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Abstract

The Latin square completion (LSC) problem is an important
NP-complete problem with numerous applications. Given its
theoretical and practical importance, several algorithms are
designed for solving the LSC problem. In this work, to fur-
ther improve the performance, a fast local search algorithm
is developed based on three main ideas. Firstly, a reduction
reasoning technique is used to reduce the scale of search
space. Secondly, we propose a novel conflict value selec-
tion heuristic, which considers the history conflicting infor-
mation of vertices as a selection criterion when more than
one vertex have equal values on the primary scoring function.
Thirdly, during the search phase, we record previous history
search information and then make use of these information to
restart the candidate solution. Experimental results show that
our proposed algorithm significantly outperforms the state-
of-the-art heuristic algorithms on almost all instances in terms
of success rate and run time.

Introduction
A Latin square of order n is an array of n symbols (i.e.,
{1, 2, . . . , n}) in which each symbol occurs exactly once in
each row and exactly once in each column. If some grids
are empty, then the Latin square complete (LSC) problem
of order n aims to complete the empty grids with n sym-
bols to obtain an arbitrary legal Latin square. In the past
decades, the LSC problem has been already used in vari-
ous fields (Laywine and Mullen 1998; Lakić 2001; Gogate
and Dechter 2011), such as optical networks (Kumar, Rus-
sell, and Sundaram 1999), error correcting codes (Colbourn,
Klove, and Ling 2004) and combinatorial designs (Colbourn
2010). Also, the LSC problem can be modeled as the formu-
las of Boolean satisfiability (SAT) using the extended encod-
ing proposed by (Gomes and Shmoys 2002).

As is known, the LSC problem has been shown to be
an NP-complete problem (Colbourn 1984). For the opti-
mized version of the LSC problem, i.e., the partial Latin
square extension (PLSE) problem, researchers have de-
signed many approximation algorithms. For example, two
classical approximation algorithms were proposed with non-
trivial worst-case performance guarantees (Kumar, Rus-
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sell, and Sundaram 1999). Afterwards, an e/(e − 1)–
approximation algorithm was presented based on the lin-
ear programming relaxation of a packing linear program-
ming formulation (Gomes, Regis, and Shmoys 2004). Haji-
rasouliha et al. (2007) introduced a (2/3−ε)–approximation
algorithm for the PLSE problem. It is common to see that
approximation algorithms usually have poor performance
in practice. There are mainly two types of algorithms for
the LSC problem, i.e., exact algorithms and heuristic algo-
rithms.

In the recent decade, several exact algorithms have been
proposed for solving the LSC problem. Gomes and Shmoys
(2002) proposed three exact algorithms for solving the LSC
problem, including a constraint satisfaction problem (CSP)
based algorithm, a hybrid algorithm based on linear pro-
gramming and CSP as well as a SAT-based algorithm. In
this work, a common feature of these proposed search al-
gorithms is the careful use of randomization and restarts to
obtain some robust solvers, while maintaining the complete-
ness of backtrack search approaches. A systematic compari-
son of SAT and CSP models was proposed for the LSC prob-
lem (Ansótegui et al. 2004). Results show that the above ex-
act algorithms can only solve instances with small sizes.

For solving instances with large sizes, some heuristic LSC
algorithms have been proposed, which can obtain an ap-
proximate solution within reasonable time. Representative
heuristic algorithms for the LSC problem mainly used some
neighborhood search techniques. For example, Haraguchi
(2015; 2016) designed three efficient neighborhood search
algorithms called 1-ILS*, 2-ILS and 3-ILS. Besides, the au-
thor also proposed a novel swap operation called Trellis-
swap, resulting in a novel Trellis-neighborhood search al-
gorithm named Tr-ILS*. According to the literature, the
current best heuristic algorithm for the LSC problem is
called MMCOL (Jin and Hao 2019), which is mainly based
on a constraint propagation technique, a problem-specific
crossover operator, an iterated tabu search procedure and
a distance-quality-based pool updating strategy. Besides, a
transformation method is also proposed to convert an LSC
instance to a domain-constrained Latin square graph (Jin and
Hao 2019). Although the MMCOL algorithm performs very
well on some hard graphs, it has to cost lots of computation
time for obtaining an arbitrary legal solution.

Although previous works made progress in solving the
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LSC problem in terms of success rate, the performance is
still not satisfactory since they usually wasted lots of com-
putation time. For many LSC applications (Barry and Hum-
blet 1993; Ansótegui et al. 2004), the resource of computa-
tion time is very important. To address this, we use the Latin
square graph to denote the LSC problem and then develop a
fast local search algorithm based on three main novel ideas.

Firstly, we design a reduction reasoning-based initializa-
tion method called Construct for constructing an initial so-
lution, which can be divided into two phases: reduction and
construction. In the reduction phase, three reduction rules
are used to fix several grids with specific symbols, which
can reduce the scale of problems. In the construction phase,
Construct utilizes a simple and fast construction process to
generate a solution served as the subsequent search process.

Secondly, a conflict value selection heuristic is presented
to decide which moving operation should be selected to up-
date the candidate solution. In the proposed selection heuris-
tic, we first use a very common function as the primary scor-
ing function, which can intuitively reflect the changes of
the solution quality regarding to the candidate solution. To
deal with the issue about tie-breaking in the primary scoring
function, we propose a novel function as the secondary scor-
ing function. We quantify the history conflicting information
of each vertex over a period of time, denoted as cscore. Our
secondary scoring function is based on the cscore values,
which measures the neighborhood changing information of
candidate solution during the search history.

