
A First Mathematical Runtime Analysis of
the Non-dominated Sorting Genetic Algorithm II (NSGA-II)

Weijie Zheng1, Yufei Liu2, Benjamin Doerr2*

1 Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and
Engineering, Southern University of Science and Technology, Shenzhen, China
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Abstract

The non-dominated sorting genetic algorithm II (NSGA-II) is
the most intensively used multi-objective evolutionary algo-
rithm (MOEA) in real-world applications. However, in con-
trast to several simple MOEAs analyzed also via mathemat-
ical means, no such study exists for the NSGA-II so far. In
this work, we show that mathematical runtime analyses are
feasible also for the NSGA-II. As particular results, we prove
that with a population size larger than the Pareto front size by
a constant factor, the NSGA-II with two classic mutation op-
erators and three different ways to select the parents satisfies
the same asymptotic runtime guarantees as the SEMO and
GSEMO algorithms on the basic ONEMINMAX and LOTZ
benchmark functions. However, if the population size is only
equal to the size of the Pareto front, then the NSGA-II cannot
efficiently compute the full Pareto front (for an exponential
number of iterations, the population will always miss a con-
stant fraction of the Pareto front). Our experiments confirm
the above findings.

Introduction
Most real-world problems contain multiple conflicting ob-
jectives. Due to their population-based nature, evolutionary
algorithms (EAs) are a natural choice for such problems,
and in fact, such multi-objective evolutionary algorithms
(MOEAs) have been successfully used in many real-world
applications (Zhou et al. 2011).

Unfortunately, the theoretical understanding of MOEAs
falls far behind their success in practice. The first mathemat-
ical runtime analysis of an MOEA was conducted by Lau-
manns, Thiele, Zitzler, Welzl, and Deb (2002); Laumanns,
Thiele, and Zitzler (2004), who discussed the runtime of
the simple evolutionary multi-objective optimizer (SEMO),
a bi-objective counterpart of the randomized local search
heuristic, on the COCZ and LOTZ benchmarks. Giel (2003)
analyzed the global SEMO (GSEMO), the bi-objective
counterpart of the (1 + 1) EA, on the LOTZ function. Sub-
sequent theoretical works majorly focused on variants of
these algorithms and analyzed their runtime on the COCZ
and LOTZ benchmarks, on variants of them, on new bench-
marks, and on combinatorial optimization problems (Qian,
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Yu, and Zhou 2013; Bian, Qian, and Tang 2018; Roost-
apour et al. 2019; Qian, Bian, and Feng 2020; Bian et al.
2020; Doerr and Zheng 2021). We note that the (G)SEMO
algorithm keeps all non-dominated solutions in the popula-
tion and discards all others, which can lead to impractically
large population sizes. There are two theory works (Brock-
hoff, Friedrich, and Neumann 2008; Nguyen, Sutton, and
Neumann 2015) on the runtime of a simple hypervolume-
based EMO algorithm called (µ+ 1) SIBEA, regarding
both classic benchmarks and problems designed to high-
light particular strengths and weaknesses of this algorithm.
Like the SEMO and GSEMO, the (µ+ 1) SIBEA also cre-
ates a single offspring per generation; different from the
former, it works with a fixed population size µ. Recently,
also decomposition-based multi-objective evolutionary al-
gorithms were analyzed (MOEA/D) (Li et al. 2016; Huang
et al. 2019; Huang and Zhou 2020), which decompose the
multi-objective problem into several related single-objective
problems and then solve each single-objective problem in
a co-evolutionary manner. This direction is fundamentally
different from the above works and our research. Since it is
not primarily focused on multi-objective optimization, we
also do not discuss further the successful line of works that
solve constrained single-objective problems by turning the
constraint violation into a second objective, see, e.g., (Neu-
mann and Wegener 2006; Friedrich et al. 2010; Neumann,
Reichel, and Skutella 2011; Friedrich and Neumann 2015;
Qian et al. 2017, 2019; Crawford 2021).

As pointed out in the survey (Zhou et al. 2011), the major-
ity of the MOEAs used in research and applications builds
on the framework of the non-dominated sorting genetic al-
gorithm II (NSGA-II) (Deb et al. 2002). This algorithm uses
a fixed population size N and a complete order defined
by the non-dominated sorting and the crowding distance
to compare individuals. In each generation, N offspring
are generated from the parent population and the N best
individuals (according to the complete order) are selected
as new parent population. This approach is substantially
different from the (G)SEMO algorithm and hypervolume-
based approaches (and naturally completely different from
decomposition-based methods). Both the predominance in
practice and the fundamentally different working princi-
ples ask for a rigorous understanding of the NSGA-II, how-
ever, to the best of our knowledge so far no mathematical
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runtime analysis for the NSGA-II has appeared.1 We note
that the runtime analysis in (Osuna et al. 2020) considers a
(G)SEMO algorithm that uses the crowding distance as one
of several diversity measures used in the selection of the sin-
gle parent creating an offspring, but due to the differences of
the basic algorithms, none of the arguments used there ap-
pears helpful in the analysis of the NSGA-II.

