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Abstract

Common image-text joint understanding techniques presume
that images and the associated text can universally be char-
acterized by a single implicit model. However, co-occurring
images and text can be related in qualitatively different ways,
and explicitly modeling it could improve the performance of
current joint understanding models. In this paper, we train a
Cross-Modal Coherence Model for text-to-image retrieval task.
Our analysis shows that models trained with image–text coher-
ence relations can retrieve images originally paired with tar-
get text more often than coherence-agnostic models. We also
show via human evaluation that images retrieved by the pro-
posed coherence-aware model are preferred over a coherence-
agnostic baseline by a huge margin. Our findings provide
insights into the ways that different modalities communicate
and the role of coherence relations in capturing commonsense
inferences in text and imagery.

Introduction
When using text to retrieve an image, humans often rely on
commonsense inference. Text and imagery can be related
in obvious explicit ways, yet the matter of a caption that
accompanies an image frequently only indirectly overlaps
with the content of the image. The text, for instance, can
describe quantities that complement what is depicted in the
image (e.g., add two cups of water) or a subjective reaction to
what is depicted in an image (e.g., fantastic view). Retrieving
imagery is therefore not just finding an image that portrays
the text content but discovering an image that coherently fits
with text to convey an integrated message.

These commonsense inferences can be modeled using
representations and algorithms informed by approaches to
natural language discourse, particularly coherence relations
(Hobbs 1985; Asher and Lascarides 2003; Taboada and Mann
2006). Coherence relations characterize the inferential links
(such as temporal, causal, and logical) that connect the con-
tent of text and imagery.

Clues from text and from the typical relations of text and
imagery provide important evidence about what kinds of
visual content is coherent. Therefore, coherence agnostic
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The start of the race.

CMCA CMCM

Figure 1: Example retrieved image by the proposed Cross-
Modal Coherence Model (right) vs Cross-Modal Coherence
Agnostic model (left) for input caption (top).

methods don’t necessarily deliver images that fit naturally
with text. By modeling coherence in text and imagery, we
can supply images to text that human raters prefer by a large
margin. This paper describes models of these broader as-
sociations between text and imagery for the task of image
retrieval.

We hypothesize that bringing in coherence relations
(Alikhani et al. 2020) into the retrieval process, in contrast to
personalities defined in (Shuster et al. 2019), should better
improve the performance of text-to-image retrieval in a more
generalizable way. We build on Salvador et al. (2017) and
Chen et al. (2018) and introduce a new framework that inte-
grates coherence relations in text-to-image retrieval task by
extracting features for each modality separately then build-
ing a lower-dimensional common representation space. Our
proposed framework introduces a Coherence Aware Module1

that learns to predict coherence relations that characterize an
input image–text pair during training, and predictions from
the module are applied during testing through a Selective Sim-
ilarity Refinement technique to further improve the retrieval
performance.

The examples of Figure 1 illustrate our approach. They con-
trast the output of our baseline Cross-Modal Coherence Ag-
nostic model (CMCA) taken from Han, Guerrero, and Pavlovic
(2020) and that of the proposed Cross-Modal Coherence
Model (CMCM) trained on image-text pairs with Story co-

1Code, contact and data: https://github.com/klory/Cross-Modal-
Coherence-for-Text-to-Image-Retrieval
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herence relations. We observe that the proposed CMCM pro-
vides more importance to the words the start compared to
CMCA that concentrates on visually grounded words like race.
Thus, Coherence Aware Module provides more interpretable
and robust results, by virtue of explicitly modelling image-
text coherence. During inference, the model leverages this
knowledge to retrieve relevant images. We evaluate our sys-
tems on two image-text coherence datasets namely CITE++
(Alikhani et al. 2019) and CLUE (Alikhani et al. 2020). Each
of these datasets correspond to different domains and are an-
notated with different coherence relations as shown in Table
1 and Table 2. We also analyze the effect of each coherence
relation in the datasets by modifying the Coherence Aware
Module in the proposed CMCM model to detect only the pres-
ence of a single relation. These models CMCMc show which
coherence relations improve/reduce the performance when
compared with the baselines.

