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Abstract

Commonsense question answering (CQA) aims to test if
models can answer questions regarding commonsense knowl-
edge that everyone knows. Prior works that incorporate ex-
ternal knowledge bases have shown promising results, but
knowledge bases are expensive to construct and are often
limited to a fixed set of relations. In this paper, we instead
focus on better utilizing the implicit knowledge stored in pre-
trained language models. While researchers have found that
the knowledge embedded in pre-trained language models can
be extracted by having them fill in the blanks of carefully
designed prompts for relation extraction and text classifica-
tion, it remains unclear if we can adopt this paradigm in CQA
where the inputs and outputs take much more flexible forms.
To this end, we investigate four translation methods that can
translate natural questions into cloze-style sentences to bet-
ter solicit commonsense knowledge from language models,
including a syntactic-based model, an unsupervised neural
model, and two supervised neural models. In addition, to
combine the different translation methods, we propose to en-
courage consistency among model predictions on different
translated questions with unlabeled data. We demonstrate the
effectiveness of our methods on three CQA datasets in zero-
shot settings. We show that our methods are complementary
to a knowledge base improved model, and combining them
can lead to state-of-the-art zero-shot performance. Analyses
also reveal distinct characteristics of the different cloze trans-
lation methods and provide insights on why combining them
can lead to great improvements. Code/dataset is available at
https://github.com/PlusLabNLP/zero shot cqa.

Introduction
Commonsense knowledge consists of widely known facts
that humans use to reason and react to everyday situations.
Recently, empowering machines with such commonsense
reasoning abilities has become an active research topic (Lin
et al. 2019; Bosselut et al. 2019; Lv et al. 2020) and vari-
ous commonsense question answering (CQA) benchmarks
have been constructed (Zellers et al. 2018; Sap et al. 2019a;
Zellers et al. 2019). Different from other types of QA tasks,
CQA usually does not require domain-specific knowledge
and sophisticated natural language understanding. Rather, it
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Figure 1: An example of natural-to-cloze translation with
our syntactic-based method. ‘SQ’ is defined as the subcon-
stituent of questions excluding wh-word or wh-phrase.

relies on inference over implicit commonsense knowledge
that is not given in the QA contexts.

To tackle this problem, researchers have attempted to
construct commonsense knowledge bases (Vrandečić and
Krötzsch 2014; Speer, Chin, and Havasi 2017; Sap et al.
2019a), which can be integrated into downstream mod-
els (Bosselut, Le Bras, and Choi 2019). However, knowl-
edge bases are often limited to a pre-defined set of relations
and are expensive to construct. On the other hand, language
models (LMs; e.g. Devlin et al. (2019); Liu et al. (2019); Lan
et al. (2019)) pre-trained on large textual corpora are easy to
extend to more data and allow users to query about an open
class of relations. In addition, it has been demonstrated that
pre-trained LMs contain a certain amount of world knowl-
edge implicitly (Roberts, Raffel, and Shazeer 2020; Talmor
et al. 2020) which can be extracted by having LMs fill in the
blanks of carefully designed prompts (Petroni et al. 2019;
Zhou et al. 2020; Jiang et al. 2020). However, these pre-
vious work only focuses on the settings where there is a
fixed set of relations or output classes, thus knowledge can
be induced by designing a limited amount of hand-crafted
or automatically-generated rules. For example, to obtain a
birthplace of one person X, we can just have an LM fill in
the blank of ‘X was born in ’. In contrast, natural questions
are much more flexible and it is non-trivial to design gen-
eral rules to transform different natural questions into cloze
forms. How to better solicit implicit knowledge in the pre-
trained LMs for CQA is an open question and no previous
work has explored cloze translation for CQA to our knowl-
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edge.
In this paper, we propose to better exploit the knowl-

