
Bandit Limited Discrepancy Search and Application to Machine Learning Pipeline
Optimization

Akihiro Kishimoto1, Djallel Bouneffouf1, Radu Marinescu1, Parikshit Ram1, Ambrish Rawat1,
Martin Wistuba2*, Paulito Palmes1, Adi Botea3*

1 IBM Research
2 Amazon Research

3 Eaton
Akihiro.Kishimoto@ibm.com, Djallel.Bouneffouf@ibm.com, radu.marinescu@ie.ibm.com, parikshit.ram@ibm.com,

Ambrish.Rawat@ie.ibm.com, marwistu@amazon.com, paulpalmes@ie.ibm.com, adi.botea@eaton.com

Abstract

Optimizing a machine learning (ML) pipeline has been an im-
portant topic of AI and ML. Despite recent progress, pipeline
optimization remains a challenging problem, due to poten-
tially many combinations to consider as well as slow training
and validation. We present the BLDS algorithm for optimized
algorithm selection in a fixed ML pipeline structure. BLDS
performs multi-fidelity optimization for selecting ML algo-
rithms trained with smaller computational overhead, while
controlling its pipeline search based on multi-armed bandit
and limited discrepancy search. Our experiments on classifi-
cation benchmarks show that BLDS is superior to competing
algorithms. We also combine BLDS with hyperparameter op-
timization, empirically showing the advantage of BLDS.

Introduction
Automated Machine Learning (AutoML) seeks to automat-
ically compose and parameterize ML algorithms to maxi-
mize a given metric such as predictive accuracy on a given
dataset. The task has received increased attention over the
past decades especially in light of the recent explosion in
ML applications. AutoML has gradually extended from hy-
perparameter optimization (HPO) for the best configuration
of a single ML algorithm (Bergstra et al. 2011) to tackling
the optimization of the entire ML pipeline from data prepara-
tion to model learning (Feurer et al. 2015a). This effort has
spurred the development of a wide variety of efficient Au-
toML systems, e.g., (Kotthoff et al. 2017; Olson et al. 2016;
Feurer et al. 2015a; Mohr, Wever, and Hullermeier 2018;
Rakotoarison, Schoenauer, and Sebag 2019; Liu et al. 2020).

A typical ML pipeline often consists of a fixed sequence
of successive stages such as pre-processing, feature selection,
transformation and estimation. The AutoML problem known
as the combined algorithm selection and hyperparameter
optimization (CASH) selects the ML algorithm for each stage
and the hyperparameters of these algorithms such that a given
black-box objective function is optimized. The fixed structure
of the pipeline implies an optimization problem with a fixed
number of decision variables where, for example, we have
one variable for a preprocessing algorithm, one variable for

*Work performed while at IBM Research.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a learning algorithm, and one variable for each parameter
of each algorithm. This in turn leads to a complex solution
space involving both discrete and continuous variables.

It has been shown recently that CASH is solved more ef-
ficiently by splitting the algorithm selection and the HPO
into two simpler subproblems which are subsequently solved
separately (Mohr, Wever, and Hullermeier 2018; Rakotoari-
son, Schoenauer, and Sebag 2019; Liu et al. 2020). However,
the algorithm selection problem raises two challenges: (1)
the black-box nature of the objective function prevents the
algorithm selection from leveraging any of the objective func-
tion’s characteristics in search for a better pipeline configura-
tion; (2) there are many possible combinations of algorithms
in a multi-stage pipeline structure and training every single
pipeline configuration is very expensive, especially when
dealing with large input datasets. In practice, this overhead
is a major bottleneck because each evaluation of the black-
box objective function to determine the value of the current
pipeline configuration involves the entire training data.

We focus on the algorithm selection problem in AutoML
and introduce Bandit Limited Discrepancy Search (BLDS),
which combines ideas behind algorithms for the multi-armed
bandit (MAB) problem, e.g., (Auer, Cesa-Bianchi, and Fis-
cher 2002), limited discrepancy search (LDS) (Harvey and
Ginsberg 1995) and multi-fidelity optimization (Sabharwal,
Samulowitz, and Tesauro 2016).

Specifically, BLDS assumes that a better solution tends
to exist in a set of pipelines similar to the current best one
and uses the notion of discrepancy to reduce the search space
examined. However, a series of BLDS’ local search may
lead to an optimized pipeline that is very different from the
initial one. In addition, we design BLDS to reduce the com-
putational overhead associated with training the pipelines on
large datasets. Our BLDS algorithm is the first multi-fidelity
optimization method designed specifically to address the al-
gorithm selection subproblem. The algorithm starts with a
small subset of training data and it gradually increases this
subset if the corresponding pipeline is promising. BLDS
involves a procedure to compare pipelines trained with differ-
ent subsets of data. Unlike existing multi-fidelity optimiza-
tion approaches such as the Data Allocation Upper Bound
(DAUB) algorithm (Sabharwal, Samulowitz, and Tesauro
2016), BLDS calculates the upper and lower confidence

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10228

bounds which are inspired by MAB but which additionally
account for multi-fidelity optimization.

We show a theoretical property on the confidence bounds
which allow BLDS to select a more promising pipeline as
well as to decide whether to assign more resources to a
pipeline for further training. Besides, BLDS is naturally incor-
porated into any scheme that splits CASH into two separate
subproblems. We combine BLDS with HPO under the recent
ADMM framework of Liu et al. (2020), thus developing a
scheme to warm-start a BLDS run with previous runs.

We compare BLDS with the Combinatorial MAB (CMAB)
algorithm (Liu et al. 2020) as well as DAUB and Hyperband
(Li et al. 2018), which we adapt for algorithm selection. Us-
ing well-known benchmarks and a fixed 4-stage pipeline
structure comprising over 3000 possible algorithm selections,
we show that BLDS performs better than the competing meth-
ods. We also empirically show that BLDS yields better ob-
jective values than the competitors when it is combined with
HPO, demonstrating that our approach can solve CASH more
effectively on large datasets.