Thirdly, we propose the history information perturbation
mechanism to restart the local search process, which in-
cludes the pool updating and solution perturbing. In the pool
updating, we employ a solution pool to store the best solu-
tions. To maintain and update the solution pool, two key con-
cepts are defined, including the property of vertex (state)
and the definition of similarity (≈). In the solution perturb-
ing, we refer to the state values of vertices as the selection
criterion to modify the candidate solution.

By incorporating these three ideas, we develop a local
search algorithm for the LSC problem called FastLSC. Ex-
tensive experiments are carried out to evaluate FastLSC on
two classical benchmarks used in previous literature. Exper-
imental results show that FastLSC outperforms its competi-
tors on almost all instances in terms of success rate and run
time. Besides, we also conduct experiments to analyze the
effectiveness of the proposed ideas.

The remainder of the paper is organized as follows.
The next section introduces some basic definitions. Sec-
tion 3 presents a reduction reasoning-based initialization
method. Section 4 presents a conflict value selection heuris-
tic designed for the LSC problem. Section 5 describes our
FastLSC algorithm based on the history information pertur-
bation mechanism. Experimental results are shown in Sec-
tion 6 and Section 7 gives concluding remarks.

Preliminaries
An arbitrary legal Latin square Ln is an n × n array filled
with n different symbols, each occurring exactly once in
each row and exactly once in each column. If some grids are
empty, then Ln

p is called a partial Latin square. The Latin

square completion (LSC) problem aims to fill symbols (i.e.,
{1, 2, . . . , n}) to empty grids of Ln

p to obtain an arbitrary
legal Latin square.

Review of Latin Square Graph
Recently, Jin and Hao (2019) define a Latin square graph
G = (V,E) to intuitively show a partial Latin square Ln

p ,
where V = {vij | 1 ≤ i ≤ n, 1 ≤ j ≤ n} represents
all grids and vertex vij denotes a grid on the ith row and
the jth column. If two grids u,w ∈ V are in the same row
or column, then we say (u,w) ∈ E. Thus, |V | = n2 and
|E| = n2(n − 1). For each vertex v ∈ V , the neighbors
of vertex v is defined as N(v) = {u ∈ V | (v, u) ∈ E},
and the degree of vertex is d(v) = |N(v)| = 2(n − 1). For
∀vij ∈ V , its row vertex set is denoted as RN(vij) = {vik |
1 ≤ k ≤ n, k ̸= j}, while its column vertex set is denoted
as CN(vij) = {vkj | 1 ≤ k ≤ n, k ̸= i}. We can easily get
that N(v) = RN(v) ∪ CN(v).

An independent set I is a subset of V such that no two
vertices are adjacent, i.e., (v, u) /∈ E for ∀v, u ∈ I . A legal
n-coloring is a partition of V into n independent sets (color
classes), i.e., Vn

l = {Vi | 1 ≤ i ≤ n}. For a Latin square
graph G = (V,E), the LSC problem can be encoded as
the precoloring extension problem (PEP) (Biro, Hujter, and
Tuza 1992), and the size of color classes is n. In the PEP
problem, we use D(v) = {Vj} to denote that vertex v has
been already put into a fixed color class Vj , while the color
domain of each remaining vertex u is denoted as D(u) =
{V1, . . . , Vn}. Thus, the aim of the LSC problem can be seen
as finding a legal n-coloring where the number of vertices
for each color class is exactly n. During the search process,
Vn is used to denote the current set of color classes.

A Novel Reduction Reasoning-Based
Initialization Method

In this section, we first design three reduction rules to sim-
plify the problem instances and then introduce the initializa-
tion process under the reduced instances.

Reduction Rules
To improve the performance of local search for the LSC
problem on the hard instances with large sizes, three reduc-
tion rules are introduced in which the first reduction rule has
been already used into reducing the scale of LSC instances
(Jin and Hao 2019).

Reduction Rule 1: If a vertex v has only one optional
color class (i.e., D(v) = {Vi}), then vertex v should be put
into the color class Vi, D(v) = ∅ and D(u) = D(u) \ {Vi}
for ∀u ∈ N(v).

Reduction Rule 2: For a vertex v, Sr
v = D(v) \

∪u∈RN(v)D(u). If the size of Sr
v is exactly one (i.e., Sr

v =
{Vi}), then vertex v should be put into the only one color
class Vi, D(v) = ∅ and D(u) = D(u)\{Vi} for ∀u ∈ N(v).

Reduction Rule 3: For a vertex v, Sc
v = D(v) \

∪u∈CN(v)D(u). If the size of Sc
v is exactly one (i.e., Sc

v =
{Vi}), then vertex v should be put into the only one color
class Vi, D(v) = ∅ and D(u) = D(u)\{Vi} for ∀u ∈ N(v).
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Figure 1: An example of three reduction rules.

The correctness of the second and third reduction rules is
very obvious. Each grid in the same row (or column) needs
to be filled with different symbols. Assuming that the color
domain of vertex v contains one special color class Vi which
doesn’t occur in the color domain of any vertex in v’s row
(or column) vertex set. It means that vertex v has only one
option that v should be put into Vi. Note that, as far as we
know, although these two rules are relatively simple, they
have never been applied into heuristic LSC algorithms.