Our contributions. This paper conducts a first step to-
wards theoretically understanding the working principles of
the NSGA-II. We regard the NSGA-II with three parent se-
lection strategies (choosing each individual as parent once,
choosing parents independently and uniformly at random,
and via N independent binary tournaments) and with two
classic mutation operators (one-bit mutation and standard
bit-wise mutation), but (in this first work) without crossover.
We prove that if the population size N is at least a certain
constant factor larger than the size of the Pareto front, then
each of these six variants of the NSGA-II computes the full
Pareto front of the ONEMINMAX benchmark with problem
size n in an expected number of O(n log n) iterations (The-
orems 2 and 6) and the front of the LOTZ benchmark in
O(n2) iterations (Theorems 8 and 9). When N = Θ(n), the
corresponding runtime guarantees in terms of fitness evalua-
tions, O(Nn log n) = O(n2 log n) and O(Nn2) = O(n3),
have the same asymptotic order as those proven previously
for the SEMO, GSEMO, and (µ+ 1) SIBEA (when µ ≥
n+ 1 and µ = O(n) for the (µ+ 1) SIBEA).

Using a population size larger than the size of the Pareto
front is necessary. We prove that if the population size is
equal to the size of the Pareto front, then the NSGA-II (ap-
plying one-bit mutation once to each parent) regularly loses
solutions on the front. This effect is strong enough so that
with high probability for an exponential time each genera-
tion of the NSGA-II does not cover a constant fraction of
the Pareto front of ONEMINMAX. Our experiments confirm
these theoretical findings and give some quantitative esti-
mates, e.g., that the fraction of the Pareto front not covered
when using population size equal to the front size is around
20% for ONEMINMAX and 40% for LOTZ. Overall, our
results show that the NSGA-II despite its higher complex-
ity (parallel generation of offspring, selection based on non-
dominated sorting and crowding distance) admits mathemat-
ical runtime analyses in a similar fashion as done before for
simpler MOEAs.

Preliminaries
In this section, we give a brief introduction to multi-
objective optimization and to the NSGA-II framework. For
the simplicity of presentation, we shall concentrate on two
objectives, both of which have to be maximized. A bi-
objective objective function on some search space Ω is a
pair f = (f1, f2) where fi : Ω → R. We write f(x) =

1We note that by mathematical runtime analysis, we mean the
question how many function evaluations a black-box algorithm
takes to achieve a certain goal. The computational complexity of
the operators used by the NSGA-II, in particular, how to most effi-
ciently implement the non-dominated sorting routine, is a different
question (and one that is well-understood (Deb et al. 2002)).

(f1(x), f2(x)) for all x ∈ Ω. We shall always assume that
we have a bit-string representation, that is, S = {0, 1}n for
some n ∈ N. The challenge in multi-objective optimization
is that usually there is no solution x that maximizes both f1
and f2 and thus is at least as good as all other solutions.

More precisely, in bi-objective maximization, we say x
weakly dominates y, denoted by x � y, if and only if
f1(x) ≥ f1(y) and f2(x) ≥ f2(y). We say x strictly dom-
inates y, denoted by x � y, if and only if f1(x) ≥ f1(y)
and f2(x) ≥ f2(y) and at least one of the inequalities is
strict. We say that a solution is Pareto-optimal if it is not
strictly dominated by any other solution. The set of objec-
tive values of all Pareto optima is called the Pareto front
of f . With this language, one aim in multi-objective opti-
mization is to compute a set P of Pareto optima such that
f(P ) := {f(x) | x ∈ P} is the Pareto front. Most pre-
vious runtime analyses of MOEAs (and ours) focus on the
number of function evaluations used until the MOEA has
found such a population; this number is called the runtime
of the MOEA. We note that in practice, this target often is
too ambitious and one therefore restricts oneself to finding a
population that approximates well such an ideal solution.