edge embedded in LMs for CQA by translating natural com-
monsense questions into “fill-in-the-blank” cloze sentences
(see Figure 1 for an example). We investigate four trans-
lation methods, including 1) a syntactic-based model that
performs a sequence of syntactic transformations on the
source questions; 2) an unsupervised neural sequence-to-
sequence (seq2seq) model that does not require any natural-
cloze question pairs inspired by Lewis, Denoyer, and Riedel
(2019); 3) a supervised seq2seq model (Lewis et al. 2020)
that is trained on our constructed dataset of natural-cloze
question pairs; 4) a sequence tagging model (Omelianchuk
et al. 2020) that performs operations such as word insertions
and deletions on the source natural questions and transforms
them into the target cloze questions. In addition, to com-
bine the strengths of different translation models, we pro-
pose a consistency optimization objective which encourages
the consistency between model predictions on the different
translated cloze questions of the same instance using only
unlabeled data.

We mainly focus on the zero and few-shot settings as
commonsense QA should be questions that any human can
answer without specific training, so we want to equip models
with similar ability. Moreover, these settings are robust mea-
sures of the models’ general reasoning abilities (Ma et al.
2020). We experiment on three CQA datasets, including
CommonsenseQA (Talmor et al. 2019), OpenbookQA (Mi-
haylov et al. 2018), and SocialIQA (Sap et al. 2019b). Re-
sults demonstrate that our cloze translation methods can
achieve significant improvements on both zero and few-
shot settings, and the consistency optimization objective can
lead to further improvements. In addition, we show that our
methods are complementary to a state-of-the-art knowledge
base improved method and can bring extra gains. Analyses
provide insights on distinct characteristics of the different
cloze translation methods and why combining them can lead
to greater improvements. Finally, we demonstrate that our
methods can be beneficial in high-resource settings when
the models are trained with both natural questions and our
translated cloze-form queries.

Methods
We first present four different cloze translation methods, dis-
cuss how we make use of the cloze questions, then illustrate
how we combine them using consistency optimization on
unlabeled data.1

Cloze Translation
We investigate four methods for cloze translation:

Syntactic-based Rewriting. Transforming natural ques-
tions to cloze questions can be understood as a series of
syntactic transformation rules. While it can be nontrivial
to design a perfect set of rules (Heilman and Smith 2010),

1We focus on multiple-choice commonsense question answer-
ing. Formally, given a natural question q and a set candidate an-
swers {ai}, the model needs to select the most probable answer.

Algorithm 1: Our syntactic-based rewriting method
(‘SQ’ is defined as the subconstituent of questions
excluding wh-word or wh-phrase)

Function Transform(root)
if root has no children then

return root[‘sentence’]
for child in root[‘children’] do

next child = child.right sibling
if next child[‘nodeType’] is ‘SQ’ then

Do inverse wh-movement on child and
replace its ‘wh’-word with ‘[MASK]’

else if child[‘nodeType’] is ‘SQ’ then
Swap first two children(child)

else
Transform(child)

return root[‘sentence’]

here we adopt some simple heuristics and our general idea is
shown in Figure 1. We use the constituency parser in (Joshi,
Peters, and Hopkins 2018) to get the part-of-speech tags
and syntactic structure of the input questions. The syntactic-
based rewriting model does not require any training data, but
it can be inflexible as it is hard to take all kinds of natural
questions into consideration.

Specifically, we mainly consider two cases in this paper.
First, if there exist nodes with the type ‘SQ’ in the input sen-
tence, where ‘SQ’ is defined as the constituent of questions
excluding wh-word or wh-phrase, we apply Algorithm 1 on
the sentence. To illustrate, Algorithm 1 mainly swaps the
first two children of the ‘SQ’ node, then performs an inverse
wh-movement on the inputs, and finally replaces the wh-
word with the mask tooken. Note that when doing the wh-
word replacement, we replace ‘what’, ‘who’, ‘which’ with
‘[MASK]’; ‘why’ with ‘because [MASK]’; ‘how’ with ‘by
[MASK]’; ‘where’ with ‘at [MASK]’; ‘when’ with ‘when
[MASK]’. Otherwise, if there is no ‘SQ’ node in the tree,
we search through the sentence and replace the first wh-word
with ‘[MASK]’.