To make readers clearly understand our reduction rules,
we present an example in Figure 1, including a partial
Latin square L3

p with 2 filled grids and 7 empty grids as
well as the corresponding Latin square graph with 9 ver-
tices and 18 edges. Assuming that the set of color classes
V3 = {V1, V2, V3}. Firstly, we can put v11 and v23 into V3

and V2 since these two grids are filled ones. Afterwards, v13
is reduced by filling it with V1 according to the reduction
rule 1. The next reduction vertex is v22 based on the reduc-
tion rule 2. Note that when a vertex v is reduced, we will
also update the corresponding D(u) for ∀u ∈ N(v). In this
example, we can reduce all vertices based on our reduction
rules, and then obtain a legal Latin square.

The Novel Initialization Algorithm
By utilizing the proposed reduction rules, we can iteratively
fix a considerable portion of the grids during the initial re-
duction process. Afterwards, we construct an initial LSC so-
lution by using a simple and fast construction process. Based
on the reduction and construction processes, we propose a
novel reduction reasoning-based initialization algorithm in
Algorithm 1.

At the beginning, the algorithm initials the color domain
of each vertex, which is mainly divided into two kinds of
vertices, i.e., filled and empty grids. For each filled grid vij ,
its color domain D(vij) is set to its fixed color class Vx,
while for each remaining empty grid v′ij , its color domain

Algorithm 1: Construct(G)

Input: A Latin square graph G = (V,E) where |V | = n2

Output: The set of color classes Vn

1 initialize a color domain D(v) for ∀v ∈ V ;
2 initialize a color class Vi for ∀Vi ∈ Vn;
3 CandSet := V ;
4 while CandSet is not empty do
5 if there exists vertex v1 ∈ CandSet satisfying any

reduction rule or as a filed grid then
6 V := V \ {v1};
7 put vertex v1 into a color class Vi based on

reduction rule;
8 CandSet := CandSet \ {v1};
9 D(u) := D(u) \ {Vi} for ∀u ∈ N(v1);

10 else break ;

11 while CandSet is not empty do
12 select a random vertex v2 from CandSet;
13 CandSet := CandSet \ {v2};
14 put vertex v2 into a random color class selected from

D(v2);

15 return Vn;

D(v′ij) is set to {V1, . . . , Vn}. Each color class V n
i needs to

be initialized (line 2). In the line 3, the candidate vertex set
CandSet is set to V . Afterwards, the algorithm comes into
the initial reduction process (lines 4–10). If the algorithm
can remove a vertex v1 based on the reduction rules, then
the algorithm will remove it and then fix its color set (lines
5–7). The corresponding CandSet and the color domain of
v’s neighbors should be updated (lines 8 and 9).

After any vertices cannot be removed, the algorithm turns
to the simple and fast construction process (lines 11-14).
During the construction process, the algorithm first selects
a random vertex v2 and removes it from CandSet (lines 12
and 13). The algorithms picks a random color class from the
color domain of v2 and then adds v2 into this color class
(line 14). At last, Vn is returned (line 15).

The Conflict Value Selection Heuristic
We design a selection heuristic based on the definition of
conflict value. Before proposing this heuristic, we first in-
troduce the primary scoring function.

The Primary Scoring Function
To define the primary scoring function, we first give some
necessary concepts. Assuming that the current color class
set is Vn and Vk ∈ Vn. If v, u ∈ Vk and (v, u) ∈ E, then
(v, u) is called a conflict edge. We use CL(Vn) to denote
the total number of conflict edges in Vn. Moving a vertex v
from a color class Vi to another color class Vj is denoted as
Move(v, Vi, Vj), which leads to a neighboring color class
set Vn

c . When performing an operation Move(v, Vi, Vj), we
formally define the primary scoring function as below.

pscore(v, Vi, Vj) = CL(Vn)− CL(Vn
c )

Note that the primary scoring function pscore intuitively
reflects the effects of the moving operation for the current
color class set.
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The Secondary Scoring Function
The primary scoring function always fails to select the sole
moving operation. Thus, to further select a moving operation
among these operations with the same best pscore, we de-
sign the secondary scoring function based on the definition
of conflict value.

We first define the conflict value of vertex v, denoted as
cscore(v). Initially, the cscore value of each vertex is set to
0. Two updating rules are proposed to maintain the cscore
value of each vertex as follow.

Updating Rule 1: After each iteration of local search,
cscore(v) and cscore(u) both are increased by one, for each
conflict edge (v, u).

Updating Rule 2: When performing Move(v, Vi, Vj),
cscore(v) is reset to 0. If there exists vertex u ∈ Vi and
N(u) ∩ Vi = {v}, then cscore(u) = 0.

In the second rule, if moving v will eliminate all conflict
edges about u, then cscore(u) is also reset to 0.

Intuitions underlying the cscore are given below. cscore
reflects either how long a vertex v stays in its color class
since the last time it was moved or that the number of v’s
conflict edges becomes 0 due to moving another vertex’s
position. Furthermore, cscore accumulates the number of
the conflict edges over this period of time. Thus, using the
cscore values makes candidate vertices be assigned to dif-
ferent selection priorities based on the search information.

Selection Rule
For any vertex v, the pscore(v, Vi, Vj) value can be consid-
ered as the immediate impact value, while cscore reflects the
history conflicting information of vertices over a period of
time. Combining the above two scoring functions, our novel
selection rule is proposed.