The NSGA-II
When working with a fixed population size, an MOEA must
be able to compare any two solutions when selecting the
next population. Since dominance is only a partial order, the
NSGA-II (Deb et al. 2002) uses the following complete or-
der on the search space. In a given population P ⊆ {0, 1}n,
each individual x has both a rank and a crowding distance.
The ranks are defined recursively based on the dominance
relation. All individuals that are not strictly dominated by
another one have rank one. Given that the ranks 1, . . . , k
are already defined, the individuals of rank k + 1 are those
among the remaining individuals that are not strictly domi-
nated except by individuals of rank k or smaller. This defines
a partition of P into sets F1, F2, . . . such that Fi contains all
individuals with rank i. It is clear that individuals with lower
rank are more interesting, so when comparing two individu-
als of different ranks, the one with lower rank is preferred.

To compare individuals in the same rank class Fi, the
crowding distance of these individuals (in Fi) is computed,
and the individual with larger distance is preferred. Ties are
broken randomly. Algorithm 1 shows the procedure to cal-
culate the crowding distance in a given set S. The crowding
distance of some x ∈ S is the sum of the crowding distances
x has with respect to each objective function fi. For a given
fi, the individuals in S are sorted in order of ascending fi
value (for equal values, a tie-breaking mechanism is needed,
but we shall not make any assumption on this, that is, our
mathematical results are valid regardless of how these ties
are broken). The first individual and the last individual in
the sorted list have an infinite crowding distance. For other
individuals in the sorted list, their crowding distance with
respect to fi is the difference of the objective values of its
left and right neighbor in the sorted list, normalized by the
difference between the first and the last.

The whole NSGA-II framework is shown in Algorithm 2.
After the random initialization of the population with size of
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Algorithm 1: crowding-distance(S)
Input: S = {S1, . . . , S|S|}: the set of individuals
Output: cDis(S) =

(
cDis (S1) , . . . , cDis

(
S|S|

))
where

cDis (Si) is the crowding distance for Si

1: cDis(S) = 0
2: for each objective function fi do
3: Sort S in order of ascending fi value: Si.1, . . . , Si.|S|
4: cDis (Si.1) = +∞, cDis

(
Si.|S|

)
= +∞

5: for j = 2, . . . , |S| − 1 do
6: cDis(Si.j) = cDis(Si.j) +

fi(Si.j+1)−fi(Si.j−1)

fi(Si.|S|)−fi(Si.1)

7: end for
8: end for

Algorithm 2: NSGA-II

1: Uniformly at random generate the initial population
P0 = {x1, x2, . . . , xN} for xi ∈ {0, 1}n, i =
1, 2, . . . , N.

2: for t = 0, 1, 2, . . . do
3: Generate the offspring population Qt with size N
4: Using the fast-non-dominated-sort() in (Deb et al.

2002) to divide Rt into F1, F2, . . .

5: Find i∗ > 1 such that
∑i∗−1

i=1 |Fi| < N and∑i∗

i=1 |Fi| ≥ N , or i∗ = 1 for |F1| ≥ N
6: Using the crowding-distance() in Algorithm 1 to sep-

arately calculate the crowding distance of each indi-
vidual in F1, . . . , Fi∗

7: Let F̃i∗ be theN−
∑i∗−1

i=0 |Fi| individuals in Fi∗ with
largest crowding distance, chosen at random in case
of a tie

8: Pt+1 =
(
∪i
∗−1
i=1 Fi

)
∪ F̃i∗

9: end for

N , the users can apply their way to generate the offspring.
Then the total order based on rank and crowding distance is
used to remove the worst N individuals in the union of the
parent and offspring population. The individuals with small-
est rank will survive to the next generation, and the critical
rank (that is, if all individuals with this rank survive, then the
population size will be at leastN but if all individuals do not
enter into the next generation, the population size will be less
than N ) will only have its individuals with largest crowding
distances survive to ensure the next population size of N .

Runtime of the NSGA-II on ONEMINMAX
In this section, we analyze the runtime of the NSGA-II
on the ONEMINMAX benchmark proposed first by Giel
and Lehre (2010) as a bi-objective analogue of the classic
ONEMAX benchmark. It is the function f : {0, 1}n →
N× N defined by

f(x) =
(
f1(x), f2(x)

)
=
(
n−

n∑
i=1

xi,
n∑

i=1

xi
)

for all x = (x1, . . . , xn) ∈ {0, 1}n. The aim is to maxi-
mize both objectives in f . We immediately note that for this

benchmark problem, any solution is Pareto optimal and the
Pareto front is {(0, n), (1, n − 1), . . . , (n, 0)}. It is hence a
good example to study how an EMO algorithm explores the
Pareto front when already some Pareto optima were found.