Unsupervised Seq2Seq. Lewis, Denoyer, and Riedel
(2019) have shown that we can perform unsupervised cloze
translation by training neural seq2seq models with denois-
ing auto-encoding and iterative back-translation objectives
on unparallel natural and cloze question data. Their un-
supervised cloze translation method (Lewis, Denoyer, and
Riedel 2019) borrows some ideas from unsupervised neural
machine translation methods (Lample et al. 2018a,b). Con-
cretely, first, they create a cloze question corpus by masking
noun phrases and named entities in statements sampled from
Wikipedia, and a natural question corpus by mining ques-
tions containing some common wh-words from Common-
Crawl. Then, they train both cloze-to-natural and natural-
to-cloze translation methods with denoising auto-encoding
and iterative back-translation objectives as in unsupervised
machine translation. The denoising auto-encoding objective
first masks some of the tokens in the source questions, and
the model is trained to reconstruct the original questions. For
the iterative back-translation objective, a target-to-source
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Source Target

What do people aim to do at work? People aim to [MASK] at work.
What could go on top of wood? [MASK] could go on top of wood.
Where could you find a toilet that only friends can use? You could find a toilet that only friends can use at [MASK].
How is riding a bike getting it to move? Riding a bike is getting it to move by [MASK].
Why would you be watching TV instead of doing something
else?

You would be watching TV instead of doing something else
because of [MASK].

Table 1: Samples from the created cloze translation data.

model is first used to translate a target question into the
source side, then a source-to-target model is trained to output
the original target question given the translated source sen-
tence, and this process will be repeated in both directions
iteratively. Their model architecture uses a 4-layer Trans-
former (Vaswani et al. 2017) encoder and a 4-layer Trans-
former decoder.

While Lewis, Denoyer, and Riedel (2019) mainly focus
on cloze-to-natural translation and using it to perform data
augmentation for question answering, a by-product of their
method is a natural-to-cloze translation model, and here
we directly use their pre-trained model.2 The unsupervised
model is much more flexible than the syntactic-based rewrit-
ing one, but the translated questions can be deviated from the
original inputs due to the lack of supervision signals and the
uncontrollable nature of seq2seq models.

Supervised Seq2Seq. To provide models with supervi-
sions, we manually create a dataset of natural-cloze ques-
tion pairs. Concretely, we manually translate all the nat-
ural questions in the original CommonsenseQA training
and development data into cloze questions. We create a
(8,500/1,221/1,241) split as in our main experiments. It takes
a person around 40 hours to construct such a dataset. We
sample several examples from the dataset as shown in Ta-
ble 1. We can see that there exist different kinds of transfor-
mation rules and previous methods on designing the prompts
for pre-trained language models cannot be applied in com-
monsense question answering.

We fine-tune BART-Large (Lewis et al. 2020), a represen-
tative seq2seq model, on the dataset and perform natural-
to-cloze translation. The inputs and outputs are the natural
and cloze questions respectively. The model is trained with
maximum likelihood estimation objective and we employ
beam search during decoding. We choose BART-Large as
our supervised seq2seq model because it is widely used in
text generation tasks such as text summarization. BART is
based on the Transformer model (Vaswani et al. 2017) and
is pre-trained by corrupting documents and then optimizing
a reconstruction loss. Its architecture consists of 12 Trans-
former encoding and decoding layers.

Supervised Sequence Tagging. While seq2seq models
have been the de facto choice for many sequence generation
tasks, cloze translation mainly involves word movements,

2https://dl.fbaipublicfiles.com/UnsupervisedQA/sentence ne.
tar.gz

deletions, and insertions which do not require a whole re-
writing. Therefore, we also formulate cloze translation as a
sequence tagging problem. A tagging model identifies which
words need to be changed and modifies them with pre-
defined word-level transformations (e.g. keep, delete, ap-
pend), which may generate more faithful cloze questions
than seq2seq models. The sequence tagging task has been
widely investigated in the task of grammatical error correc-
tion and here we train GECToR (Omelianchuk et al. 2020), a
popular model in grammatical error correction, on our con-
structed dataset.