Related Work
Text-to-image retrieval models have been used in several
multimodal NLP tasks and applications. Saggion, Pastra, and
Wilks (2003) extract syntactic relations from captions for
indexing and retrieving photographs of crime scenes. Elliott,
Lavrenko, and Keller (2014) use image retrieval as a testbed
for learning spatial relationships between image regions using
Visual Dependency Representations. None of the previous
works in this line have studied a discourse-aware approach
for text-to-image retrieval which would best suit the context
of the dialogue, inferences between text and imagery in mul-
timodal documents, and the role of coherence in learning
better models of image-text alignments.

Inspired by the success of coherence theory that has been
applied to other forms of multimodal communication such as
gesture (Lascarides and Stone 2009) and comics (McCloud
1993), Alikhani et al. (2019, 2020) characterized coherence
relations in text and imagery. Examples of these relations
include elaboration, when the text include information that
is not depicted in the image (e.g., leave it in the oven for 30
minutes) or subjective when the text evaluates or reacts to
the content of the image (e.g., a delicious pizza). They evalu-
ated the effectiveness of coherence relations on a controlled
caption generation task. We do not train a controllable model
as we hypothesize that not all relations equally characterize
the image and text in a pair. Though the relations are defined
for joint image-text discourse, some coherence relations like
“Subjective” in the CLUE dataset characterize how the cap-
tion relates to the image and not the other way around. Hence,
conditioning image retrieval on the relation is not reasonable.
The proposed method evaluates the effectiveness of coher-
ence relations by comparing CMCA with CMCM. Note that the
proposed Cross-Modal Coherence Model is not the same as
in Alikhani et al. (2020). Instead, our model learns to predict
the coherence relation during training.

With the advent of the Transformer (Vaswani et al. 2017)
architecture, there have been large pretrained multimodal
transformers (Lu et al. 2019; Chen et al. 2020; Li et al. 2020)
that train on large datasets like MSCOCO and others on
muiltiple joint image–text learning tasks such as cross modal
retrieval. Though they obtain state of the art performance,

they do not directly support the addition of our proposed
Coherence Aware Module. We hence leave the exploration of
such architectures for the proposed setting as future work.

Methodology
In this Section we describe the details of our proposed model.
We argue that coherence relations characterize the data for
multimodal discourse comprehension and hypothesize that a
model with coherence (CMCM) will better retrieve relevant im-
ages compared to CMCA. Figure 2 shows our framework for
CMCM that consists of Image and Text Encoders that project
the two modalitied onto a common embedding space opti-
mized over cosine similarity, followed by a Coherence Aware
Module that predicts the image-text coherence relations that
characterize the input image-text pair. We show that addition
of Coherence Aware Module regularizes the latent space and
improves the performance of text-to-image retrieval by mod-
elling the different coherence relations that characterize an
image-text pair. To further explicitly use the predictions from
Coherence Aware Module, we propose a Selective Similarity
Refinement technique to refine and rank the retrieval result.

To further analyze the performance of each coherence re-
lation on the overall model, we train separate CMCMc models
that are aware of only one relation. The Coherence Aware
Module is modified to predict only the presence of a par-
ticular relation c (through binary classification in contrast
to multi–label classification in the overall model) in these
models.

Model Architecture
In order to train CMCM for text-to-image retrieval,we write
S = [w1, w2, ..., wm] for the input natural language text com-
posed of m words. (In principle wi could be words, phrases,
sentences or any other semantic unit of text.) Similarly, we
write I for the corresponding image. Given text Si, the ob-
jective of an image retrieval model is to retrieve the paired
image Ii from an image pool {Sj}, j ∈ [1, ..., N ], where N
is the number of images in pool.

Figure 2: Framework of our proposed Cross-Modal Coher-
ence Model. ES stands for text encoder, EI stands for image
encoder, αi stands for the attention of word embedding hi

Image Encoder The image encoder EI is a pretrained Resnet-
50 (He et al. 2016) followed by a bottleneck layer to trans-
form image features to the shared latent space. Each image is
first resized to 224× 224, and then forwarded through EI to
get the image embedding fI ∈ R300.
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Text Encoder The text encoder ES starts from a pretrained
word2vec model that embeds each word into a 300 dimen-
sional vector. The word2vec model is trained using Gensim
(Řehůřek and Sojka 2010). The maximum length of the text
sequence considered is 200 for CITE++ and 40 for Clue
based on the longest sentences in the dataset. Then, the word
embeddings are given as input to a Long Short Term Memory
(LSTM) network to get each word representation. We next
apply an attention mechanism (Vaswani et al. 2017) to the
LSTM representations, which learns the attention for each
word and helps the model attend to key words that are im-
portant to our task. Finally a fully-connected layer is applied
to encode the joined representation of all words h into the
shared latent space.

