . an of n letters (nu-
cleotides) over the alphabet Σ = {A,U,G,C}. A pair of
complementary nucleotides ai and aj , where i < j, can
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Figure 1: Latin Square problem with n = 25.
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Figure 2: RNA BBO Problem with n = 30

interact with each other and form a base pair (denoted by
(i, j)), A-U, C-G and G-U being the energetically stable pairs.
Thus, the secondary structure, i.e. the minimum free energy
structure, of an RNA can be represented by an ensemble of
pairing bases. A number of RNA folding algorithms (Lorenz
et al. 2011; Markham and Zuker 2008) use a thermodynamic
model (e.g. (Zuker and Stiegler 1981)) and dynamic program-
ming to estimate MFE of a sequence. However, the O(n3)
time complexity of these algorithms prohibits their use for
evaluating substantial numbers of RNA sequences (Gould,
Hendy, and Papamichail 2014) and exhaustively searching
the space to identify the global free energy minimum, as the
number of sequences grows exponentially as 4n.

We formulate the RNA sequence optimization problem as
follows: For a sequence of length n, find the RNA sequence
which folds into a secondary structure with the lowest MFE.
In our experiments, we set n = 30 and k = 4. We then use the
popular RNAfold package (Lorenz et al. 2011) to evaluate the
MFE for a given sequence. The goal is to find the lowest MFE
sequence by calling the MFE evaluator minimum number of
times. As shown in Figure 2, both ECO-F and particularly
ECO-G outperform the baselines as well as COMBO by
a large margin. At higher number of evaluations, TCO-F
beats the rest of the algorithms, which can be attributed to its
exploration-exploitation trade-off.

RNA Design Experiments: The problem is to find a pri-
mary RNA sequence φ which folds into a target structure ω,
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given a folding algorithm F . Such target structures can be
represented as a sequence of dots (for unpaired bases) and
brackets (for paired bases). In our algorithm, the action sets
are defined as follows. For unpaired sitesAt = {A,G,C,U}
and for paired sites At = {GC,CG,AU,UA}. At the be-
ginning of each run of our algorithm (ECO-F/G, TCO-F in
conjunction with MCTS), we draw a random permutation
for the order of locations to be selected in each level of the
tree. The reward value offered by the environment (i.e. the
black-box function) at any time step t corresponds to the
normalized Hamming distance between the target structure
ω and the structure yt = F (xt) of the sequence xt found by
each algorithm, i.e. dH(ω, yt).

We compare the performance of our algorithms against
RS as a baseline, where random search is carried out over
the given structure (i.e. default policy πRS) rather than over
unstructured random sequences. We also include two state-
of-the-art algorithms in our experiments: MCTS-RNA (Yang
et al. 2017) and LEARNA (Runge et al. 2019). MCTS-RNA
has an exploration parameter, which we tune in advance (per
sequence). LEARNA has a set of 14 hyper-parameters tuned
a priori using training data and is provided in (Runge et al.
2019). Note that the latter training phase (for LEARNA) as
well as the former exploration parameter tuning (for MCTS-
RNA) are offered to the respective algorithms as an advan-
tage, whereas for our algorithm we use a global set of heuris-
tic choices for the two hyper-parameters, rather than attempt-
ing to tune the two hyper-parameters. In particular, we set the
exploration parameter c to 0.5 for ECO and 0.25 for TCO;
and the number of MCTS playouts at each time step to 30×h,
where h is the tree height (i.e. number of dots and bracket
pairs). The latter heuristic choice is made since the bigger the
tree, the more playouts are needed to explore the space.

We point out that the entire design pipeline in state-of-the-
art algorithms typically also includes a local improvement
step (as a post-processing step), which is either a rule-based
search (e.g. in (Yang et al. 2017)) or an exhaustive search (e.g.
in (Runge et al. 2019)) over the mismatched sites. We do not
include the local improvement step in our experiments, since
we are interested in measuring sample efficiency of different
algorithms. In other words, the question is the following:
given a fixed and finite evaluation budget, which algorithm is
able to get closer to the target structure.

In our experiments, we focus on three puzzles from the
Eterna-100 dataset (Anderson-Lee et al. 2016). Two of the
selected puzzles (#15 and #41 of lengths 30 and 35, resp.),
despite their fairly small lengths, are challenging for many
algorithms (see (Anderson-Lee et al. 2016)). In both puzzles,
ECO-F, ECO-G, and TCO-F (with MCTS as AFO) are able
to significantly improve the performance of MCTS when
limited number of black-box evaluations is available. All al-
gorithms outperform RS as expected. Within the given 500
evaluation budget, TCO-F, ECO-G, and esp. ECO-F, are su-
perior to LEARNA by a substantial margin (see Figure 3).
In puzzle 41 (Figure 4), again both ECO-G and ECO-F sig-
nificantly outperform LEARNA over the given number of
evaluations. ECO-F is able to outperform LEARNA through-
out the evaluation process, and on average finds a far better
final solution than LEARNA. With MCTS as AFO, ECO

algorithms outperform TCO, which can be attributed to the
exploratory behavior of the latter in both AF (via TS) and
AFO (via MCTS). See Appendix for puzzle #70.
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Figure 3: Design puzzle #15 with n = 30.
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Figure 4: Design puzzle #41 with n = 35.

5 Conclusions and Future Work
We propose two novel Fourier representations as surrogate
models for black box optimization over categorical variables
and show performance improvements over existing baselines
when combined with search algorithms. We utilize two algo-
rithms to learn such surrogate models. Our ECO algorithm in-
corporates a computationally-efficient online estimator with
strong adversarial guarantees (see (Dadkhahi et al. 2020) for
theoretical results in the Boolean case), which can be shown
to carry over to our setting as well. Our TCO algorithm uses
a Bayesian regression model with a regularized horseshoe
prior and selects queries via Thompson sampling to balance
exploration-exploitation trade-off in surrogate model learning
at the price of a higher computation cost.

Considering the performance variability with respect to
different algorithms and representations across different prob-
lems, an important research avenue would be to derive an
ensemble of such models rather than a single one and investi-
gate potential performance gains. Such an ensemble model
would then update and explore all models simultaneously
and draw samples from either individual or a combination of
models at any given time step.
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2020. BOSS: Bayesian Optimization over String Spaces. In
NeurIPS.
Ng, A. H.; Nguyen, T. H.; Gómez-Schiavon, M.; Dods, G.;
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