Related Work
Existing AutoML systems can be divided into two categories:
methods that use the entire training dataset during optimiza-
tion and multi-fidelity optimization methods that start with a
small fragment of training data and gradually increase it as
the optimization progresses.

Systems from the first category typically design the CASH
problem as an optimization problem over a high-dimensional
joint search space with discrete and continuous variables,
which is then solved in many different ways, including
Bayesian optimization (BO) (Bergstra et al. 2011), mixed
integer linear programming (Liu et al. 2020), evolutionary
algorithms (Olson et al. 2016), AI planning (Mohr, Wever,
and Hullermeier 2018; Katz et al. 2020), Monte Carlo tree
search (MCTS) coupled with BO (Rakotoarison, Schoenauer,
and Sebag 2019). More specifically, Auto-WEKA (Kotthoff
et al. 2017) and Auto-sklearn (Feurer et al. 2015a) apply the
general purpose algorithm configuration framework SMBO
(Hutter, Hoos, and Leyton-Brown 2011) based on BO to
find optimal ML pipelines. TPOT (Olson et al. 2016) and its
extensions like RECIPE (de Sa et al. 2017), Auto-MEKA
(de Sa, Freitas, and Pappa 2018), Auto-Stacker (Chen et al.
2018) or Auto-DSGE (Assuncao et al. 2020) discretize the
continuous hyperparameters and use genetic programming
together with a context-free grammar to evolve randomly
generated pipelines. AlphaD3M (Drori et al. 2018) applies
reinforcement learning for solving CASH.

None of the methods above impose an efficient decomposi-
tion over hyperparameters and algorithm selection. ML-Plan
(Mohr, Wever, and Hullermeier 2018) is the first system that
distinguishes explicitly between the algorithm selection and
HPO subproblems and uses hierarchical task networks based
planning to solve them efficiently. ReinBo (Sun, Lin, and
Bischl 2020) employs reinforcement learning for algorithm
selection and BO for HPO. MOSAIC (Rakotoarison, Schoe-
nauer, and Sebag 2019) partially splits CASH into algorithm
selection and HPO, utilizing MCTS and BO respectively for
each of the subproblems, which are coupled with a shared

surrogate model. The more recent ADMM system splits the
algorithm selection phase and HPO into two simpler subprob-
lems which are subsequently solved separately in an iterative
manner using the augmented Lagrangian function and the
alternating direction method of multipliers (ADMM) (Liu
et al. 2020). In practice, CMAB for algorithm selection and
BO for HPO are shown to perform best under the ADMM
framework (Liu et al. 2020).

Multi-fidelity optimization using a small subset of the orig-
inal training data to approximate the loss function has been
considered in the context of continuous search spaces and
HPO, e.g., (Klein et al. 2017; Falkner, Klein, and Hutter 2018;
Lu et al. 2019). These approaches could be used to address
CASH (e.g., run them under the SMBO framework), but
how to fit them well into CASH still remains an open ques-
tion. Successive halving (Karnin, Koren, and Somekh 2013;
Jamieson and Talwalkar 2016) and Hyperband are shown to
be competitive for HPO. DAUB applies multi-fidelity opti-
mization to effectively train a fixed set of classifiers.

Approaches for empirically predicting the learning curve
also increase the training data size (Figueroa et al. 2012;
Koshute, Zook, and McCulloh 2021; Mohr and van Rijn
2021). Under the assumption that using the entire training
dataset does not necessarily yield the best accuracy, they
attempt to predict the case where a model cannot be improved
with additional training examples. In contrast, multi-fidelity
optimization aims at training the most promising model with
the entire dataset and removing unpromising ones with their
approximations calculated by the subsets of the dataset.

Other AutoML tasks include pipeline generations, e.g.,
PIPER (Marinescu et al. 2021) and TPOT. However, the
search space of pipeline generation is different from that of
pipeline optimization with a fixed structure.

Preliminaries
Algorithm Selection An ML pipeline structure consists
of a fixed sequence of m stages (e.g., data preprocessor →
feature preprocessor → classifier) such that for each stage
j = 1, . . . ,m there is a set Aj of available ML algorithms. A
pipeline configuration (or pipeline for short) p ∈ P is a com-
plete configuration of algorithms, one for each stage, namely
p = (a1, . . . , am) where aj ∈ Aj is the algorithm selected
for the j-th stage and P = A1 × · · · × Am is the set of
all possible pipeline configurations. Given a limited amount
of training data D = {(x1, y1), . . . , (xn, yn)}, the goal of
the algorithm selection problem is to determine the pipeline
p∗ ∈ P with optimal generalization performance. General-
ization performance is estimated by splitting D into disjoint
training and validation sets T and V , learning a function f by
applying p∗ to T and evaluating the predictive performance of
function f on V . Therefore, the algorithm selection problem
is written as p∗ = arg min

p∈P

1
k

∑k
i=1 L(p, T (i), V (i)), where

L(p, T (i), V (i)) is the value of the black-box loss function
(e.g., classification error) achieved by p when trained on
T (i) and evaluated on V (i). We use k-fold cross-validation
(Kohavi 1995), which splits the training data into k equal-
sized partitions V (1), . . . , V (k), and sets T (i) = D \ V (i) for

10229

Algorithm 1: LDS: Limited Discrepancy Search
1: procedure LDS
2: for all k = 0 . . . n do
3: if PROBE(root, k) then return true

4: function PROBE(node, k)
5: if isLeaf(node) then return isGoal(node)
6: if k = 0 then return PROBE(left(node), 0)
7: else return PROBE(right(node), k-1) or PROBE(left(node),k)

Figure 1: Search space traversed by LDS (the height is 3). The
number of discrepancies is indicated below the leaf nodes.

i = 1, . . . , k.