The outputs of the text and image encoders are then used
with a triplet objective using cosine similarity trained with
hard negative mining. Hard negative mining targets on the
most difficult negative image for each query in a batch based
on the similarities to improve performance (Hermans, Beyer,
and Leibe 2017). Let s(a, b) = aT b/

√
(aTa)(bT b) measure

the cosine similarity between two vectors a and b, then the
objective for the retrieval task per sample is given by Equation
1,

trip (a, p, n) = s(a, p) − s(a, n)− α,

Lret = min{0, trip(f+
S , f+

I , f−
I ) }

+ min{0, trip(f+
I , f+

S , f−
S ) },

(1)

where Lret is the retrieval loss, f+
S and f+

I are outputs of
text and image encoder for a pair of text and image while f−

S
is a text output that does not correspond to current image and
f−
I is an image output that does not correspond to current

text. The margin α is set to 0.3 by cross-validation.

Coherence Aware Module Instead of relying only on the
encoders, we also leverage coherence relations labelled by
humans. We add a Coherence Aware Module that takes the
normalized features from both text and image encoders as
input and then passes them through a multi-layer perceptron
to predict the relations.

The dimension of the final linear layer is equal to the num-
ber of relations in the dataset when trained with all relations
(i.e. multi-label classification) and 1 when trained with a sin-
gle relation (i.e. single-label classification). We use Binary
Cross Entropy (BCE) as the loss function and the objective
of Coherence Aware Module for one sample is,

Lcls =
∑

c wc (yc log(xc) + (1− yc) log(1− xc)) , (2)

where xc is the probability assigned to relation c by the model
while yc is the ground truth binary value. Since the relations
are not equally distributed in the dataset, we balance the
training of different relations by giving a weight wc for each
relation that is reciprocal to its proportion in the dataset. For
CMCMc models, the summation is removed as there is only
one relation that is predicted.

The model is thus trained in a multi-task setting where the
coherence predictor is the auxiliary task. The final objective
over the entire batch with batch size N is given in Equation

3,

Ltotal =
1

N

N∑
n=1

(Ln
ret + λclsLn

cls) , (3)

where λcls is the weight associated with the coherence aware
module and is chosen empirically as described later.

Selective Similarity Refinement
The performance of the retrieval model depends on the simi-
larities between a query caption Si and all possible images
{Ij}, j ∈ [1, ..., N ] (including the ground-truth image). We
use cosine similarity (though any other valid similarity metric
can be used) and notate the similarity between query Si and
one image Ij as θi,j = cosine(Si, Ij).
Leveraging Confidence Score We use the coherence predic-
tion from Coherence Aware Module to refine the similarity
between an image–text pair for retrieval during inference.
Note that we do not know the coherence relation characteriz-
ing a ground truth image–text pair. However, a well trained
Coherence Aware Module is expected to predict coherence
for a ground truth image–text pair with high confidence. We
define a confidence function for a query caption Si and one
possible image Ik as

ηi,j,c = eλ|xi,j,c−0.5|, (4)

ηi,j =
∑
c

ηi,j,c, (5)

where xc is defined in Equation 2, and λ is a hyperparam-
eter decided by cross validation. Confidence function with
different λ are shown in Figure 3 (a). We can see that lower
λ decreases the impact of the confidence function. We set
λ = 0.13 for CITE++ and λ = 0.12 for Clue datasets empir-
ically. The refined similarity is defined as,

θ̄i,j = θi,j ∗ ηi,j (6)

(a) (b)
Figure 3: (a) Confidence function ηi,j,c with different λ. (b)
Correct image rank vs. the difference between the similarities
of the top 2 retrieved images on CITE++ validation set

Selective Refinement Though confidence score helps, by it-
self the score is a weak indicator performing only slightly bet-
ter than random. We hence limit the use of confidence score
to difficult examples. We hypothesize that similarity between
a correct image–text pair should on average be “α” larger
than that of a wrong image–text pair because of Equation 1.
In Figure 3 (b), we verify this hypothesis by plotting the rank
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Relation Question Description Positive rate