Giel and Lehre (2010) showed that the simple SEMO
algorithm finds the full Pareto front of ONEMINMAX in
O(n2 log n) iterations and fitness evaluations. Their proof
can easily be extended to the GSEMO algorithm. For the
SEMO, a (matching) lower bound of Ω(n2 log n) was shown
by Osuna, Gao, Neumann, and Sudholt (2020). An upper
bound of O(µn log n) was shown for the hypervolume-
based (µ+ 1) SIBEA with µ ≥ n + 1 (Nguyen, Sutton,
and Neumann 2015). When the SEMO or GSEMO is en-
riched with a diversity mechanism (strong enough so that
solutions that can create a new point on the Pareto front are
chosen with constant probability), then the runtime of these
algorithms reduces to O(n log n).

In contrast to the SEMO and GSEMO as well as the
(µ+ 1) SIBEA with population size µ ≥ n+ 1, the NSGA-
II can lose all solutions covering a point of the Pareto front.
In the following lemma, central to our runtime analyses on
ONEMINMAX, we show that this cannot happen when the
population size is large enough, namely at least four times
the size of the Pareto front.
Lemma 1. Consider one iteration of the NSGA-II with pop-
ulation size N ≥ 4(n + 1) optimizing the ONEMINMAX
function. Assume that in some iteration t the combined par-
ent and offspring population Rt = Pt ∪Qt contains a solu-
tion x with objective value (k, n − k) for some k ∈ [0..n].
Then also the next parent population Pt+1 contains an indi-
vidual y with f(y) = (k, n− k).

Since Lemma 1 ensures that objective values on the Pareto
front will not be lost in the future, we can estimate the
runtime of the NSGA-II via the sum of the waiting times
for finding a new Pareto solution. Apart from the fact that
the NSGA-II generates N solutions per iteration (which re-
quires some non-trivial arguments in the case of binary tour-
nament selection), this analysis resembles the known analy-
sis of the simpler SEMO algorithm (Giel and Lehre 2010).
For N = O(n), we also obtain the same runtime estimate.

We start with the easier case that parents are chosen uni-
formly at random or that each parent creates one offspring.
Theorem 2. Consider optimizing the ONEMINMAX func-
tion via the NSGA-II with one of the following four ways to
generate the offspring population in Step 3 in Algorithm 2,
namely applying one-bit mutation or standard bit-wise mu-
tation once to each parent or N times choosing a parent
uniformly at random and applying one-bit mutation or stan-
dard bit-wise mutation to it. If the population size N is at
least 4(n+ 1), then the expected runtime is O(n log n) iter-
ations and O(Nn log n) fitness evaluations.

We now analyze the performance of NSGA-II on
ONEMINMAX when selecting the parents via binary tourna-
ments, which is selection method suggested in the original
NSGA-II paper (Deb et al. 2002). Here the offspring popu-
lationQt is generated byN times independently performing
the following sequence of actions: (i) Select two different in-
dividuals x′, x′′ uniformly at random from Pt. (ii) Select x
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as the better of these two, that is, the one with smaller rank
in Pt or, in case of equality, the one with larger crowding
distance in Pt (breaking a tie randomly). 2 (iii) Generate an
offspring by mutating x.

In the case of binary tournament selection, the analysis is
slightly more involved since we need to argue that a desired
parent is chosen for mutation with constant probability in
one iteration. This is easy to see for a parent at the boundary
of the front as its crowding distance is infinite, but less obvi-
ous for parents not at the boundary. We note that we need to
be able to select such parents since we cannot ensure that the
population intersects the Pareto front in a contiguous inter-
val (as can be seen, e.g., from the random initial population).
We solve this difficulty in the following three lemmas.

We use the following notation. Consider some iteration t.
For i = 1, 2, let

vmin
i = min{fi(x) | x ∈ Rt},
vmax
i = max{fi(x) | x ∈ Rt}

denote the extremal objective values. Let V = f(Rt) =
{(f1(x), f2(x)) | x ∈ Rt} denote the set of objective values
of the solutions in the combined parent and offspring popu-
lation Rt. We define the set of values such that also the right
(left) neighbor on the Pareto front is covered by

V +
in = {(v1, v2) ∈ V | ∃y ∈ Rt :

(f1(y), f2(y)) = (v1 + 1, v2 − 1)},
V −in = {(v1, v2) ∈ V | ∃y ∈ Rt :

(f1(y), f2(y)) = (v1 − 1, v2 + 1)}.

Lemma 3. For any (v1, v2) ∈ V \ (V +
in ∩ V

−
in ), there is

at least one individual x ∈ Rt with f(x) = (v1, v2) and
cDis(x) ≥ 2

vmax
1 −vmin

1
.