Selection Rule: pick an operation Move(v, Vi, Vj) with
the biggest pscore value, breaking ties by preferring the one
with the biggest cscore value, further ties are broken ran-
domly.

The intuition behind our selection rule is to choose the
move that immediately reduces the most the conflicts and tie
breaking by choosing the vertex that has not been impacted
(directly or indirectly) by a move for the longest time.

The FastLSC Algorithm
Based on the novel initialization method and the conflict
value selection heuristic, we develop a local search algo-
rithm for the LSC problem named FastLSC. To deal with the
cycling problem, we use the same tabu strategy (Glover and
Laguna 1998; Jin and Hao 2019), i.e., recording the moving
operation (v, Vi, Vj) to prevent putting a just moved vertex
v back into Vi for the next β iterations.

We first introduce some notations. Parameter α denotes
the search depth. Vn

c and Vn
b are used to denote the current

set and the best obtained set of color classes, respectively.
We use vb and vc to denote vertex v in the respective sets
Vn
b and Vn

c . iter is the current step during the search process,
while we use Pool to denote the solution pool, which is used
to store the best solutions.

Algorithm 2: the FastLSC algorithm
Input: A Latin square graph G = (V,E) where |V | = n2,

the cutoff time
Output: The set of color classes Vn

b

1 Vn
c := Vn

b := Construct(G) and iter := 0;
2 initialize the solution set Pool;
3 vc.state := 0 for ∀vc ∈ V ;
4 while elapse time < cutoff do
5 depth := 0;
6 cscore(vc) := 0, for ∀vc ∈ V ;
7 while depth < α do
8 if CL(Vn

c ) ≤ CL(Vn
b ) then

9 Vn
b := Vn

c ;
10 vb.state := vc.state for ∀v ∈ V ;

11 select a moving operation Move(vc, V c
i , V

c
j )

based on selection rule and tabu strategy;
12 V c

i := V c
i \ {vc} and V c

j := V c
j ∪ {vc};

13 update the corresponding cscore values based on
two updating rules;

14 depth := depth+ 1 and iter := iter + 1;
15 vc.state := iter;
16 if CL(Vn

b ) == 0 then return Vn
b ;

17 Vn
c := Perturb(Vn

b , Pool);

18 return ∅;

In our FastLSC algorithm, for storing the information of
vertex v ∈ V , we define an additional property: state, de-
noted by v.state. In the beginning, for each vertex v ∈ V ,
the v.state is set to 0. Then, whenever the v is moved from
one color class to another one, v.state is set to the number
of current step (i.e., iter). The pseudo code of FastLSC is
shown in Algorithm 2.

Now we describe the FastLSC algorithm in detail.
At the beginning, Vn

c and Vn
b are generated by calling

Construct(G) (line 1). During this process, some redun-
dant vertices will be removed. The value of iter, the set of
solutions Pool and the step value of each vertex should be
initialized accordingly. There is an outer loop (lines 4–17)
and an inner loop (lines 7–16). In each inner loop (depth <
α), the algorithm searches for the set of color classes with
the smaller total number of conflict edges. Before each in-
ner loop, depth needs to be reset to 0 (line 5) and the algo-
rithm initializes the cscore of each vertex (line 6). After each
inner loop, the algorithm uses a novel perturbation method
(Perturb) to obtain the initial solution for the next round,
which will be introduced in the next subsection (line 17).
Finally, if the algorithm fails to find any arbitrary legal so-
lution, then the algorithm returns ∅ when a cutoff time is
reached (line 18).

In each iteration of the inner loop, FastLSC chooses one
moving operation to modify the current set of color classes
Vn
c . First, if the total number of conflict edges for Vn

c is not
bigger than that for Vn

b , then Vn
b and the related state in-

formation will be updated accordingly (lines 8–10). After-
wards, the algorithm turns to select a moving operation via
using our proposed selection rule and tabu strategy, and then
moves vertex v from V c

i to V c
j . After then, the correspond-
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Algorithm 3: The Perturb Function
Input: The best obtained set of color classes Vn

b and the
solution set Pool

Output: Initial solution Vn
c

1 if CL(Vn
b ) < CL(Vn

j ) for ∀CL(Vn
j ) ∈ Pool then

2 remove all solutions from Pool;
3 Pool := Pool ∪ {Vn

b } and Vn
c := Vn

b ;

4 else
5 if Vn

i ≈ Vn
b for ∃Vn

i ∈ Pool then
6 vij .state := vbj .state for ∀vj ∈ V ;
7 select a random one Vn

c from Pool;

8 else
9 if |Pool| < pool size then

10 Pool := Pool ∪ {Vn
b }

11 else
12 remove the oldest one Vn

j from Pool;
13 Pool := Pool ∪ {Vn

b };

14 Vn
c := Vn

b ;

15 minIter := min{vcj .state | vcj ∈ V };
16 maxIter := max{vcj .state | vcj ∈ V };
17 RCL := (maxIter −minIter)× θ +minIter;
18 C := ∅;
19 for ∀vcj ∈ V do
20 if vcj .state ≤ RCL then C := C ∪ {vcj} ;

21 cnt := ⌊|C|/2⌋;
22 while cnt > 0 do
23 pop a random vertex vc from C;
24 select a random color class V c

i from D(vc);
25 put vc into the V c

i of Vn
c ;

26 cnt := cnt− 1;

27 return Vn
c ;

ing cscore, depth and iter should be updated (lines 13 and
14). In the next step, the algorithm uses vc.state to record
the current number of steps (line 15). At last, if Vn

b is an
arbitrary legal set of color classes, then the algorithm will
return it (line 16).