The GECToR model (Omelianchuk et al. 2020) employs
a Transformer encoder and its parameters are initialized
with RoBERTa. They have pre-defined token-level transfor-
mations. For example, given a source and target sentence
‘A ten years old boy go school’ and ‘A ten-year-old boy
goes to school.’, it first pre-processes the pair to convert
it to a sequence of transformation rules. Concretely, first,
they map each token from the source sentence to subse-
quence of tokens from the target sentence: [A → A], [ten
→ ten, -], [years → year, -], [old → old], [go → goes, to],
[school → school.]. Then, they will find token-level trans-
formations that convert the source tokens to the target to-
kens and there is only one transformation for each source
token: [A → KEEP], [ten → MERGE HYPHEN], [years
→ NOUN NUMBER SINGULAR], [old → KEEP], [go →
VERB FORM VB VBZ], [school → APPEND DOT]. Be-
cause there is only a single tag for each token, this method is
not suitable for all the situations. To solve the problem, they
propose to process the pairs iteratively and at each step there
is one single tag for each token.

We can see that after the pre-processing, sequence genera-
tion is turned to a sequence classification task. Therefore, we
can encode the entire input sentence using its encoder and
feed the encoded representations to a classifier. The classi-
fier will decide which transformation rule to apply for each
token. We refer readers to their codebase3 for more details.

Answer Prediction

Once we have the cloze question x for a natural question
q, we can replace the mask token in x with each of the
candidate answers in {ai}, and feed each replaced sentence
ri = ⟨ri1, · · · , rin⟩ to a pre-trained LM. The pre-trained LM

3https://github.com/grammarly/gector
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can assign a score for ri with

si =
1

n

n∑
k=1

log p(rik|ri), (1)

and ri with the highest score is treated as our prediction.4
We can apply softmax on the resulting scores {si} to get the
prediction probabilities.

Consistency Optimization

The above methods can generate different cloze questions
{xj} for q. Instead of picking a single one for LMs, we pro-
pose a consistency optimization objective to combine them
with unlabeled data.

Inspired by work on multi-view learning (Wang, Ruder,
and Neubig 2021), we encourage the consistency between
predictions on different cloze translations for the same ques-
tion. For each training instance, we first ensemble the model
predictions: formally, given each cloze question xj and its
candidate answers {ai}, we obtain the score {sij} for {ai}
as in the previous section, then apply softmax on {sij}
to get the prediction probabilities {pij}; then, we sum the
probabilities for each answer from different translation as
pi =

∑
j pij , and take the answer with the highest probabil-

ity as the ensemble prediction a∗.
We then treat a∗ as the pseudo-label to supervise the LM

in a self-training manner. Concretely, we fine-tune the LM
to maximize the probability of xj with its mask token re-
placed with a∗ while minimizing the probability of all the
other candidate answers in {ai} with the cross-entropy loss.

Note that the consistency optimization objective does not
need any gold labels, making it possible to be integrated into
the zero-shot and few-shot settings.

Experiments
We experiment on CommonsenseQA (Talmor et al.
2019), OpenbookQA (Mihaylov et al. 2018), and So-
cialIQA (Sap et al. 2019b). Because the standard test set
labels of CommonsenseQA are unavailable, we create a
(8,500/1,221/1,241) split for (train/dev/test) following Lin
et al. (2019); Wang et al. (2020). We use the standard splits
for the other datasets. We compare with two methods that do
not use any knowledge base, including 1) natural questions
(‘Base’), which are directly concatenated with each answer
choice and then fed to pre-trained LMs; 2) self-talk (Shwartz
et al. 2020), which gets additional background for common-
sense questions by querying LMs. We also report the re-
sults of Ma et al. (2020), which is a state-of-the-art zero-
shot CQA model using knowledge bases to construct CQA
datasets automatically. We use ALBERT-xxlarge-v2 (Lan
et al. 2019) as the base LM. We will illustrate the details
of our experimental setup in the following paragraphs.

4We find that averaging the output logits is sometimes better
than averaging the log probabilities, and in the experiments we se-
lect the best strategy based on the development set.