Expansion Q2 The image gives visual information about the step described in the text. 0.821
ImageNeeded Q3 You need to see the image in order to be able to carry out the step properly. 0.115
Elaborationt Q4 The text provides specific quantities (amounts, measurements, etc.) that you

would not know just by looking at the picture.
0.329

Elaborationi−tool Q5 The image shows a tool used in the step but not mentioned in the text. 0.193
Temporali<t Q6 The image shows how to prepare before carrying out the step. 0.158
Temporali>t Q7 The image shows the results of the action that is described in the text. 0.588
Temporali=t Q8 The image depicts an action in progress that is described in the text. 0.313

Table 1: Coherence relations, their distribution and entropy in CITE++ dataset. We use the question identifier and the relation
name interchangeably in the paper. Positive rate is the percentage of samples that are labeled as ‘Yes’ for that question

of ground truth image vs. the difference between the simi-
larities of the top 2 retrieved images with the query caption.
We observe that when the difference between the similarities
of the top 2 images (∆) is large enough (e.g., ≥ 0.2), the
retrieval is always successful (e.g., ground truth image rank =
1). Based on this analysis, we select difficult query captions
as those with ∆ < T , where T is a hyperparameter chosen
as 0.1 empirically. We use the refined similarity Equation 6
for ”difficult” examples during inference.

Image-Text Coherence Datasets
We study the efficacy of CMCM for image-retrieval by lever-
aging two image-text datasets CITE++ and Clue (Alikhani
et al. 2020) that are annotated with image-text coherence
relations. CITE++ is extended by us from CITE (Alikhani
et al. 2019) adding 2242 image-text pairs annotated with
coherence relations.

(a) Once they have baked re-
move them from the oven and
sprinkle lightly with sugar. Af-
ter you have dressed them allow
them to cool for about 5 minutes
and serve

(b) Seals fighting for a spot to
sleep on the rocks

Figure 4: Example image-text pairs from CITE++ (a) and
Clue (b) datasets. Image-text pair on the left has relations
Expansion, Elaboration and Temporali>t while the one on
the right has relations Action as Visible

CITE++
We extend the CITE dataset which is a subset of a popu-
lar recipe dataset RecipeQA (Yagcioglu et al. 2018). The
RecipeQA dataset consists of multimodal recipes that con-
tains textual instructions accompanied by one or more images.
CITE leveraged recipes that have one-to-one correspondence
between instruction and image, e.g., every instruction in the

text has one image that visualizes it. Using Amazon Mechan-
ical Turk, the authors obtained answers to 10 questions that
help characterize the relationship between image and text. We
choose the questions that are best suited to train CMCM as de-
scribed in Table 1. The original dataset has 2057 image-text
pairs annotated with True/False answers to these questions
indicating presence/absence of the coherence relation. To per-
form a more comprehensive experiment, we collected 2242
more pairs using the same annotation protocol, giving us a
total of 4299 image-text pairs. The distribution of relations
in the entire dataset is given in Table 1. Figure 4 [a] shows
an example from CITE++ dataset.

Relation Visible Subj. Action Story Meta Irr.

% Positive 67.4 6.6 15.7 24.3 39.1 08.7

Table 2: Coherence relations (Subj. is Subjective and Irr. is
Irrelevant) and their distribution in Clue dataset (Alikhani
et al. 2020)

CLUE
The Clue dataset (Alikhani et al. 2020) is constructed using
the much larger Conceptual Captions dataset (Sharma et al.
2018) which is primarily an image captioning dataset like
COCO (Lin et al. 2014). Clue annotated 7559 image-caption
pairs with six coherence relations to summarize the structural,
logical and purposeful relationships between the contribu-
tions of texts and images. Example image-caption pair with
coherence relations are shown in Figure 4 (b).

Experimental Setup
Network Details. The backbone of image encoder Ei is
ResNet-50, with one additional batch normalization layer
and one fully-connected layer to transform the feature into
the shared space (R1024). The word2vec model encodes each
word into a vector of R300, text encoder Et takes the vector
as input and forwards it through a bidirectional, one-layer
LSTM module following an attention layer (Vaswani et al.
2017), and finally the attention-weighted summation of word
features is also transformed into the shared space (R1024)
by a batch normalization layer and a fully-connected layer.
Coherence Aware Module contains one fully-connected layer,
adding more layers does not improve performance.
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Model Coherence
Aware
Module

Relations Attention

Base ✗ - ✗
CMCA ✗ - ✓
CMCM-NoAttn ✓ All ✗
CMCM ✓ All ✓
CMCMc ✓ c ✓

Table 3: Description of the models used for comparison.
-NoAttn means removing the attention module from the
proposed model.‘All’ relations indicate that the Coherence
Aware Module is trained with all the relations in a multi-label
multi-class setting. c indicates only one relation is used in a
binary classification setting.