The Perturb Function
Local search algorithms usually use some perturbation
methods to diversify the solution when meeting the local
optimal (Cai, Luo, and Zhang 2017; Xu, He, and Li 2019;
Wang et al. 2020a,b). In the solution restart phase of our
algorithm, an important component is called history infor-
mation perturbation mechanism (Perturb), which restarts
the algorithm by constructing a new solution based on pre-
vious history information when falling into the local optima.
Specially, we filter the optimal solution obtained each time
and add it to the solution pool if possible. Afterwards, we
will select a solution from the solution pool, and then mod-
ify this solution by some perturbation strategies as the initial
solution for the next round of local search. As we know, our
perturbation mechanism is a novel idea by combining the re-
spective advantage of population-based search and powerful
local search.

Before introducing the Perturb function, we first define

the similarity (≈) of two solutions as below.

Definition 1. For two solutions Vn
i and Vn

j , if these two so-
lutions have the same conflict edges and each conflict edge
on these solutions belongs to the same color class respec-
tively, then we call Vn

i and Vn
j are similarity, denoted as

Vn
i ≈ Vn

j .

Here, we give an example to explain the defini-
tion of similarity. Suppose that V3

1 = {{v11, v22,
v33}, {v12, v13, v21, v31}, {v23, v32}} and V3

2 = {{v11, v23,
v32}, {v12, v13, v21, v31}, {v22, v33}}. Obviously, V3

1 and
V3
2 are not the same, but they have the same conflict edges.

All conflict edges belong to the same second color class.
Thus, V3

1 ≈ V3
2 .

The pseudo code of Perturb is introduced in Algorithm
3. The Perturb function mainly includes two phases: the
updating phase of the solution pool (lines 1–14) and the re-
construction solution phase based on the information of ver-
tex state (lines 15–26).

In the first phase, if Vn
b is better than any solution of Pool,

then the algorithm clears all solutions from Pool and then
adds the best solution Vn

b into Pool (lines 1–3). Vn
b will be

used as the initial perturbation solution. Otherwise, the al-
gorithm determines whether Vn

b is similar to a solution Vn
i

in the Pool. If so, then the state value of each vertex in Vn
i

should be updated by Vn
b (line 6). Then, we choose a ran-

dom solution Vn
c from the Pool as the initial perturbation

solution (line 7). If there are no such similar solutions in
Pool, then the algorithm needs to add Vn

b into the Pool. If
the number of solutions in the Pool is less than pool size,
then the algorithm will directly add Vn

b into the Pool (line
10). In our work, pool size is set to 20, i.e., storing at most
20 solutions. Otherwise, we will replace the oldest solution
in the solution pool Pool with Vn

b (lines 11–13). The oldest
solution means that this solution stays the longest time in
the solution pool. In the following step, Vn

b is selected as the
initial perturbation solution (line 14).

In the second phase, the restrict candidate list RCL is
computed based on the maximum and minimum values of
state (lines 15–17). Then, RCL is used to pick some ver-
tices whose state value is smaller than RCL and then the al-
gorithm adds these satisfied vertices into C (lines 18–20). In
the next steps, we randomly select half of vertices in C. For
each selected vertex, the algorithm will randomly change the
color classes of these vertices based on their respective color
domains (lines 24 and 25).

Experimental Results
We carry out extensive experiments to evaluate the perfor-
mance of FastLSC. We compare FastLSC with five state-of-
the-art heuristic algorithms: 1-ILS* (2016), 2-ILS (2016), 3-
ILS (2016), Tr-ILS* (2016) and MMCOL (2019). The code
of MMCOL was kindly provided by the authors1. Because
the remaining four algorithms are not available to us, we
have to compare their results in the literature by using the
same cutoff time. All algorithms are implemented in C++
and compiled by g++ with ‘-O3’ option. All experiments of

1http://www.info.univ-angers.fr/∼hao/lsc.html
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our algorithm and competitors are run on Intel Xeon E5-
2640 v4 @ 2.40GHz CPU with 128GB RAM under CentOS
7.5.

For our experiments, we considered two popular bench-
marks including the random benchmark 2 and the COLOR03
benchmark3, which has already used into testing the per-
formance of previous heuristic LSC algorithms (Gomes and
Shmoys 2002; Haraguchi 2016; Jin and Hao 2019). The ran-
dom benchmark consists of 1800 instances. There are 18
families, each of which contains 100 instances with the same
type. For each family, QWH-n-r denotes that n is the order
of Latin square and r is the ratio of filled grids over the n×n
grids. As for the COLOR03 benchmark, we use the same 19
traditional instances as previous works.

For a competitor MMCOL, we set the parameters as same
as what described in the corresponding literature. There are
three parameters in our algorithm. For the sake of fairness,
the search depth α and the tabu strength β use the same val-
ues as MMCOL, i.e., α = 105 and β = rand()%10+0.6×
CL(Vn). For our other parameter, we set θ to 0.2 according
to our preliminary experiment.