Lemma 4. For any (v1, v2) ∈ V +
in ∩ V

−
in , there are at

most two individuals in Rt with objective value (v1, v2) and
crowding distance at least 2

vmax
1 −vmin

1
.

Lemma 5. Assume that Rt does not cover the whole Pareto
front. Let RN

t be the set of individuals that are neighbors of
an uncovered point on the Pareto front, that is RN

t := {x ∈
Rt | ∃ε ∈ {−1,+1} : (f1(x) + ε, f2(x) − ε)) ∈ [0..n]2 \
f(Rt)}. With probability at least 1

2N
N−10
N−1 , the winner of a

binary tournament lies in RN
t .

With Lemma 5, we can now easily argue that in a given it-
eration t, we have a constant probability of choosing at least
once a parent that is a neighbor of an empty spot on the
Pareto front. This allows to re-use the main arguments of the
simpler analyses for the cases that the parents were choosing
randomly or that each parent creates one offspring.
Theorem 6. Consider optimizing the ONEMINMAX func-
tion via the NSGA-II which creates the offspring population

2Although the strategy is first domination criterium between
two solutions and then crowding distance for the binary tournament
selection in Deb’s original C code, the NSGA-II in the recent py-
moo platform (https://pymoo.org/algorithms/moo/nsga2.html) by
Blank and Deb utilizes this first rank then crowding distance strat-
egy. We adhere to the recent strategy.

by N times choosing a parent via binary tournament selec-
tion and applying one-bit or standard bit-wise mutation to
it. If the population size N is at least 4(n + 1), then the
expected runtime is O(n log n) iterations and O(Nn log n)
fitness evaluations.

Runtime of the NSGA-II on LOTZ
We proceed with analyzing the runtime of the NSGA-II on
the benchmark LOTZ proposed by Laumanns, Thiele, and
Zitzler (2004). This is the function f : {0, 1}n → N × N
defined by

f(x) =
(
f1(x), f2(x)

)
=

( n∑
i=1

i∏
j=1

xj ,
n∑

i=1

n∏
j=i

(1− xj)
)

for all x ∈ {0, 1}n. Here the first objective is the so-called
LEADINGONES function, counting the number of (contigu-
ous) leading ones of the bit string, and the second objec-
tive counts in an analogous fashion the number of trailing
zeros. Again, the aim is to maximize both objectives. Dif-
ferent from ONEMINMAX, here many solutions exist that
are not Pareto optimal, in fact, only 0n, 10n−1, . . . , 1n are
the Pareto optima of this problem. The Pareto front is again
{(0, n), (1, n−1), . . . , (n, 0)}. The known runtimes for this
benchmark are Θ(n3) for the SEMO (Laumanns, Thiele,
and Zitzler 2004), an upper bound ofO(n3) for the GSEMO
with standard mutation rate 1/n (Giel 2003) and a lower
bound of Ω(n2/p) for mutation rate p ≤ n7/4 (Doerr, Ko-
dric, and Voigt 2013), and an upper bound ofO(µn2) for the
(µ+ 1) SIBEA with population size µ ≥ n+ 1 (Brockhoff,
Friedrich, and Neumann 2008).

Similar to ONEMINMAX, we can show that when the
population size is large enough, an objective value on the
Pareto front stays in the population from the point on when
it is discovered.
Lemma 7. Consider one iteration of the NSGA-II with pop-
ulation size N ≥ 4(n + 1) optimizing the LOTZ function.
Assume that in some iteration t the combined parent and off-
spring population Rt = Pt ∪Qt contains a solution x with
rank one. Then also the next parent population Pt+1 con-
tains an individual y with f(y) = f(x). In particular, once
the parent population contains an individual with objective
value (k, n− k), it will do so for all future generations.

Since not all individuals are on the Pareto front, the run-
time analysis for LOTZ function is slightly more complex
than for ONEMINMAX. The process contains two stages:
the first stage lasts until we have a solution on the Pareto
front. In this phase, we argue that the first objective value
increases by one every (expected) O(n) iterations. Con-
sequently, after an expected number of O(n2) iterations,
we have an individual x in the population with f1(x) =
n, which necessarily lies on the Pareto front. The second
stage, where we complete the Pareto front from an existing
Pareto-solution, can be analyzed in a similar manner as for
ONEMINMAX in Theorem 2, noting of course the different
probabilities to generate a new solution on the Pareto front.
Theorem 8. Consider optimizing the LOTZ function via the
NSGA-II with one of the following four ways to generate the
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offspring population in Step 3 in Algorithm 2, namely ap-
plying one-bit mutation or standard bit-wise mutation once
to each parent or N times choosing a parent uniformly at
random and applying one-bit mutation or standard bit-wise
mutation to it. If the population size N is at least 4(n + 1),
then the expected runtime is O(n2) iterations and O(Nn2)
fitness evaluations.