Evaluation Metrics. We evaluate the retrieval performance
of all the models using the median retrieval rank (MedR) and
the recall at K (R@K) metrics following existing works on
text–to–image retrieval (Han, Guerrero, and Pavlovic 2020;
Frome et al. 2013). The retrieval range is set to be 500. Since
CITE++ and Clue have image-text pairs that exhibit complex
relationships, we also perform a comprehensive user study to
evaluate the performance of the model. MedR (0 ≤ MedR
≤ 1) is computed as the median rank of the true positive over
all queries, a lower MedR suggests better performance. R@K
(0 ≤ R@K ≤ 100) computes the percentage of true positives
recalled among the top-K retrieved candidates, higher indi-
cates better performance. Here we only report the results of
retrieving image by using the caption as query.
Dataset Partition. In our experiments, we evaluate the model
and the coherence relations on CITE++ and Clue datasets
independently. We split the CITE++ dataset as 3439/860
for training/testing while the Clue dataset as 6047/1512 for
training/testing. 10% of the training data is used as validation.
Further training and hyperparameter details are given in the
appendix. Comparative Evaluation. For both the datasets,
we train the proposed model and compare with various base-
lines as shown in Table 3. The baseline CMCA (Han, Guerrero,
and Pavlovic 2020) is similar to existing CNN-RNN archi-
tectures such as (Xu et al. 2015; Ravi et al. 2018; Yang et al.
2020). Note we also compare with CMCMc, which only uses
one specific relation to train the system. We perform this
experiment primarily to analyze the effect of each relation
as not all relations contribute equally to the retrieval system.
This also helps us better understand the influence of different
relations on the proposed Cross-Modal Coherence Model
model. Though it is possible to develop transformer based
models for the proposed setting, we use GRUs and CNNs
because of the low cardinality of the datasets and the neces-
sity of large datasets for transformer based models (Inan et al.
2021; Ganesh et al. 2021; Crawford 2021).

Results and Discussion
CMCM vs CMCA
The results on CITE++ dataset are shown in Table 4. As
can be seen, having attention over the text clearly improves
retrieval performance. This can be attributed to the lengthy

texts in CITE++ dataset. Moreover, we observe that CMCM
model performs better than CMCA and Base across all met-
rics though with variable significance. For example, MedR
for CMCA model is 5.4 but all CMCM models achieve average
MedR of less than 5.0. Moreover the standard deviation is
also lower indicating more robust performance. The results
on the Clue dataset are given in Table 5. We observe that both
the attention mechanism and the coherence-aware module
improve the performance. We use the example in Fig. 1 to in-
tuitively explain the effect of Coherence Aware Module. Note
CMCA retrieves the incorrect image as there are more images
of “races” in general than there are of “start of a race” in the
dataset. Also, the text “start of a race” communicates a story
rather than factually describe elements in an image, CMCA
ignores the different characteristics by which an image-text
pair can be related thereby producing the most commonly
found semantically similar image. CMCM resolves this con-
cern by considering coherence relations between the two
modalities and retrieves the correct image. We observe that
all per-relation CMCMc models perform better than CMCA. In
some instants, per-relation models perform better than CMCM,
confirming the conjecture that not all relations contribute
in increasing the performance of the retrieval model. We
perform additional analysis on per-relation contribution to
CMCMs performance in the Appendix.

Figure 5: Comparison MedR between baseline, CMCA and
different CMCM variants; as well as the comparison between
the same model with(orange) and without(blue) selective sim-
ilarity refinement. Left: CITE++ dataset. Right: Clue dataset

Impact of Similarity Refinement. To evaluate the contri-
bution of selective similarity refinement, we compare MedR
based on θi and θ̄i of the same model in Figure 5. The CMCM
(except ‘NoAttn’) variants clearly outperform CMCA and
baseline. Moreover, the selective refinement technique im-
proves the result of almost all the CMCM models even further
by a large margin as can be seen by the difference between
the blue and orange bars. In Clue dataset, in most cases,
model using selective similarity refinement performs better
than the same model without refinement, proving the effec-
tiveness of the refinement technique. For CMCMIrrelevant

model on Clue (last two bars on Figure 5 right), applying the
refinement severely degrades the performance. We believe
that ‘Irrelevant’ relation does not effectively characterize the
relationship between an image–text pair on top of its low
positivity score.
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GT CMCM CMCA

(a) Action Horse grazing on a summer meadow in the forest outdoors.