For each instance, all algorithms are executed 30 times
with random seeds 1,2,3. . . 30. Each time terminates upon
either finding an arbitrary legal solution or reaching a given
cutoff time denoted as ct. For all algorithms, we test them
under three cutoff time, 10, 100 and 1000 seconds. For each
algorithm, we report the number of successful runs #suc.
For all random seeds, time (in seconds) denotes the mean
value of the run time when an algorithm obtains an arbi-
trary legal solution. For the random benchmark, we report
for each family the averaged value of time, denoted as time.
Besides, for each family in the random benchmark, we use
suct to denote the number of instances for which an algo-
rithm can obtain at least one arbitrary legal Latin square for
the same instance over 30 times. The bold values in the ta-
bles indicate the best solution among all the algorithms.

Results on Random Benchmark
Because we failed to obtain the source codes of four ILS ver-
sions, we directly used their experimental results where the
cutoff time was set to 10 seconds in the literature. We run
FastLSC and MMCOL under the same cutoff time. Table 1
presents that the best ILS algorithm Tr-ILS* can only get all
results for 6 families, while FastLSC and MMCOL both can
obtain all results for 15 families under the same cutoff time.
Observed from the results of Table 1, the performance of
FastLSC and MMCOL totally dominates the remaining four
competitors. Thus, in the following part, we mainly compare
FastLSC with MMCOL.

Table 2 shows the comparison results between FastLSC
and MMCOL under different cutoff time. For three instance
families (i.e., r = 70), FastLSC shows superiority to MM-
COL in terms of both success rate and run time, while the
success rates of FastLSC and MMCOL on the remaining
families are always 100% under different cutoff time. To
further verify the performance of FastLSC, Table 3 displays

2https://github.com/YanJINFR/Latin-Square-Completion.git
3http://mat.gsia.cmu.edu/COLOR03/

Instance 1-ILS* 2-ILS 3-ILS Tr-ILS* MMCOL FastLSC
Family ct=10s

suct suct suct suct suct suct
50-30 100 100 95 100 100 100
50-40 99 99 92 100 100 100
50-50 96 96 83 100 100 100
50-60 30 23 5 36 100 100
50-70 0 0 0 0 28 99
50-80 100 100 100 100 100 100
60-30 100 100 51 100 100 100
60-40 96 99 52 100 100 100
60-50 89 95 17 95 100 100
60-60 16 12 0 23 100 100
60-70 0 0 0 0 8 94
60-80 98 100 99 99 100 100
70-30 100 100 19 99 100 100
70-40 95 97 8 98 100 100
70-50 82 87 0 84 100 100
70-60 5 2 0 10 100 100
70-70 0 0 0 0 0 82
70-80 93 97 95 98 100 100

Table 1: Results of FastLSC and all competitors in the ran-
dom benchmark. We use n-r to denote QWH-n-r.

Instance MMCOL FastLSC MMCOL FastLSC
Family ct=1000s ct=100s

#suc time #suc time #suc time #suc time
50-30 3000 0.15 3000 0.11 3000 0.15 3000 0.11
50-40 3000 0.12 3000 0.09 3000 0.12 3000 0.09
50-50 3000 0.15 3000 0.11 3000 0.15 3000 0.11
50-60 3000 1.32 3000 0.72 3000 1.32 3000 0.72
50-70 2814 221.91 2919 70.63 694 63.77 2417 26.66
50-80 3000 <0.01 3000 <0.01 3000 <0.01 3000 <0.01
60-30 3000 0.34 3000 0.26 3000 0.34 3000 0.26
60-40 3000 0.27 3000 0.20 3000 0.27 3000 0.20
60-50 3000 0.34 3000 0.26 3000 0.34 3000 0.26
60-60 3000 3.30 3000 1.69 3000 3.30 3000 1.69
60-70 2971 230.43 2999 40.99 246 80.09 2776 30.17
60-80 3000 <0.01 3000 <0.01 3000 <0.01 3000 <0.01
70-30 3000 0.69 3000 0.52 3000 0.69 3000 0.52
70-40 3000 0.55 3000 0.40 3000 0.55 3000 0.40
70-50 3000 0.74 3000 0.50 3000 0.74 3000 0.50
70-60 3000 6.81 3000 3.05 3000 6.81 3000 3.05
70-70 2918 365.98 3000 45.39 9 68.76 2773 35.41
70-80 3000 0.04 3000 <0.01 3000 0.04 3000 <0.01

Table 2: Results of MMCOL and FastLSC in the random
benchmark under different cutoff time. We use n-r to denote
QWH-n-r.

the detailed results where either FastLSC or MMCOL fails
to obtain 100% success rate under 30 times on 1800 random
instances. Results show that FastLSC performs better than
MMCOL for almost all instances with the exception of three
cases (i.e., QWH-50-70-49, QWH-50-70-51 and QWH-60-
70-99). Particularly, FastLSC cannot achieve 100% success
rate for only 15 instances, while MMCOL fails to reach
100% success rate for 74 instances.
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Instance MMCOL FastLSC Instance MMCOL FastLSC