We now study the runtime of NSGA-II using binary tour-
nament selection. Compared to ONEMINMAX, we face the
additional difficulty that now rank one solutions can exist
which are not on the Pareto front. Due to their low rank,
they could perform well in the selection, but being possi-
bly far from the front, they are not interesting as parents. To
ensure that desired parents have a sufficient chance of win-
ning the tournaments, we increase our lower bound on the
population size to 5(n + 1). We note that we did not try
hard to find the smallest population size allowing to prove
our result, so possibly the following theorem could also be
shown with a population size of 4(n+ 1), but definitely this
would not be possible with the arguments used in the case
of ONEMINMAX.
Theorem 9. Consider optimizing the LOTZ function via
the NSGA-II with N times choosing a parent by binary tour-
nament selection and applying one-bit or standard bit-wise
mutation to it. If the population size N is at least 5(n + 1),
then the expected runtime is O(n2) iterations and O(Nn2)
fitness evaluations.

An Exponential Lower Bound for Small
Population Size

In this section, we prove a lower bound for a small pop-
ulation size. Since lower bound proofs can be quite com-
plicated, recall for example that there are matching lower
bounds for the runtime of the SEMO (using one-bit muta-
tion) on ONEMINMAX and LOTZ, but not for the GSEMO
(using bit-wise mutation), we restrict ourselves to the sim-
plest variant using each parent once to generate one off-
spring via one-bit mutation. From the proofs, though we are
optimistic that our results, possibly with different implicit
constants, can also be shown for all other variants of the
NSGA-II regarded in this work.

Our main result is that this NSGA-II takes an exponen-
tial time to find the whole Pareto front (of size n + 1) of
ONEMINMAX when the population size is n+1. This is dif-
ferent from the SEMO and GSEMO algorithms (which have
no fixed population size, but which will never store a pop-
ulation larger than n + 1 when optimizing ONEMINMAX)
and the (µ+ 1) SIBEA with population size µ = n + 1.
Even stronger, we show that there is a constant ε > 0 such
that when the current population Pt covers at least |f(Pt)| ≥
(1− ε)(n+ 1) points on the Pareto front of ONEMINMAX,
then with probability 1 − exp(−Θ(n)), the next population
Pt+1 will cover at most |f(Pt+1)| ≤ (1 − ε)(n + 1) points
on the front. Hence when a population covers a large frac-
tion of the Pareto front, then with very high probability the
next population will cover fewer points on the front. When
the coverage is smaller, that is, |f(Pt)| ≤ (1 − ε)(n + 1),
then with probability 1− exp(−Θ(n)) the combined parent

and offspring population Rt will miss a constant fraction
of the Pareto front. From these two statements, it is easy
to see that there is a constant δ such that with probability
1 − exp(−Ω(n)), in none of the first exp(Ω(n)) iterations
the combined parent and offspring population covers more
than |f(Rt)| ≥ (1− δ)(n+ 1) points of the Pareto front.

Let us discuss the two proof arguments in detail, starting
with the latter one. When the current population is still miss-
ing a constant fraction of the Pareto front, then the following
arguments show that with probability 1− exp(−Θ(n)), also
the combined parent and offspring population Rt (and thus
also the next population Pt+1 ⊆ Rt) will miss a constant
fraction of the front. With a constant fraction of the front
missing in Pt, also a constant fraction that is Ω(n) away
from the boundary points (0, n) and (n, 0) is missing. These
values have the property that from both their neighboring po-
sitions, they can only be generated with constant probability
via one-bit mutation. Again a constant fraction of these have
only a constant number of individuals on neighboring posi-
tions. These, thus have a (small) constant probability of not
being generated in this iteration. This shows that in expecta-
tion, we are missing a constant fraction of the Pareto front.
Via the method of bounded differences (exploiting that each
mutation operation can change the number of missing ele-
ments by at most one), we turn this expectation into a bound
that holds with probability 1− exp(−Ω(n)).