Experimental Setup
Datasets. For the CommonsenseQA dataset (Talmor et al.
2019), because its test set is not publicly available, the pre-
dictions for it can only be evaluated once every two weeks
via the official leaderboard. Therefore, following previous
work (Lin et al. 2019; Wang et al. 2020), we separate the
training data into training and test sets consisting of 8,500
and 1,241 instances respectively. We use the standard de-
velopment set consisting of 1,221 instances. The Open-
bookQA (Mihaylov et al. 2018) dataset consists of 5,957
multiple-choice questions with 4,957 training, 500 devel-
opment, 500 testing instances. While it provides a small
“book” of 1,326 core science facts, we do not include this
additional information because our focus is on the implic-
itly learned knowledge in pre-trained language models. The
SocialIQA (Sap et al. 2019b) dataset contains 33,410 train-
ing, 1,954 development, 2,224 testing instances, the aim of
which is to probe the emotional and social intelligence of
models in a variety of everyday situations.

Cloze Translation Methods. For the unsupervised cloze
translation method, we use the pre-trained model (sentence
cloze boundaries, named entity answers) provided by Lewis,
Denoyer, and Riedel (2019). For the seq2seq model, we fol-
low the setting in text summarization on XSUM and fine-
tune the BART-Large model on the training set of our cloze
data for 15k steps with a batch size of 16,384 tokens and a
learning rate of 3e-5. For the sequence tagging model, we
fine-tune the RoBERTa-based GECToR model on our cloze
translation data with default parameters.5 We select the mod-
els that achieve the best BLEU scores on the development set
for cloze translation.

Consistency Optimization. For the consistency optimiza-
tion objective, we use the training data of each dataset
without using their labels. We encourage the model pre-
diction consistency on the data generated by syntactic-
based rewriting, supervised seq2seq, and supervised se-
quence tagging model. The models are trained with a
learning rate of 1e-5 for 2k/1k/2k steps for Common-
senseQA/OpenbookQA/SocialIQA respectively.

Zero-shot Settings. In the zero-shot settings, for the base-
line ALBERT-xxlarge-v2 model, we directly concatenate
the questions and answers together, and feed the concate-
nated sentences to the model to get the language modeling
scores. For the self-talk baseline, we try both GPT2-Large
and ALBERT-xxlarge-v2 for querying the external contexts
and getting the language modeling scores using the default
parameters. For Ma et al. (2020), we use their constructed
CWWV data that utilizes three knowledge bases: Concept-
Net, WordNet, and Wikidata, then we train both ALBERT-
xxlarge-v2 and RoBERTa-Large on the CWWV data with
their default parameters.

Few-shot Settings. For the few-shot settings, we ran-
domly sample 16/32/64/128 datapoints from the training
data and fine-tune ALBERT-xxlarge-v2 on both the natural

5https://github.com/grammarly/gector
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Method Natural Question Cloze Question

Syntactic-based Where is a good idea but not required to have a fire extin-
guisher?

But is a good idea not required to have a fire extin-
guisher at [MASK].

Unsup. Seq2Seq What island country is ferret popular? The island country is a popular ferret in [MASK].
Sup. Seq2Seq Blue read material outside of his comfort zone because he

wanted to gain what?
James read material outside of his comfort zone because
he wanted to gain [MASK].

Sup. Tag Where is a human likely to go as a result of being hungry? A is likely to go to [MASK] as a result of being hungry.

Table 2: Example failure cases of our translation methods sampled from the CommonsenseQA dev set.

Method CommonsenseQA OpenbookQA SocialIQA

dev test dev test dev test

Methods without Knowledge Base

Baseline

Base (ALBERT) 31.14 28.52 31.80 33.00 41.71 40.47
self-talk (GPT2) 31.53 29.74 28.40 30.80 45.34 44.47
self-talk (ALBERT) 15.89 17.49 22.20 19.40 26.25 26.48

Ours (ALBERT-based)