#suc time #suc time #suc time #suc time
QWH-50-70-100 18 603.74 26 331.17 QWH-70-70-1 29 374.25 30 30.02
QWH-50-70-13 16 465.31 26 295.16 QWH-70-70-100 29 322.08 30 52.83
QWH-50-70-20 10 702.51 14 416.95 QWH-70-70-15 29 287.84 30 38.08
QWH-50-70-21 24 350.01 30 262.17 QWH-70-70-18 27 462.08 30 41.04
QWH-50-70-25 27 296.44 30 130.15 QWH-70-70-20 29 320.54 30 35.63
QWH-50-70-26 5 681.32 15 394.72 QWH-70-70-22 29 358.13 30 39.63
QWH-50-70-27 28 345.83 30 100.16 QWH-70-70-23 26 511.47 30 44.08
QWH-50-70-28 29 449.32 29 143.12 QWH-70-70-24 29 424.61 30 39.40
QWH-50-70-29 29 366.17 30 68.84 QWH-70-70-25 23 527.26 30 93.41
QWH-50-70-35 27 386.54 30 75.67 QWH-70-70-26 28 469.08 30 57.65
QWH-50-70-36 29 446.89 30 110.86 QWH-70-70-28 29 426.80 30 36.70
QWH-50-70-38 29 326.07 30 77.28 QWH-70-70-29 28 469.39 30 66.30
QWH-50-70-39 29 300.28 30 79.73 QWH-70-70-30 22 551.02 30 72.23
QWH-50-70-40 26 428.58 30 75.53 QWH-70-70-32 26 606.84 30 54.97
QWH-50-70-45 29 298.12 30 45.73 QWH-70-70-36 26 553.23 30 56.11
QWH-50-70-47 29 188.02 30 41.02 QWH-70-70-37 29 411.17 30 44.47
QWH-50-70-49 30 151.14 29 16.67 QWH-70-70-4 27 425.47 30 42.28
QWH-50-70-51 30 380.85 29 101.96 QWH-70-70-40 29 471.37 30 42.77
QWH-50-70-57 2 422.46 3 920.68 QWH-70-70-41 27 491.50 30 66.61
QWH-50-70-58 15 541.68 28 314.77 QWH-70-70-43 29 409.64 30 48.47
QWH-50-70-59 29 307.05 30 33.89 QWH-70-70-45 27 673.50 30 60.43
QWH-50-70-6 25 420.07 30 177.28 QWH-70-70-47 27 561.32 30 44.41
QWH-50-70-65 29 328.80 29 69.78 QWH-70-70-48 27 455.67 30 39.54
QWH-50-70-70 23 358.27 30 200.98 QWH-70-70-50 29 460.45 30 47.26
QWH-50-70-72 27 321.14 29 122.05 QWH-70-70-53 29 283.05 30 30.70
QWH-50-70-74 12 525.87 25 283.60 QWH-70-70-58 28 513.30 30 82.36
QWH-50-70-8 22 459.28 29 376.46 QWH-70-70-59 29 590.32 30 66.18
QWH-50-70-83 28 486.30 28 175.30 QWH-70-70-62 29 378.98 30 48.61
QWH-50-70-90 28 357.70 30 213.41 QWH-70-70-63 29 343.15 30 50.99
QWH-60-70-100 28 488.10 30 82.56 QWH-70-70-64 28 486.28 30 95.07
QWH-60-70-22 29 307.56 30 45.78 QWH-70-70-66 29 331.61 30 42.60
QWH-60-70-32 29 231.30 30 30.53 QWH-70-70-68 29 365.72 30 83.49
QWH-60-70-50 20 664.04 30 156.44 QWH-70-70-71 29 348.06 30 38.28
QWH-60-70-68 21 586.12 30 166.52 QWH-70-70-72 24 503.07 30 71.75
QWH-60-70-74 27 338.92 30 60.57 QWH-70-70-75 29 338.82 30 48.29
QWH-60-70-77 29 208.56 30 32.12 QWH-70-70-83 29 437.59 30 54.12
QWH-60-70-9 29 397.96 30 102.04 QWH-70-70-88 28 477.67 30 58.96
QWH-60-70-96 29 368.27 30 75.58 QWH-70-70-96 29 356.84 30 41.19
QWH-60-70-99 30 196.62 29 36.21

Table 3: Detailed results of MMCOL and FastLSC in the random benchmark under ct =1000.

Results on COLOR03 Benchmark
Results on the COLOR03 benchmark are reported in Table
4. For all instances, FastLSC has the best performance in
terms of success rate and run time, except slightly worse
than MMCOL on only one instance. Specially, for 17 in-
stances, these algorithms both can steadily find an arbitrary
legal solution over 30 times, but FastLSC is about 2 to 3
times faster than MMCOL.

Figure 2 reports the average run time when FastLSC and
MMCOL obtain the same success rate on all benchmarks,
which indicates the effectiveness of the proposed FastLSC
algorithm.

Analysis of Proposed Ideas
To study the effectiveness of our reduction rules, we com-
pare RedAll with Red1 and Red23. red denotes the reduc-
tion number of vertices, while red denotes the average re-

duction number of vertices for each family. Table 5 shows
that RedAll obtains better reduction ratio than Red1 and
Red23, which illustrates the effectiveness of our reduction
rules on all benchmarks. Moreover, for 65 instances, our
FastLSP algorithm can obtain a legal solution by only us-
ing the reduction rules. We also add our reduction rules into
MMCOL, resulting in a new algorithm MMCOL+RedAll.
Results show that MMCOL+RedAll performs slightly bet-
ter than MMCOL, but it is still worse than FastLSC.