We now turn to the other argument, which is that when the
current population covers the Pareto front to a large extent,
then the selection procedure of the NSGA-II will increase
the number of uncovered points so that at least ε(n+ 1) po-
sitions are uncovered by Pt+1. The key arguments to show
this claim are the following. When a large part of the front is
covered, then many points can be only covered by a single
individual of Pt (since the population size equals the size of
the front). With some careful counting, we derive from this
that (by a constant factor) more than half of the positions on
the front are covered exactly twice in the combined parent
and offspring population Rt. Almost all of them have both
their neighboring positions covered as well. This shows that
(by a constant factor) more than (n+1) of the individuals in
Rt have the same crowding distance. Consequently, within
this set of individuals the selection operator takes a random
choice, which in expectation will remove both individuals
from a constant fraction of the points on the Pareto front.
Again, the method of bounded differences turns this expec-
tation into a statement with probability 1− exp(−Ω(n)).

We have the formal results in the following.

Theorem 10. Consider optimizing ONEMINMAX via the
NSGA-II applying one-bit mutation once to each individ-
ual. Let the population size be N = n + 1. Then the ex-
pected number of iterations until the population covers the
full Pareto front is exp(Ω(n)).

Experiments

To complement our asymptotic results with data for concrete
problem sizes, we conducted the following experiments.
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Settings
We use, in principle, the version of the NSGA-II given by
Deb (Revision 1.1.6), available at https://www.egr.msu.edu/
∼kdeb/codes.shtml, except that, as in our theoretical anal-
ysis, we do not use crossover. We re-implemented the algo-
rithm in Matlab (R2016b). When a sorting procedure is used,
we use the one provided by Matlab (and not randomized
Quicksort as in Deb’s implementation). As mentioned be-
fore, we utilize the first rank then crowding distance strategy
for the binary tournament selection as in the recent pymoo
platform (https://pymoo.org/algorithms/moo/nsga2.html) by
Blank and Deb.

Our theoretical analysis above covers three parent selec-
tion strategies and two mutation operators. For reasons of
space, we concentrate our experiments on one representative
setting, namely binary tournament selection (as proposed
in (Deb et al. 2002)) and standard bit-wise mutation with
mutation rate 1

n (which is the most common mutation op-
erator in evolutionary computation). We use the following
experimental settings.

• Problem size n: 100, 200, 300, and 400 for
ONEMINMAX, and 30, 60, 90, and 120 for LOTZ.

• Population sizeN : Our theoretical analyses (Theorems 6
and 9) proved a good performance of the NSGA-II
for population sizes of at least N∗ = 4(n + 1) for
ONEMINMAX and at least N∗ = 5(n + 1) for LOTZ.
We use this value also in the experiments. We also use
the value N = 2N∗, for which our theory results ap-
ply, but our runtime guarantees are twice as large as
for N∗ (when making the implicit constants in the re-
sults visible). We also use two smaller values (of at least
1.5(n + 1)) to explore the parameter range where we
have no proven result, but where one can be optimistic
that roughly the same working principles apply and the
smaller population size possibly gives a better perfor-
mance. Finally, we conduct experiments with the popula-
tion size N = n + 1, which is large enough to represent
the full Pareto front, but for which we have proven the
NSGA-II to be ineffective (on ONEMINMAX and when
letting each parent create an offspring via one-bit muta-
tion).

Efficient Population Sizes
Figure 1 displays the runtime (that is, the time until the full
Pareto front is covered) of the NSGA-II with the four “large”
population sizes together with the runtime of the (parameter-
less) GSEMO. This data confirms that the NSGA-II can ef-
ficiently cover the Pareto front of ONEMINMAX and LOTZ
when using a population size of at leastN∗. The runtimes for
N = 2N∗ are clearly larger than forN∗, roughly by a factor
of 2 for LOTZ, but by slightly less for ONEMINMAX. The
data for the two population sizes smaller than N∗ indicates
that also for these parameter settings the NSGA-II performs
very well.

Comparing the NSGA-II to the GSEMO, we observe that
the NSGA-II with a proper choice of the population size
shows a better performance. This is interesting and some-
what unexpected (on simple problems like ONEMINMAX
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Figure 1: The number of function evaluations for the NSGA-
II (binary tournament selection, standard bit-wise mutation)
with different population sizes and for the GSEMO optimiz-
ing ONEMINMAX and LOTZ. Displayed are the median
(with 1st and 3rd quartiles) in 20 independent runs.

and LOTZ) since the NSGA-II throughout the run works
with a population of size N , whereas the GSEMO only
keeps the at most n + 1 non-dominated individuals in its
population. Consequently, in particular in the early stages of
the optimization process, each iteration takes significantly
fewer fitness evaluations. It is clear that the NSGA-II with
binary tournament selection has the advantage of favoring
extremal individuals as parents, but that this advantage out-
numbers the disadvantage of the higher cost per iteration –
at least a factor of two when using N = 2(n+ 1) – was not
expected by us.