Limited Discrepancy Search We consider a search space
that is a complete binary tree with bounded height h. Leaf
nodes correspond to goals or failures and the task of interest
is to find a goal. Each internal node represents a decision
that must be made to reach a goal. Furthermore, the left
child of each internal node represents following the recom-
mendation of a value-ordering heuristic and the right child
represents going against that recommendation. Disregarding
the heuristic recommendation is called a discrepancy. The
number of discrepancies of a leaf node is the number of right
turns in the path from the root to that leaf node. Limited Dis-
crepancy Search (LDS) (Harvey and Ginsberg 1995; Korf
1996) is a depth-first search algorithm that searches for a goal
while iteratively increasing the number of discrepancies. The
pseudo-code is given in Algorithm 1. The k-th iteration of the
main loop visits all the leaves having k or fewer discrepan-
cies. Function PROBE is a standard recursive implementation
of depth-first search such that: (i) it keeps track (parameter
k) of the number of discrepancies still available, (ii) if a dis-
crepancy is consumed, k is decreased before the recursive
call and (iii) if no further discrepancies are available, LDS
does not disregard the heuristic. Since the last iteration visits
all the leaves, LDS is complete. In practice, LDS is used in
a anytime manner until a solution is found or a time limit is
reached. In our case, each layer in the search tree stands for
a stage in the ML pipeline structure. An edge represents an
instantiation of one algorithm in that stage and the terminal
nodes correspond to pipeline configurations. We also use the
notion of discrepancy without any value-ordering heuristic.

Example 1. Figure 1 shows a search tree with height 3. The
gray leaves correspond to goals (solutions). LDS stops during
iteration k = 1 where it finds the solution with 1 discrepancy.

Bandit Limited Discrepancy Search
We present our new Bandit Limited Discrepancy Search
(BLDS) algorithm for tackling the algorithm selection prob-
lem in AutoML. The basic idea behind BLDS is to conduct

Algorithm 2: BLDS: Bandit Limited Discrepancy Search
Require: Training set T , validation set V , discrepancy disc
1: procedure BLDS(T , V , disc)
2: while time is not up do
3: pinit = FINDINITIALPIPELINE()
4: repeat
5: INCREASEANDTRAIN(pinit, T , V)
6: for all (θ = 1; θ ≤ disc; θ = θ + 1) do
7: pnew = SEARCH(pinit, pinit.lcb, pinit.ucb, T , V , 1, θ)
8: if (pnew ̸= ϕ) then
9: pinit = pnew; break

10: until (pinit is trained with a full set of T)
11: return best pipeline obtained
12: function SEARCH(Pipeline p, LCB lcb, UCB ucb, training set

T , validation set V , stage i, current discrepancy θ)
13: if (θ = 0 ∨ i > m) then
14: (l, u) = GETCURRENTPERFORMANCE(p)
15: if (u < lcb) then return p

16: if (l ≤ ucb) then (l, u) = INCREASEANDTRAIN(p, T , V)
17: if (u < ucb) then return p
18: else return ϕ

19: else
20: for all algorithm a ∈ Ai do
21: if (p[i] = a) then
22: r = SEARCH(p, lcb, ucb, T , V , i+ 1, θ)
23: else
24: pnew = p; pnew[i] = a
25: r = SEARCH(pnew, lcb, ucb, T , V , i+ 1, θ − 1)
26: if (r ̸= ϕ) then return r

27: return ϕ

a discrepancy-based exploration that focuses on the most
promising portions of the pipeline search space while control-
ling the size of the training data used for training the pipelines
found in a most cost-effective manner. Unlike standard LDS,
we consider an optimization problem where each leaf node
is a goal and corresponds to a pipeline p which has an associ-
ated cost (i.e., value of a black-box loss or objective function
L(p)) and the task is to find the least-cost one.

Algorithm Description
Algorithm 2 describes the BLDS algorithm. We consider a
linear1 pipeline structure with m stages such that each stage i
has a set Ai of available ML algorithms. In the pseudo code,
function FINDINITIALPIPELINE generates a randomly ini-
tialized pipeline pinit = (a1, . . . , am), however, BLDS can
start with any pipeline obtained with other AutoML meth-
ods. Function INCREASEANDTRAIN trains pipeline p with a
(sub)set of training data T and evaluates p’s performance on
validation data V . As also discussed in (Sabharwal, Samu-
lowitz, and Tesauro 2016), when training p for the k-th time,
BLDS selects bηk samples from T , where b and η are con-
stants. The pipeline p has an extra structure to preserve an
objective value v and two associated values lcb and ucb which
refer to a lower confidence bound (LCB) and an upper confi-
dence bound (UCB), respectively. The LCB and UCB values

1BLDS is applicable to non-linear pipeline structures represent-
ing trees/DAGs as well.

10230

Figure 2: Search behavior of BLDS (η = 2) for a three-step pipeline structure where each module has two algorithm choices

are regarded as lower and upperbounds of the achievable
objective value (see the next subsection for details). The dis-
crepancy disc indicates the maximum number of allowed
algorithm changes to the stages of the initial pipeline pinit.
BLDS assumes that a better pipeline tends to be instantiated
in a similar fashion to pinit and, therefore, it examines a lim-
ited search space where similar pipelines are located. The
symbol ϕ is used to indicate that the algorithm could not find
a pipeline better than pinit with current discrepancy value θ.

The algorithm starts with a discrepancy value θ of 1 and
conducts an iterative search that allows to change the algo-
rithms of at most θ stages in pinit while incrementing θ until
a better pipeline pnew is found or θ exceeds disc (see lines
5-10). If pnew is found, BLDS uses it as a new initial pipeline
and attempts to improve it further. BLDS repeats the steps
of INCREASEANDTRAIN and the iterative search limited by
θ until it finds a pipeline trained with a full set T . However,
even after finding such a pipeline, the algorithm can still con-
tinue the search for another one by restarting with a different
initial pipeline calculated by FINDINITIALPIPELINE until it
uses up the allocated time. For efficiency, BLDS also caches
the objective value and the corresponding UCB/LCB values
for all trained pipelines in order to avoid retraining them.