(b) Visible A vector illustration of a happy male golfer.

(c) Temporali>t Finishing - Paint all the black parts except the door on the locomotive with gold food paint... add more details.

Figure 6: The ground truth image (Left) and the top 5 retrieved images by the CMCM and the CMCA models for two examples.
The coherence relation (in blue) and caption are given above the images. The image-text pair in example (a) has Action relation
while in example (b) has Visible relation. In example (a) the CMCM model leverages the Action coherence relation to retrieve
images that depict some action in the top 5. Similarly in example (c) images retrieved by proposed our model with CAM retrieves
images that depict the result of a process as given by the Temporali>4 relation, whereas the agnostic model shows images that
depict action in progress.

MedR↓ R@1↑ R@5↑ R@10↑

Base 10.0±3.7 45.7 48.4 50.6
CMCA 5.4±2.3 46.0 50.1 53.8
CMCM-NoAttn 6.6±2.5 46.0 49.5 52.0
CMCM 4.2±1.2 46.5 51.4 53.9

CMCMQ2 4.7±2.0 46.4 50.6 53.4
CMCMQ3 4.2±1.3 46.2 51.1 54.2
CMCMQ4 4.2±1.3 46.2 51.2 54.2
CMCMQ5 3.7±1.3 46.6 51.5 54.4
CMCMQ6 4.6±1.4 45.9 50.8 53.4
CMCMQ7 3.9±1.7 46.9 51.2 54.1
CMCMQ8 5.0±1.7 46.4 50.8 53.8

Table 4: Quantitative comparison in CITE++ dataset. The
relations corresponding to each Qi are shown in Table 1. ↓
indicates that lower the better and ↑ indicates that higher the
better.

Human Evaluation

Both CITE++ and Clue have image-text pairs with complex
coherence relations in contrast to datasets like MSCOCO that
have predominantly just Visible relations. Hence, considering
the ground truth as a gold standard is not reasonable. Given
the wide distribution of different relations in the datasets, the
quantitative metrics (e.g., MedR and Recalls) are unreliable
for the proposed setting. Therefore, we perform human eval-
uation where the top 1 retrieved images by CMCA and CMCM

MedR↓ R@1↑ R@5↑ R@10↑

Base 19.8±1.9 11.6 28.6 38.3
CMCA 19.3±2.0 13.2 30.6 40.0
CMCM-NoAttn 20.6±2.6 12.4 28.9 38.8
CMCM 18.7±1.6 13.8 31.6 40.6

CMCMV isible 19.6±3.1 13.4 31.7 41.1
CMCMSubjective 25.0±3.1 12.9 29.4 38.0
CMCMAction 20.9±2.1 11.7 28.4 38.0
CMCMStory 17.7±1.7 13.0 30.7 41.5
CMCMMeta 19.2±1.5 13.1 31.0 40.7
CMCMIrrelevant 20.3±1.9 12.6 31.1 40.9

Table 5: Quantitative comparison of the models trained and
evaluated on Clue dataset.

models are shown for pairwise comparison.
We recruit 250 participants through Amazon Mechanical

Turk. All subjects were US citizens, agreed to a consent form
approved by the University of Pittsburgh IRB review board,
and were compensated at an estimated rate of USD 15 an
hour. We showed subjects the caption, the top image retrieved
by the coherence aware and the coherence agnostic model
for five relations from both the datasets and asked them to
choose one of the following options:
(1) I prefer image A (2) I prefer image B (3) The images are
exactly the same (4) Neither of the images is a good match
for this text. The order of images is random and each example
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Figure 7: Attention weights for CMCM and CMCA models for
example Left: Figure 6 (a) and Right: Figure 6 (b).