Inefficient Population Size
When the population size is small, we do not have the result
that points on the front cannot be lost (Lemmas 1 and 7) and
the proof of Theorem 10 shows that indeed we can easily
lose points on the front, leading to a runtime at least expo-
nential in n when N = n+ 1. In this subsection, we analyze
this phenomenon experimentally. As discussed earlier, we
concentrate on the NSGA-II with tournament selection and
standard bit-wise mutation (but we have no reason to be-
lieve that both the mathematical and the experimental find-
ings hold for all variants of the NSGA-II).

Since it is hard to show experimentally that a runtime is at
least exponential, we do not run the algorithm until it found
the full Pareto front (this would be possible only for very
small problem sizes), but we conduct a slightly different ex-
periment for reasonable problem sizes which also strongly
indicates that the NSGA-II has enormous difficulties in find-
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Figure 2: Ratio of the coverage of the Pareto front by the
current population of the NSGA-II (binary tournament se-
lection, standard bit-wise mutation) with population size
N = n + 1. Displayed are the median (with 1st and 3rd
quartiles) in 20 independent runs.

ing the full front. We ran the NSGA-II for 3000 generations
for ONEMINMAX and 5000 generations for LOTZ and
measured for each generation the ratio by which the Pareto
front is covered. This data is displayed in Figure 2. We see
clearly that the coverage of the Pareto front steeply increases
at first, but then stagnates at a constant fraction clearly be-
low one (around 80% for ONEMINMAX and between 50%
and 60% for LOTZ) and this in a very concentrated manner.
From this data, there is no indication that the Pareto front
will be covered anytime soon. Back-of-the-envelope calcu-
lations (similar to the rigorous proof of Theorem 10) suggest
that, regardless of the variant of the algorithm we consider,
when Pt covers only a constant fraction of the front, then
the probability that Rt covers the full front is exp(−Ω(n)).
The main argument, as in the proof of Theorem 10, would
be that a constant fraction of the missing points on the front
has only a constant probability (less than one) of being gen-
erated. Hence in expectation, a constant fraction will not
be generated, and the method of bounded differences (ex-
ploiting the large amount of independent randomness in the
offspring generation) translates this expectation into a state-
ment that holds with probability 1− exp(−Ω(n)).

Without exploring this aspect in detail, we note that the
NSGA-II, while not finding the full Pareto front, still ap-
proximates the front very well. Figure 3 shows that also with
this low population size, the NSGA-II discovers the extremal
points (0, n) and (n, 0) of the front relatively fast. When re-
garding the solutions on the Pareto front after 3000 genera-
tions (ONEMINMAX) and 5000 generations (LOTZ), on all
runs we never encountered an interval of uncovered points
of length longer than 4.
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Figure 3: First generation when both extreme function val-
ues (0, n) and (n, 0) were contained in the population of the
NSGA-II (binary tournament selection, standard bit-wise
mutation, population size N = n + 1). Displayed are the
median (with 1st and 3rd quartiles) in 20 independent runs.

Conclusion and Future Work

This paper conducted the first mathematical runtime anal-
ysis of the NSGA-II, which is the predominant frame-
work in real-world multi-objective optimization. We proved
that with a suitable population size, several variants of the
NSGA-II satisfy the same runtime guarantees as the SEMO,
GSEMO, and (µ+ 1) SIBEA when optimizing the two
benchmarks ONEMINMAX and LOTZ. The choice of the
population size is important. We prove an exponential run-
time of the NSGA-II when the population size equals the
size of the Pareto front.

On the technical side, this paper shows that mathemati-
cal runtime analyses are feasible also for the NSGA-II. We
provided a number of arguments to cope with the specific
properties of this algorithm, in particular, the fact that points
in the Pareto front can be lost and the commonly used par-
ent selection via binary tournaments based on the rank and
crowding distance. We are optimistic that these tools will aid
future analyses of the NSGA-II.

In this first analysis of the NSGA-II, following the exam-
ple of most previous theoretical works on MOEAs, we only
regarded the target of computing the full Pareto front. For
many practically relevant problems, this is too much to ask
for since the Pareto front can be very large. In this case, a
better target is to compute a smaller set of Pareto optima
that is a good sparse representation of the full front. One of
our experiments for the case N = n + 1 suggests that the
NSGA-II could be well suited to compute such approxima-
tions. Understanding this research question will be the target
of our future research.
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