Function SEARCH (lines 12-27) performs the actual explo-
ration of the pipeline search space limited by discrepancy θ.
Specifically, when it selects an algorithm a that is different
from the one corresponding to stage i in pinit, it decrements
θ to reduce the number of changes allowed for the remain-
ing stages (lines 24-25). Otherwise, the algorithm for stage i
remains unchanged and, therefore, the θ value is preserved
(line 21-22). When SEARCH either has checked all m stages
in p or consumed the discrepancy budget, it checks p’s per-
formance (lines 13-18). The GETCURRENTPERFORMANCE
method retrieves p’s LCB and UCB values l and u if they
are cached. Caching alleviates the overhead of revisiting the
same pipelines possibly with different θ. Otherwise, it eval-
uates p with V after training p with b samples in T . BLDS
assumes the real objective value for p to be in [l, u] and de-
cides whether or not p is a promising pipeline as well as
whether or not p should be trained with a larger training sub-
set. This way, BLDS attempts to focus on promising pipelines
and alleviates the training overhead. SEARCH receives pinit’s
LCB and UCB values lcb and ucb. If u < lcb holds, p is con-
sidered to be better than pinit and becomes a new pipeline

to start with (line 15). If l ≤ ucb (and lcb ≤ u) holds, p
might or might not be better than pinit. In this case, p is re-
trained with an increased training (sub)set and re-evaluated
with V . The algorithm subsequently selects a pipeline based
on whether or not p’s updated UCB value is better than that of
pinit (lines 16-17). For the other cases (e.g., ucb ≤ l holds),
pinit is considered to be better than p and is kept (line 18).

Example 2. Figure 2 illustrates the execution of BLDS on
a 3-stage pipeline structure. The UCB and LCB values u
and l of a pipeline are written as [l, u]. Let p1 = (a1, a2, a3)
be the current best pipeline trained with 800 samples (Fig.
2(a)). BLDS limits search with θ = 1, allowing to change
only one stage in p1. Figures 2(b)-(d) show the pipelines
examined with θ = 1. In Figure 2(b), BLDS examines pipeline
p2 = (b1, a2, a3) but considers that p1 is better than p2,
since p2’s LCB value is larger than p1’s UCB value. So is
the case for pipeline (a1, b2, a3) (Fig. 2(c)). In Figure 2(d),
there is an overlap between the regions of the LCB and UCB
values for pipelines p1 and p3 = (a1, a2, b3). To obtain a
more accurate objective value, BLDS re-trains p3 with an
increased training subset (i.e., 400 samples) and updates its
LCB and UCB values. BLDS finds that p1 is still better than
p3. Since BLDS cannot find a pipeline better than p1 with
θ = 1, it sets θ = 2, allowing to modify any of two modules in
p1. BLDS reaches pipeline p4 = (b1, b2, a3) (Fig. 2(e)). The
UCB value of p4 is smaller than p1’s LCB value, indicating
that p4 is better than p1. Therefore, BLDS stops searching
with θ = 2, sets p4 to the new best pipeline and resets θ = 1.
By using p4 as a new initial pipeline, BLDS re-trains p4 with
an increased training subset (i.e., 1600 samples) and obtains
new LCB and UCB values. BLDS performs search with θ = 1,
allowing only one change to p4.

Upper and Lower Confidence Bounds
Existing approaches to compute UCB values for addressing
the MAB problems only account for the number of visits
to each arm2/branch, e.g., (Auer, Cesa-Bianchi, and Fischer
2002). However, the computational overhead of training a
pipeline configuration depends on the size of the training data.
The confidence of the accuracy of the pipeline performance
is also associated with the training data size. In other words,

2Unlike (Kocsis and Szepesvári 2006), an arm corresponds to a
pipeline configuration at a terminal node of BLDS’ search tree.

10231

two visits to the same pipeline configuration with different
training data sizes need to be handled in a different way.

We adapt (Even-Dar, Mannor, and Mansour 2006) to algo-
rithm selection. Our UCB and LCB formulas account for
a relation between the total size of the training (sub)set
invested so far and the accuracy of the objective value:

UCB = v +

√
log

cLDk
2

δ

Dk
and LCB = v −

√
log

cLDk
2

δ

Dk
,

where v is an objective value for the k-th evaluation with val-
idation set V and c (> 4) and δ are constants, L = Πm

i=1|Ai|
and Dk =

∑k
j=1 bη

(j−1).
The second term of UCB/LCB determines whether to per-

form a so-called exploration, aiming at updating v that might
be inaccurate due to a small number of training examples.

Let Lmax be the upperbound of the loss L(·, T, V) that
we seek to minimize. For any pipeline pi, 1 ≤ i ≤ L, let
qi := Lmax −ET,V L(pi, T, V) be the expected reward upon
training on the full training set T , with an expectation over
the sampling of the training and validation sets T and V
respectively from the true data distribution. Assuming that
all pipelines are always considered and that objective values
are improved with a larger number of training examples,
Theorem 1 refers to the upperbound of the size of the training
data needed to differentiate the best pipeline from the others.

Theorem 1. Suppose there are L pipelines pj (1 ≤ j ≤ L)
sorted in an descending order of qj . Denote ∆i = q1−qi > 0
for i = 2, 3,, L. Finally, let ti be the maximum number
of times INCREASEANDTRAIN is invoked on a suboptimal
pipeline pi, i ̸= 1 to find that p1 is better than pi. Then∑L

i=2 ti is O(
∑L

i=2

ln
(

L
δ∆i

)
∆2

i
) with probability at least 1− δ.