Syntactic-based rewriting 50.94 48.67 41.60 39.80 44.11 42.00
Unsup. Seq2Seq 43.49 42.86 40.00 39.20 40.94 38.80
Sup. Seq2Seq 51.60 49.00 39.00 39.80 44.73 41.41
Sup. Tag 50.86 48.51 39.00 38.60 41.53 40.78
Ensemble 54.62 51.57 41.00 39.20 44.11 42.04
Consistency* 64.07 ± 0.14 61.08 ± 0.35 50.27 ± 0.57 49.87 ± 0.90 54.13 ± 0.99 54.21 ± 1.37

Methods Using Knowledge Base

Baseline

Ma et al. (2020) (RoBERTa) 68.63 66.88 34.80 38.00 56.04 51.93
Ma et al. (2020) (ALBERT) 66.50 64.87 45.40 48.00 51.02 52.28

Ours (ALBERT-based)

Ma et al. (2020) + Consistency* 69.73 ± 0.16 67.38 ± 0.44 58.27 ± 0.25 54.27 ± 0.41 59.85 ± 0.72 59.88 ± 0.97

Table 3: Accuracy (%) in zero-shot settings. ‘*’ indicates that we run the experiments three times with different random seeds.
For self-talk and Ma et al. (2020), we try both ALBERT and the best LMs used in their papers. The best scores are in bold.

and cloze translated data. Similar to the consistency opti-
mization objective, a question is concatenated with each an-
swer choice and then fed to the model to get its correspond-
ing score. The scores for all the choices are then normal-
ized using softmax to get the prediction probability for the
choices, then we use the cross-entropy loss on the prediction
probability to train the model. The learning rate is set to 1e-5
and the number of epoch is set to 10 or 20, selected on the
development sets. We run the experiments three times with
different random seeds for each setting.

Main Results
In this section, we will present the main results of our meth-
ods in both zero- and few-shot settings.

Methods without Knowledge Base We first compare
with methods that utilize knowledge base. Table 3 shows that
cloze translation can generally improve the zero-shot perfor-
mance of ALBERT significantly across settings (one excep-
tion is unsupervised seq2seq on SocialIQA), demonstrating

that the knowledge in LMs can indeed be better extracted
with cloze questions. Unsupervised seq2seq is the least ef-
fective translation method, potentially due to its lack of su-
pervisions. Our models cannot outperform self-talk on So-
cialIQA, possibly because self-talk manually designs task-
specific question transformation rules for SocialIQA, which
inserts strong supervision into their models.

We then combine all the translation methods except unsu-
pervised seq2seq. We find that directly ensembling them as
in Section cannot always lead to improvements, but consis-
tency optimization can improve the performance by a large
margin across settings. This demonstrates that it is highly
nontrivial to combine the strengths of different translation
methods and our designed objective is one very effective
way of combining them. Note that after using the consis-
tency optimization objective, our method can even achieve
comparable performance with Ma et al. (2020) that lever-
ages external knowledge base on two datasets.
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Figure 2: Accuracy (%) in few-shot settings. We run the ex-
periments three times for each setting.

Method Correct Unnatural Unfaithful Wrong [MASK]

Syntactic-based 86 8 0 6
Unsup. Seq2Seq 52 9 7 32

Sup. Seq2Seq 87 1 11 1
Sup. Tag 86 6 6 2

Table 4: Error counts of our methods. ‘Wrong [MASK]’
means the position of [MASK] is wrong.

Methods Using Knowledge Base We also try to com-
pare our models with a method that uses external knowledge
base and achieves state-of-the-art performance in zero-shot
settings. While our methods cannot always outperform Ma
et al. (2020), which is intuitive considering that our model
is given less information, we can combine Ma et al. (2020)
with our method. Specifically, because Ma et al. (2020)
mainly use knowledge base to construct datasets, we can
first fine-tune LMs on their constructed data and then use
our cloze translation and consistency optimization methods
on the commonsense question answering datasets. As we
can see from Table 3, this combination strategy can lead to
the best performance across datasets, indicating the comple-
mentarity of the two methods.