was ranked by three workers and the final rank is decided
via majority voting. The results are shown in Table 6. It can
be seen that the images retrieved by the proposed model
are preferred by humans. More importantly, the difference in
preference is significant in contrast to the quantitative metrics.
We can also see that the difference in preference between
CMCM and CMCA is higher when the relation is Subjective
or Story when compared to regular captions (see Visible),
indicating the importance of explicitly modeling coherence
relations for cross-modal understanding. The results of the
t-test shows that the differences observed in CMCM and CMCA
category are all statistically significant (p < 0.01, t > 14.1).
The results of the sensitivity power analysis shows that our
experiment detects effect sizes as small as 0.17 with a power
and significance level of 95%. These results effectively show
that the quantitative metrics such as MedR and Recall can not
solely measure performance of the model especially given
the nature of the dataset and coherence relations.

Better Worse Both Good Both Bad

CMCMV isible 24% 17% 46% 13%

CMCMSubjective 53% 10% 7% 30%

CMCMStory 40% 10% 33% 17%

CMCMMeta 56% 9% 25% 10%

CMCMQ7 43% 17% 27% 13%

Table 6: Human evaluation results. Values indicate the per-
centage of samples for which humans voted the output of
CMCM as Better, Worse, Both Good, Both Bad when com-
pared with CMCA.

Qualitative Analysis
To further understand the behavior of the model, we investi-
gate the attention weights over input text for CMCM and CMCA
models. In example Figure 6 (a), the proposed coherence-
aware model retrieves the ground truth within the top 5 im-
ages. We can see from Figure 7 (left) that adding Coherence
Aware Module increases the weight on words horse and graz-
ing relative to the agnostic model. This can be attributed
to the model’s ability to predict the associated coherence
relation to help retrieve the right image. The CMCA model,
however, attends more to commonly visualized words like
forest and outdoors. Similarly, in Figure 6 (right), CMCM
shows improved attention weights for words like male and

golfer. The result is the model being able to retrieve the cor-
rect image in top 1 though both models retrieve images of
Vector illustration in the top 5 Figure 6 [b]. More examples
for other relations are provided in the Appendix.

In CITE++ dataset, we observe similar behavior as shown
in Figure 6 [c]. The relation Temporali>t characterizes the
temporal correlation between an image and text where the
image visualizes the result of the process described in the
corresponding text. These relations are difficult to implicitly
understand as the text is no different from any other step in the
recipe. Training with Coherence Aware Module that explicitly
models temporal relation improves the performance of image
retrieval. For example, we can see in Figure 6 that all top 5
images retrieved by the CMCM are images that visualize the
result of a process, in contrast to CMCA model that shows
images of the step being carried out as well.

Predicting Coherence Relations
To further understand the effect and importance of coherence
relations, we analyze the model’s ability to predict the pres-
ence of a coherence relation given the ground truth image
and text. For this, we use the models trained using the orig-
inal objective in Equation 3. We provide the ground truth
image and text as input and calculate the Average Precision
(AP) of coherence relation prediction. The results are pro-
vided in the Appendix. We can see that in most cases as
expected, the CMCMc algorithms perform reasonably well.
We haven’t provided the results for CMCA models as they
were not trained with coherence relations. These results are
comparable to similar experiments performed in (Alikhani
et al. 2020) though in their experiment, classification was the
only objective. Interestingly Subjective relation has very low
AP (cf. appendix) similar to retrieval performance but the
proposed model obtains significance gain in performance in
the human evaluation.

Conclusion2

Automating the understanding and generation of multimodal
discourse requires a joint understanding of co-occurring im-
ages and text. Our study shows the effectiveness of cross-
modal coherence modeling for text-to-image retrieval tasks.
Our evaluation shows that the performance of the coherence-
aware model is significantly better compared to the agnos-
tic models. We also observe that the existing Recall based
quantitative metrics for text-to-image retrieval are unreli-
able and fail to meaningfully evaluate retrieval systems espe-
cially when image-text pairs can be characterized by differ-
ent coherent relations. Future work involves developing new
transformer-based coherence-aware metrics that can better
measure the performance of retrieval models. Based on the
evidence shown in this paper, an important extension is to
annotate existing datasets with coherence relations to further
improve semantic joint understanding of image and text.

2The research presented in this paper has been supported
by NSF awards IIS-1703883, IIS-1955404, IIS-1955365, IIS
1955404, RETTL-2119265, IIS-1526723, CCF-1934924, and
EAGER-2122119, and through generous donations from Adobe.
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