Proof. The proof follows exactly the same step as Theorem
8 in (Even-Dar, Mannor, and Mansour 2006), which also
uses the exploration factor c > 4 in (Audibert, Bubeck, and
Munos 2010). Our main argument is that, for any value of
Dk and for any pipeline selection i, the observed reward Q̂t

i
is within αt of qi. For any Dk and pipeline selection i we
have P (|Q̂t

i − qi| ≥ αt) ≤ 2e−2α2
tDk ≤ 2δ

cLD2
k

. By taking
the constant c > 4 and from the union bound we have that
with probability at least 1− δ/L for any Dk and any pipeline
selection i,|Q̂t

i − qi| < αt. Therefore, with probability 1−
δ, the best pipeline is never eliminated. Furthermore, since
αt goes to zero as Dk increases, every non-best pipeline is
eventually eliminated. To eliminate a non-best pipeline pi
we need to reach a time ti such that ∆̂ti = Q̂ti

1 − Q̂ti
i ≤

2αti . The definition of αt combined with the assumption that
|Q̂t

i − qi| ≥ αt yields ∆i − 2αt = (q1 − αt)− (qi + αt) ≥
Q̂1 − Q̂i ≥ 2αt. This holds with probability at least 1− δ

L

for ti = o(ln(L/δ∆i)
∆2

i
).

Theorem 1 indicates that O(L logL) trainings are needed
to select the best pipeline, when SEARCH always runs with
discrepancy θ = m. On the other hand, suppose that O(T)
is required to train each pipeline with the full training data
of size T . A straightforward approach then requires O(LT).
Since pipeline optimization typically satisfies logL ≪ T ,

our approach significantly reduces the training overhead in
practice. For example, consider L = 1010 for a very compli-
cated 10-step pipeline structure with 10 algorithm choices in
each module optimized with a training data of size 10,000.
Even in this case, logL = log 1010 = 23 ≪ T = 10000. In
the literature such as (Liu et al. 2020; Rakotoarison, Schoe-
nauer, and Sebag 2019), while T can be much larger than
10,000, L is at most 7000 (a pipeline structure with 3-4 steps).

BLDS examines only a subset of pipelines limited by dis-
crepancy θ < m and the size of the training data is fixed.
Understanding the theoretical properties of these cases re-
mains an open question.

Combination with HPO
Algorithm selection with BLDS is easily combined with HPO
under the recent ADMM framework by Liu et al. (2020).
Let the number of iterations of BLDS be the number of
FINDINITIALPIPELINE calls. After BLDS is run for a preset
number of iterations with training set T and validation set V ,
the best pipeline pbest found by BLDS is passed to an HPO
algorithm subsequently run with T and V for a preset number
of iterations to find better hyperparameters H for pbest. For
the next BLDS run, H is used as a default hyperparameter
set for pbest. These two alternating steps are repeated until
the time limit is exceeded. To control the iteration size we
employ the adaptation scheme suggested in (Liu et al. 2020).

Our BLDS implementation reuses the cached results of
trained pipelines across different BLDS runs. However, the
result for pbest is removed from the cache. Its cached re-
sult needs to be updated, since pbest might yield different
performance due to its different hyperparameters. Our HPO
implementation employs a BO-based approach (Shahriari
et al. 2016). It receives BLDS’ pbest trained with full T and
performs HPO with full set T .

Extensions to DAUB and Hyperband
We adapt DAUB and Hyperband to obtain competing multi-
fidelity optimization based baselines for algorithm selection.

DAUB For the training and validation sets T and V , our
DAUB implementation generates all possible pipelines for a
given fixed m-stage pipeline structure, and performs the steps
described in (Sabharwal, Samulowitz, and Tesauro 2016).
In the bootstrapping procedure, DAUB trains each pipeline
with b, bη and bη2 training examples. DAUB calculates the
upperbounds of the respective accuracy based on its linear
regression model. DAUB’s priority queue Q orders all the
pipelines based on these upperbounds. DAUB then dequeues
one pipeline p from Q and trains it with min(|T |, ηN) train-
ing examples where N is the number of examples allocated to
train it last time. DAUB then updates p’s upperbound with a
newly calculated estimated accuracy and enqueues p back in
Q. DAUB repeats these steps until a most promising pipeline
is trained with a full training set. Even if DAUB returns a first
pipeline p trained with full T , it can continue running to re-
turn a second pipeline which is trained with full T and which
might perform better than p with respect to an objective value
evaluated with respect to V . Until DAUB’s priority queue be-
comes empty, DAUB can keep searching for a better pipeline

10232

Step Module

1
Binarizer, Normalizer, Quantile transformer,
MinMax scaler, Standard scaler, Robust scaler,
KBins discretizer (ordinal encoding), None

2

Sparse random projection (dense output), PCA,
RBF sampler, Gaussian random projection,
Factor analysis (SVD=randomized), Fast ICA,
Truncated SVD (algorithm=randomized), None

3 Select percentile, Select Fpr, Select Fdr,
Select FweFS, Variance threshold, None

4

Random Forest, Gaussian NB, KNeighbors,
Quadratic discriminant analysis, Extra trees,
AdaBoost (base estimator=decision tree,
max depth=3), Decision tree, Logistic regression

Table 1: ML modules (None indicates selecting no module)

in this way. In a combination with HPO under the ADMM
framework, we define the number of DAUB’s iterations as
the number of pipelines with full T returned by DAUB. The
pipelines not selected by DAUB are enqueued back to its
priority queue. The selected pipeline is enqueued after its
hyperparameters are optimized by an HPO algorithm.

Hyperband Our Hyperband implementation generates
pipelines by random sampling and optimizes them by the
steps described in (Li et al. 2018), which we define as one it-
eration.3 In case of searching for pipelines without HPO, this
iteration is repeated until the time is up. We set the maximum
amount of resource (called parameter R) to the training data
size. This allows to perform an increase of the training data
subset in a similar way to DAUB and BLDS, while control-
ling the size of selected pipelines based on η. It also employs
a caching scheme similar to that of BLDS, which effectively
reuses previously trained pipelines within its Hyperband runs
and among different Hyperband runs with a combination of
HPO under the ADMM framework (Liu et al. 2020).