Few-shot Evaluations. We also experiment in few-shot
settings where only 16/32/64/128 instances are available. In
this part, we mainly compare the baseline with the syntactic-
based translation because 1) it does not need any supervi-
sions; 2) it works well in zero-shot settings as shown in Ta-
ble 3. As illustrated in Figure 2, our syntactic-based trans-
lation method consistently outperforms the baseline which
is trained on natural questions and consistency training can
also be helpful in these settings. Also, it is interesting to note
that zero-shot performance of cloze translation is better than
supervised models trained with 100 natural questions.

Analysis
We then perform several analyses on our methods.

Translation Errors. We first try to analyze the errors of
different cloze translation methods. To this end, we ran-
domly sample 100 questions from the CommonsenseQA
dataset and perform human evaluation on the translation er-
rors as in Table 2 and 4. As we can see from the tables,
the unsupervised seq2seq method is the least effective one
as it can often generate meaningless questions, which can
explain why it performs in worst in the main experiment

section (Table 3. The syntactic-based method, on the other
hand, is inflexible, thus it can generate unnatural sentences
or put [MASK] at the wrong place when dealing with com-
plex syntactic structures. In the example in Table 2, we can
see that it can generate the sentence “the island country is a
popular ferret in [MASK]” which is hard to parse and quite
unnatural.

The supervised methods are more much flexible. How-
ever, the supervised seq2seq method can sometimes generate
unfaithful outputs. Interestingly, in Table 2, it replaces the
person name ‘Blue’ in the original question with ‘James’,
possibly because ‘James’ appears more frequently in the
training data. Note that even though the output is unfaith-
ful, it does not affect the correct answer choice. For the su-
pervised tagging model, because it mainly deals with word
deletions and insertions, sometimes over-deletions or inser-
tions may occur, resulting in unfaithful or unnatural sen-
tences. But it should be noted that the supervised tagging
method can generate more faithful outputs than the seq2seq
method, confirming our previous hypothesis.

We can see that different cloze translation methods have
rather distinct characteristics, indicating that the translation
outputs can be rather diverse, which can be the reason why
our consistency optimization objective can greatly improve
the model performance across settings as in Table 3.

High-resource Settings. We also test the model perfor-
mance on natural and cloze questions in high-resource
settings where all the labeled training data are used. In
the high-resource settings, we fine-tune ALBERT-xxlarge-
v2 on both the natural and cloze translated data with
all the training data. The models are trained with a
learning rate of 1e-5 for 2k/1k/2k steps for Common-
senseQA/OpenbookQA/SocialIQA. For the ensemble, we
apply softmax on the prediction scores for each model, and
add the prediction probabilities together. We try to ensem-
ble 3 models trained on natural data, 3 models trained on
cloze data, and 2 models trained on natural and cloze data
respectively.

As in Figure 3, our model (‘1 Rule’) cannot always out-
perform the baseline (‘1 Base’). We hypothesize that this
is due to the translation errors as we have analyzed in the
previous part. Concretely, the translation errors can alter
the meaning of the original questions, and training on these
noisy data can lead to degraded performance. However, be-
cause of the diversity among different translation methods,
we can ensemble each of the models trained on different data
(‘1 Base + 1 Rule’), which is better than ensembling 3 mod-
els trained on the same data with different random seeds (‘3
Base’ and ‘3 Rule’).

Applicability to Other LMs. All of the previous exper-
imental results are obtained using the ALBERT model. In
this part, we also test if our methods are applicable to other
LMs as well. As shown in Figure 4, our methods can im-
prove all the pre-trained LMs. Also, we can see that our
model has a tendency to favor bidirectional LMs (e.g. AL-
BERT and RoBERTa) than uni-directional models. One pos-
sible reason is that when using cloze translation, the LM
probability of all the words will be affected in bidirectional
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Figure 3: Accuracy (%) on natural (‘Base’) and rule-
translated (‘Rule’) data in high-resource settings. Ensem-
bling each of the models trained on different data (‘1 Base
+ 1 Rule’) is better than ensembling 3 models trained on the
same data (‘3 Base’ and ‘3 Rule’).
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Figure 4: Performance of RoBERTa-Large, GPT2-Large,
T5-Large on the CommonsenseQA dev set.