To show the effectiveness of the secondary scoring func-
tion and our perturb function, we compare FastLSC with two
alternative algorithms where FastLSC1 randomly puts 30%
vertices into C simply by replacing lines 19 and 20 in Al-
gorithm 3 for our perturb function and FastLSC2 uses the
random selection method instead of our secondary scoring
function. We ignore some instances where the difference of
run time of the two algorithms is less than 0.1 seconds. The
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Instance MMCOL FastLSC MMCOL FastLSC
ct=1000s ct=100s
#suctime #suctime #suctime #suctime

q*18*120 30 <0.0130 <0.0130 <0.0130 <0.01
q*30*316 30 0.12 30 0.05 30 0.12 30 0.05
q*30*320 30 0.56 30 0.13 30 0.56 30 0.13
q*33*381* 30 164.7 30 32.85 13 41.46 28 27.87
q*35*405 30 17.07 30 5.30 30 17.07 30 5.30
q*40*528 30 12.52 30 3.11 30 12.52 30 3.11
q*5*10 30 <0.0130 <0.0130 <0.0130 <0.01
q*50*750* 1 332 1 582.7 0 N/A 0 N/A
q*50*825* 30 85.76 30 24.68 20 61.29 30 24.68
q*60*1080*0 N/A 4 384.8 0 N/A 0 N/A
q*60*1152*29 347.4 30 47.30 1 26.08 27 36.66
q*60*1440 30 2.60 30 1.17 30 2.60 30 1.17
q*60*1620 30 0.84 30 0.51 30 0.84 30 0.51
q*70*2450 30 0.59 30 0.44 30 0.59 30 0.44
q*70*2940 30 0.54 30 0.41 30 0.54 30 0.41
qg.order100 30 424.7 30 10.66 0 N/A 30 10.66
qg.order30 30 0.05 30 0.02 30 0.05 30 0.02
qg.order40 30 0.19 30 0.09 30 0.19 30 0.09
qg.order60 30 1.78 30 0.65 30 1.78 30 0.65

Table 4: Results of MMCOL and FastLSC in the COLOR03
benchmark.

Instance RedAll Red1 Red23 Instance RedAll Red1 Red23
red red red Family red red red

qg.order100 0 0 0 50-30 0 0 0
qg.order30 0 0 0 50-40 0 0 0
qg.order40 0 0 0 50-50 0 0 0
qg.order60 0 0 0 50-60 0.58 0.19 0.39
q*18*120 70 26 66 50-70 29.33 9.19 19.57
q*30*316 37 8 24 50-80 495.7 495.24 495.53
q*30*320 43 23 24 60-30 0 0 0
q*33*381* 14 2 12 60-40 0 0 0
q*35*405 41 15 22 60-50 0 0 0
q*40*528 28 7 16 60-60 0.12 0.03 0.09
q*5*10.1 10 10 10 60-70 14.18 4.63 9.7
q*50*750* 26 2 21 60-80 713.42 516.63 713.39
q*50*825* 2 1 1 70-30 0 0 0
q*60*1080* 8 1 7 70-40 0 0 0
q*60*1152* 9 0 9 70-50 0 0 0
q*60*1440 0 0 0 70-60 0.03 0.03 0
q*60*1620 0 0 0 70-70 6.58 2.25 4.41
q*70*2450 0 0 0 70-80 971.34 162.24 958.53
q*70*2940 0 0 0

Table 5: The information of our reduction rules. RedAll uses
all reduction rules, Red1 only uses the first reduction rule
and Red23 uses the latter two reduction rules. We use n-r to
denote QWH-n-r.

results in Table 6 intuitively shows that the proposed two
strategies play a key role in the FastLSC algorithm. Addi-
tional, combining the results in Tables 2, 4, and 6, it shows
that FastLSC1 outperforms MMCOL, which can indirectly
verify the effectiveness of our perturb function.
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Figure 2: Average run time of MMCOL and FastLSC.

Instance FastLSC1 FastLSC2 FastLSC
Family #suc time #suc time #suc time
QWH-50-60 3000 1.22 3000 0.85 3000 0.72
QWH-50-70 2925 90.37 2915 91.37 2919 70.63
QWH-60-60 3000 5.12 3000 1.80 3000 1.69
QWH-60-70 1049 405.83 2999 67.52 2999 40.99
QWH-70-70 3000 40.14 3000 54.93 3000 45.39
Instance #suc time #suc time #suc time
q*33*381* 30 37.17 30 33.56 30 32.85
q*35*405 30 5.4 30 5.96 30 5.3
q*40*528 30 3.32 30 3.61 30 3.11
q*50*750* 1 646.43 0 N/A 1 582.66
q*50*825* 29 79.69 30 20.74 30 24.68
q*60*1080* 0 N/A 4 717.62 4 384.78
q*60*1152* 3 543.94 30 52.29 30 47.30
q*60*1440 30 2.43 30 0.97 30 1.17
q*60*1620 30 0.6 30 0.34 30 0.51
qg.order100 30 11.35 30 16.47 30 10.66
qg.order60 30 0.67 30 1.19 30 0.65

Table 6: Comparing FastLSC with FastLSC1 and FastLSC2
on all benchmarks.

Conclusion

In this work, we propose several reduction rules, a conflict
value selection heuristic and a novel perturbation mecha-
nism for the LSC problem. Based on the above strategies, we
develop a local search algorithm FastLSC. Results present
that FastLSC outperforms the state-of-the-art heuristic algo-
rithms.

In the future, we plan to further study variants of sec-
ondary scoring function (Li et al. 2020; Cai and Zhang 2021)
in the context of the LSC problem to improve the algorithms.
Also we would like to apply the novel perturbation mecha-
nism into solving some other NP-hard problems.
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