Experimental Results
We implemented all algorithms in Python with scikit-learn
(Pedregosa, Varoquaux, and Gramfort 2011) and performed
the experiments on a cluster of Intel Xeon CPU E5-2667
processors at 3.3GHz. When running the algorithms, we use
only one core to better track the objective value versus time
as suggested in (Rakotoarison, Schoenauer, and Sebag 2019;
Liu et al. 2020). We evaluate: (a) BLDS(1) and BLDS(2)
with disc = 1, 2, respectively, (b) CMAB (Liu et al. 2020),
(c) DAUB, (d) Hyperband and (e) simple random search
(RND). We also perform a comparison against MLDS and
LDS. MLDS(1) and MLDS(2) perform multi-fidelity opti-
mization and LDS with disc = 1, 2 but without using our
UCB/LCB formulas. LDS(1) and LDS(2) perform LDS with
disc = 1, 2 but without multi-fidelity optimization. For algo-
rithm selection, note that LDS(1) can be regarded as Naive
AutoML of Mohr and Wever (2021).

3While successive halving can be another choice, Hyperband
tends to perform better in our preliminary experiments.

Setups We set up experiments similar to those in (Liu et al.
2020) and use standard evaluation metrics in the commu-
nity (Feurer et al. 2015b). For each benchmark dataset, we
consider a 70-30% train-validation split, and run each al-
gorithm with a time limit of two hours per trial to perform
a binary classification. We consider (1.0 – AUROC) (area
under the ROC curve) as the black-box objective function
that needs to be minimized. While the OpenML repositories
(Bischl et al. 2017) have many datasets, most of them have
a small number of training examples that are insufficient to
perform multi-fidelity optimization. We attempt to select the
largest possible datasets, ending up with 19 datasets from the
OpenML repositories whose data size ranges between 10,885
and 245,057 examples.4 For a consistent evaluation, we first
impute any missing values with the most common value of
the corresponding feature and subsequently perform one-hot
encoding of the categorical features. We consider a 4-stage
pipeline structure which results in a total of 3072 possible
pipelines (see Table 1). For each benchmark, all algorithms
use the same training and validation sets. In addition, BLDS,
Hyperband and DAUB use the identical strategy to increase
the subset of training data. With initial experiments using
different benchmarks, we set b = 100 and η = 2 for all the
algorithms, and cL/δ = 1/9600 for BLDS, where L = 3072.
Due to the UCB and LCB formulas, note that we do not need
to optimize c and δ separately. The exploration parameter for
CMAB is set to 0.3.

Results with Algorithm Selection
Figures 3(a)-(f) show the performance of the algorithm se-
lection methods for representative benchmarks. For clarity,
we use doubly logarithmic plots. After 10 runs for each algo-
rithm, we compute a median of the objective values and the
region within the first and third quartiles. The fixed default
parameters from scikit-learn are used for each instantiated
pipeline and no HPO is performed. These results clearly
demonstrate that BLDS(1) tends to achieve better objective
values much more quickly than the other competitors. For
example, BLDS(1) outperforms the others for the first 30-500
seconds in many cases including ELECTRICITY and NOMAO.

BLDS(2) tends to catch up with BLDS(1) roughly in 700
seconds, remaining to be slightly better than BLDS(1) for a
while (around up to 4500 seconds) until BLDS(1) catches
up again. While this indicates a promise of BLDS(2), it does
not necessarily outperform BLDS(1) for a short run of the
algorithm. We hypothesize that this is due to a much larger
number of pipelines needed to be re-trained and evaluated
within a discrepancy threshold disc. If BLDS(1) finds no
pipeline better than the initial one, it examines 26 pipelines
within disc = 1. BLDS(1) then restarts with a new pipeline

4The names and ids of the datasets are ELECTRICITY (151),
ADULT (179), MOZILLA4 (1046), JM1 (1053), MAGIC TELE-
SCOPE (1120), CLICK PREDICTION SMALL (1220), BANK MARKET-
ING (1461), NOMAO (1486), SKIN SEGMENTATION (1502), AMA-
ZON EMPLOYEE ACCESS (4135), HIGGS (23512), NUMERAI28.6
(23517), RUN OR WALK INFORMATION (40922), APSFAILURE
(41138), MINIBOONE (41150), GUILLERMO (41159), RICCARDO
(41161), DEFAULT OF CREDIT CARD CLIENTS (42477), and RELE-
VANT IMAGES DATASET (42680).

10233

(a) MAGICTELESCOPE (b) ELECTRICITY (c) NOMAO

(d) APSFAILURE (e) HIGGS (f) ADULT

Figure 3: Performance of each method for algorithm selection for representative datasets, based on median objective value

randomly initialized, which might sometimes be a good start-
ing point. However, before BLDS(2) restarts search with a
new initial pipeline, in the worst case, it needs to examine
272 pipelines within disc = 2 which are less similar to the
current best one. Therefore, there is a big gap in the local
search space between disc = 1 and 2. Balancing a better
amount of work across different discrepancy values is an
important extension to BLDS which remains future work.

When running for a longer time, the other schemes can
catch up with BLDS. At this stage, they can evaluate a suffi-
cient number of pipelines, thus being able to return the objec-
tive values competitive to those found by BLDS. For the 9
benchmarks among all, RND evaluates over 1500 pipelines
in its 2-hour run, indicating that all algorithms can cover im-
portant portions of the 3072 pipelines in such a long runtime.

Figure 4(a) compares the average rank of mean perfor-
mance of BLDS(1), BLDS(2) and Hyperband, which are the
best three algorithms across the 19 benchmarks.5 An algo-
rithm with a lower rank performs better. Our results clearly
show the phenomenon discussed above. Both BLDS(1) and
BLDS(2) outperform Hyperband for the first 2000 seconds.

5Since the convergence values are occasionally slightly different,
we allow for a tolerance value of 0.001 when calculating each rank.

Hyperband’s performance then becomes similar to that of
BLDS. While both BLDS and Hyperband use randomly ini-
tialized pipelines, one essential difference is whether to per-
form local search or not in order to refine the initial pipelines.
Our results imply that BLDS’ strategy on focusing on the
pipelines similar to the current best one is an important factor
for finding better pipelines more quickly than Hyperband.