LMs, while only the probability of words appearing after
[MASK] are changed for unidirectional LMs. For example,
cloze translation improves GPT2 the least possibly because
it is unidirectional and only the probability of words suc-
ceeding [MASK] are affected. Similarly, consistency train-
ing improves T5 marginally because it is a sequence-to-
sequence model and the target side are the label words.
Therefore, only the label word probabilities will be affected
which can limit the model performance.

Related Work
Commonsense Question Answering. Researchers have
created different benchmarks (Zellers et al. 2018; Zhou et al.
2019; Sakaguchi et al. 2020; Sap et al. 2019a; Zellers et al.
2019; Talmor et al. 2019; Lin et al. 2020; Bisk et al. 2020;
Sap et al. 2019b), which motivates the research on com-
monsense question answering. Most previous work on com-
monsense question answering tries to incorporate knowl-
edge base during training (Bosselut, Le Bras, and Choi
2019; Bosselut et al. 2019; Ye et al. 2019; Ma et al. 2020) or
during inference (Bauer, Wang, and Bansal 2018; Lin et al.
2019; Xu et al. 2021; Lv et al. 2020; Wang et al. 2020).
For example, Ma et al. (2020) use knowledge bases to auto-
matically construct data for commonsense question answer-
ing and train the models on their constructed datasets. Xu
et al. (2021) try to fuse knowledge into models by having
the models being able to attend to knowledge bases such as
ConceptNet. Different from these methods, we focus on bet-
ter utilizing the knowledge embedded in pre-trained LMs.

Recently, Shwartz et al. (2020) propose a self-talk frame-
work that can induce commonsense knowledge from LMs
by iteratively querying them to discover additional back-
ground knowledge given a question. They also manually de-
sign dataset-specific rules for cloze translation. In this paper,
we treat it as our baseline and take a step further, develop-
ing more principled ways of cloze translation and achieving
better performance than their methods.

Knowledge Exploitation from Pre-trained Language
Models. Pre-trained language models (Devlin et al. 2019;
Liu et al. 2019; Lan et al. 2019) have been demonstrated
impressive performance across natural language processing
tasks. The implicitly stored knowledge during pre-training
can benefit the model on downstream tasks and there have
been several papers on evaluating the embedded knowledge
in pre-trained language models (Petroni et al. 2019; Roberts,
Raffel, and Shazeer 2020; Talmor et al. 2020; Zhou et al.
2020). This property has been used to solve text classifi-
cation, natural language inference, relational classification
tasks in zero-shot settings by having LMs fill in the blanks
of cloze questions (Jiang et al. 2020; Schick and Schütze
2021) or predict the continuation to prompts (Brown et al.
2020; Gao, Fisch, and Chen 2021). For example, Jiang et al.
(2020) automatically design several translation rules for ex-
tracting 41 different relations and try to ensemble different
translation results. We refer the readers to Liu et al. (2021)
for a more comprehensive survey.

However, these previous work usually focuses on the set-
tings where there are only a fixed set of relations or out-
put classes, and knowledge can be induced by designing a
limited amount of hand-crafted or automatically-generated
rules, thus these methods cannot be directly applied in com-
monsense question answering. In this paper, we investigate
if this paradigm can also be applied in commonsense ques-
tion answering and examine ways of adapting natural ques-
tions for pre-trained LMs by cloze translation.

Conclusions

We aim to better utilize the implicitly learned knowledge in
pre-trained LMs for commonsense question answering by
natural-to-cloze question translation. To this end, we con-
struct a dataset of natural-question pairs and investigate four
translation methods. In addition, we demonstrate that differ-
ent translation methods have distinct characteristics and we
propose a consistency optimization objective to combine the
strengths of different translations using unlabeled data. We
demonstrate the effectiveness of our methods in zero and
few-shot settings and show that our methods are comple-
mentary to a state-of-the-art knowledge base method.

In the future, we can investigate more cloze translation
methods and develop better ways of utilizing the translated
questions. Also, so far we only perform experiments on En-
glish datasets and our syntactic-based method is specifically
designed for English questions, thus it can be interesting to
see if our methods can generalize to other languages.
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