DAUB performs poorly in general. Due to more configura-
tions (i.e., 3072 pipelines) than those in (Sabharwal, Samu-
lowitz, and Tesauro 2016) (only 41 ML classifiers), DAUB
suffers from a significant overhead in its bootstrapping step.
Even in its pipeline search step, DAUB’s linear regression
model is not often accurate enough to return an optimized
pipeline. DAUB needs to continue search even after a fully-
trained pipeline is obtained. DAUB eventually finds an opti-
mized pipeline, but suffers from much slower convergence.

Figures 4(b) and 4(c) compare the average rank of mean
performance of BLDS, MLDS and LDS. When the algo-
rithms with the same discrepancy thresholds are compared,
our results demonstrate that BLDS outperforms LDS and
MLDS, indicating the importance of using our confidence
bounds to refine the search. A comparison between LDS and
MLDS indicates that introducing the multi-fidelity optimiza-

10234

(a) BLDS versus Hyperband (b) BLDS(1) versus (M)LDS(1) BLDS(2) versus (M)LDS(2)

Figure 4: Comparison against Hyperband, LDS and MLDS, based on average ranking across all datasets

Figure 5: Average ranking across all datasets for each algo-
rithm in a combination with HPO under ADMM

tion tends to yield slightly better results in an early stage until
a sufficient number of pipeline evaluations is performed.

Results with Algorithm Selection and HPO
We evaluate the performance of the algorithm selection meth-
ods with HPO under the ADMM framework of Liu et al.
(2020). There are other approaches that are not based on
ADMM, such as Auto-sklearn and TPOT. However, we have
decided not to make a direct empirical comparison to these
approaches, since our main focus is to develop efficient algo-
rithm selection methods running under ADMM on the basic
CASH problem. TPOT addresses the pipeline generation
problem that is different from the basic CASH. Auto-sklearn
includes meta-learning that remains future work.

Figure 5 shows the average rank of mean performance of
each method across 19 benchmarks with 10 runs for each
case. As described in (Liu et al. 2020), ADMM starts with
16 iterations with an additive factor 16 until 128 iterations.
The figure demonstrates that BLDS performs better than
the others. Hyperband catches up with BLDS when more

pipelines are evaluated.
ADMM with BLDS(2) converges faster than BLDS(1).

We hypothesize that this is because ADMM’s time allocation
scheme is based not on the actual runtime but on the number
of iterations. As already discussed, BLDS(2) evaluates a
much larger number of pipelines per iteration than that of
BLDS(1). This allows ADMM with BLDS(2) to spend much
more time in algorithm selection than ADMM with BLDS(1).

Of the 19 benchmarks, BLDS(1) with HPO yields more
accurate objective values for 17 benchmarks than BLDS(1)
without HPO. BLDS(2) with HPO does so for 15 bench-
marks, showing that incorporating HPO generally improves
the performance. We conclude that BLDS(2) with HPO is
the best choice under the current time allocation scheme.

Conclusion
We introduced BLDS to address the algorithm selection prob-
lem. Our results clearly show that BLDS is a well-performing
algorithm which tends to converge more quickly than other
competing algorithms and that BLDS is a strong candidate to
be combined with HPO under ADMM. In future work, we
plan to further improve the search performance to be able
to deal with large-scale training data as well as more com-
plicated pipeline structures. Possible extensions include a
combination with meta-learning, e.g., (Feurer et al. 2015a;
Rakotoarison, Schoenauer, and Sebag 2019), and an approach
that allows for a more granular control of the local search
space. It is also important to have a better theoretical un-
derstanding to our MAB strategy by accounting for BLDS’
behavior that limits the search space.

Broader Impact
AutoML is an important topic, since it is tedious and time-
consuming to manually optimize the pipeline. BLDS can
quickly develop more accurate pipelines deployed in real-
world applications arising in the society. However, BLDS
has not yet addressed the case with the biased dataset. In
this case, even if BLDS generates an optimized pipeline, its
actual performance might not meet what practitioners expect.

10235

References
Assuncao, F.; Lourenco, N.; Ribeiro, B.; and Machado, P.
2020. Evolution of Scikit-learn Pipelines with Dynamic
Structured Grammatical Evolution. In International Con-
ference on the Application of Evolutionary Computation,
530–545.
Audibert, J.-Y.; Bubeck, S.; and Munos, R. 2010. Best Arm
Identification in Multi-Armed Bandits. COLT 2010, 41.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time Analysis of the Multiarmed Bandit Problem. Machine
Learning, 47: 235–256.
Bergstra, J. S.; Bardenet, R.; Bengio, Y.; and Kegl, B. 2011.
Algorithms for Hyper-Parameter Optimization. In NeuIPS,
2546–2554.
Bischl, B.; Casalicchio, G.; Feurer, M.; Hutter, F.; Lang,
M.; Mantovani, R. G.; van Rijn, J. N.; and Vanschoren, J.
2017. OpenML Benchmarking Suites and the OpenML100.
https://arxiv.org/abs/1708.03731. Dataset available at https:
//www.openml.org/.
Chen, B.; Wu, H.; Mo, W.; Chattopadhyay, I.; and Lipson, H.
2018. Autostacker: A Compositional Evolutionary Learning
System. In Genetic and Evolutionary Computation Confer-
ence, 402–409.
de Sa, A.; Freitas, A.; and Pappa, G. 2018. Automated Se-
lection and Configuration of Multi-Label Classification Al-
gorithms with Grammar-Based Genetic Programming. In
International Conference on Parallel Problem Solving from
Nature, 308–320.
de Sa, A.; Pinto, W.; Oliveira, L.; and Pappa, G. 2017.
RECIPE: A Grammar-Based Framework for Automatically
Evolving Classification Pipelines. In European Conference
on Genetic Programming, 246–261.
Drori, I.; Krishnamurthy, Y.; Rampin, R.; de Paula Lourenco,
R.; Ono, J.; Cho, K.; Silva, C.; and Freire, J. 2018. Al-
phaD3M: Machine Learning Pipeline Synthesis. In Workshop
on AutoML (ICML).
Even-Dar, E.; Mannor, S.; and Mansour, Y. 2006. Action
Elimination and Stopping Conditions for the Multi-Armed
Bandit and Reinforcement Learning Problems. Journal of
Machine Learning Research, 7(Jun): 1079–1105.
Falkner, S.; Klein, A.; and Hutter, F. 2018. BOHB: Ro-
bust and Efficient Hyperparameter Optimization at Scale. In
ICML, 1436–1445.
Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.;
Blum, M.; and Hutter, F. 2015a. Efficient and Robust Auto-
mated Machine Learning. In NeurIPS, 2962–2970.
Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J. T.;
Blum, M.; and Hutter, F. 2015b. Auto-sklearn: Efficient and
Robust Automated Machine Learning. In NeurIPS, 2962–
2970.
Figueroa, R. L.; Zeng-Treitler, Q.; Kandula, S.; and Ngo,
L. H. 2012. Predicting Sample Size Required for Classifica-
tion Performance. BMC Medical Informatics and Decision
Making, 12(8).
Harvey, W.; and Ginsberg, M. 1995. Limited Discrepancy
Search. In IJCAI, 607–613.

Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2011. Sequential
Model-Based Optimization for General Algorithm Configura-
tion. In International Conference on Learning and Intelligent
Optimization, 507–523.
Jamieson, K. G.; and Talwalkar, A. 2016. Non-stochastic
Best Arm Identification and Hyperparameter Optimization.
In AISTATS, 240–248.
Karnin, Z.; Koren, T.; and Somekh, O. 2013. Almost Optimal
Exploration in Multi-Armed Bandits. In ICML, 1238–1246.
Katz, M.; Ram, P.; Sohrabi, S.; and Udrea, O. 2020. Ex-
ploring Context-Free Languages via Planning: The Case for
Automating Machine Learning. In ICAPS, 403–411.
Klein, A.; Falkner, S.; Bartels, S.; Hennig, P.; and Hutter,
F. 2017. Fast Bayesian Optimization of Machine Learning
Hyperparameters on Large Datasets. In AISTATS, 528–536.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In Proceedings of the 17th European Confer-
ence on Machine Learning (ECML), volume 4212 of Lecture
Notes in Computer Science, 282–293. Springer.
Kohavi, R. 1995. A study of Cross-Validation and Bootstrap
for Accuracy Estimation and Model Selection. In IJCAI,
1137–1145.
Korf, R. E. 1996. Improved Limited Discrepancy Search. In
AAAI, 286–291.
Koshute, P.; Zook, J.; and McCulloh, I. 2021. Recommending
Training Set Sizes for Classification. https://arxiv.org/abs/
2102.09382.
Kotthoff, L.; Thornton, C.; Hoos, H.; Hutter, F.; and Leyton-
Brown, K. 2017. Auto-WEKA 2.0: Automatic Model Selec-
tion and Hyperparameter Optimization in WEKA. Journal
of Machine Learning Research, 18(1): 826–830.
Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; and
Talwalkar, A. 2018. Hyperband: A Novel Bandit-Based Ap-
proach to Hyperparameter Optimization. Journal of Machine
Learning Research, 18: 1–52.
Liu, S.; Ram, P.; Vijaykeerthy, D.; Bouneffouf, D.; Bramble,
G.; Samulowitz, H.; Wang, D.; Conn, A.; and Gray, A. 2020.
An ADMM Based Framework for AutoML Pipeline Config-
uration. In AAAI, 4892–4899. Their supplementary material
available at https://arxiv.org/pdf/1905.00424.pdf.
Lu, Z.; Chen, L.; Chiang, C.-K.; and Sha, F. 2019. Hyper-
parameter Tuning under a Budget Constraint. In IJCAI, 5744–
5750.
Marinescu, R.; Kishimoto, A.; Ram, P.; Rawat, A.; Wistuba,
M.; Palmes, P.; and Botea, A. 2021. Searching for Machine
Learning Pipelines Using a Context-Free Grammar. In AAAI,
8902–8911.
Mohr, F.; and van Rijn, J. N. 2021. Towards Model Selec-
tion using Learning Curve Cross-Validation. In 8th ICML
Workshop on Automated Machine Learning.
Mohr, F.; and Wever, M. 2021. Replacing the Ex-Def Base-
line in AutoML by Naive AutoML. In 8th ICML Workshop
on Automated Machine Learning.
Mohr, F.; Wever, M.; and Hullermeier, E. 2018. ML-Plan:
Automated Machine Learning via Hierarchical Planning. Ma-
chine Learning, 107(1): 1495–1515.

10236

Olson, R.; Bartley, N.; Urbanowicz, R.; and Moore, J. 2016.
Evaluation of a Tree-based Pipeline Optimization Tool for
Automating Data Science. In Genetic and Evolutionary Com-
putation Conference, 485–492.
Pedregosa, F.; Varoquaux, G.; and Gramfort, A. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12(1): 2825–2830.
Rakotoarison, H.; Schoenauer, M.; and Sebag, M. 2019. Au-
tomated Machine Learning with Monte-Carlo Tree Search.
In IJCAI, 3296–3303.
Sabharwal, A.; Samulowitz, H.; and Tesauro, G. 2016. Select-
ing Near-Optimal Learners via Incremental Data Allocation.
In AAAI, 2007–2015.
Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; and
Freitas, N. D. 2016. Taking the Human out of the Loop: A
Review of Bayesian Optimization. In Proceedings of the
IEEE, 148–175.
Sun, X.; Lin, J.; and Bischl, B. 2020. ReinBo: Machine
Learning Pipeline Search and Configuration with Bayesian
Optimization Embedded Reinforcement Learning. In Ma-
chine Learning and Knowledge Discovery in Databases -
International Workshops of ECML PKDD 2019 (Part I), vol-
ume 1167 of Communications in Computer and Information
Science, 68–84. Springer.

10237

