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Abstract
Transformer-based pre-trained language models like BERT
and its variants have recently achieved promising perfor-
mance in various natural language processing (NLP) tasks.
However, the conventional paradigm constructs the back-
bone by purely stacking the manually designed global self-
attention layers, introducing inductive bias and thus leads to
sub-optimal. In this work, we make the first attempt to auto-
matically discover novel pre-trained language model (PLM)
backbone on a flexible search space containing the most fun-
damental operations from scratch. Specifically, we propose
a well-designed search space which (i) contains primitive
math operations in the intra-layer level to explore novel at-
tention structures, and (ii) leverages convolution blocks to
be the supplementary for attentions in the inter-layer level to
better learn local dependency. To enhance the efficiency for
finding promising architectures, we propose an Operation-
Priority Neural Architecture Search (OP-NAS) algorithm,
which optimizes both the search algorithm and evaluation
of candidate models. Specifically, we propose Operation-
Priority (OP) evolution strategy to facilitate model search via
balancing exploration and exploitation. Furthermore, we de-
sign a Bi-branch Weight-Sharing (BIWS) training strategy for
fast model evaluation. Extensive experiments show that the
searched architecture (named AutoBERT-Zero) significantly
outperforms BERT and its variants of different model capac-
ities in various downstream tasks, proving the architecture’s
transfer and scaling abilities. Remarkably, AutoBERT-Zero-
base outperforms RoBERTa-base (using much more data) and
BERT-large (with much larger model size) by 2.4 and 1.4
higher score on GLUE test set.

1 Introduction
Benefiting from the powerful capacity of self-attention
structures in transformers (Vaswani et al. 2017), the pre-
trained language models (PLM) (e.g. BERT (Devlin et al.
2019), RoBERTa (Liu et al. 2019b), ALBERT (Lan et al.
2020), GPT3 (Brown et al. 2020)) have achieved satisfy-
ing performance across various NLP tasks (Wang et al.
2018; Rajpurkar et al. 2016; Rajpurkar, Jia, and Liang 2018;
Zellers et al. 2018). All these models are based on the fixed
hand-crafted self-attention structure by varying training re-
sources, parameter numbers, layer numbers and inputs.
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Figure 1: Comparison between BERT and our searched
model. Our searched AutoBERT-Zero is a hybrid structure
with convolution layers and the novel searched attention lay-
ers, whose kernel sizes and attention structures are various
across different layers.

The conventional paradigm constructs the backbone by
stacking the manually-designed global self-attention layers.
However, many recent works have pointed out that the de-
sign of self-attention structures is not optimal (Kovaleva et
al. 2019; Michel et al. 2019; Dong et al. 2021), whose in-
ductive bias limits its performance as well as efficiency. In
particular, (Dong et al. 2021) find that repeatedly stacking
self-attention results to “token-uniformity” problem, mean-
ing that different tokens are mapped to similar latent repre-
sentations. Even though they claim that skip connection and
multi-layer perceptions mitigate this problem, we still ob-
serve it on the BERT output (see Figure 5). Another work
Reformer (Kitaev et al. 2020) discovered that sharing the
weights for query and key does not impact the model’s
performance, indicating that redundant parameters exist in
self-attention structure. In addition, ConvBERT (Jiang et al.
2020) shows that local operations such as convolution helps
better learn the inherent local dependencies in natural lan-
guages. Here, we raise the following questions: Does there
exist more powerful and efficient attention beyond the pure
query-key-value self-attention for PLM? Can we boost the
model performance and efficiency by flexibly combining
global attention with local operations?

To address the above fundamental challenges in the NLP
field, we resort to Neural Architecture Search (NAS), which
has emerged as a powerful technique to automatically dis-
cover promising models without excessive human interven-
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tion and tedious tuning. NAS is empowered by a search algo-
rithm and a well-designed search space. The effectiveness of
NAS is validated on many computer vision tasks (e.g., image
classification (Zoph and Le 2016; Shi et al. 2020), object de-
tection (Xu et al. 2019; Yao et al. 2021) . Nevertheless, few
works leverage NAS to design backbone structure for PLM.
The only related works, AdaBERT (Chen et al. 2020) and
DynaBERT (Hou et al. 2020) use NAS to compress the full-
sized BERT into small models, while Evolved Transformer
(So, Le, and Liang 2019) searches architecture on specific
downstream tasks. Besides, as architectures in AdaBERT
and Evolved Transformer are task-specific, those models
are not applicable for general NLP tasks. Meanwhile, the
searched models in DynaBERT and Evolved Transformer
are still transformer-based, which does not explore more
powerful attention structure.

To the best of our knowledge, using NAS to discover
a novel general PLM backbone from scratch has not been
investigated. In this work, we aim to explore powerful
PLM backbone by discovering novel attention structures as
well as whole backbone architecture from a flexible search
space. Specifically, we design both intra-layer and inter-
layer search spaces that provide a wide variety of candi-
date architectures to prevent the inductive bias in conven-
tional transformer. The intra-layer search space with few
constraints enables finding novel self-attention mechanism,
which contains various primitive mathematical operations to
construct computation graph with variable path length and
flexible input nodes. The inter-layer search space contains
global (self-attention) and local operations (convolution) on
the backbone level, which provides flexibility in learning
global and local dependencies at different layers.

Since pretraining a PLM is quite time consuming, the
computational burden of NAS for PLM is much more over-
whelming than utilizing NAS for CV tasks, especially given
that our search space is extremely huge. Thus, it is cru-
cial to make the NAS algorithm more efficient in terms of
both speed and memory. To this end, we propose a novel
Operation-Priority Neural Architecture Search (OP-NAS)
algorithm. During search phase, we promote Operation-
Priority (OP) evolution strategy. This strategy leverages
prior information of operations at each position in the com-
putation path to flexibly balance exploration and exploita-
tion when mutating new architectures, which escapes local
optimal and speeds up the search. To facilitate model evalu-
ation, we design Bi-branch Weight-Sharing (BIWS) training
strategy, which introduces a super-net to keep track of the
trained weights for both the attention structures and convo-
lution blocks on each layer. The candidates are initialized
with the weights extracted from the super-net during evalu-
ation to prevent repeated pretraining.

Extensive experiments are conducted on the widely
used Natural Language Understanding(NLU) and Ques-
tion Answering(QA) benchmarks. The best searched archi-
tecture(named AutoBERT-Zero) is shown on Figure 1(c),
which stacks novel searched attention structures and con-
volutions. Our AutoBERT-Zero achieves 87.7 GLUE score
when trained on the commonly used vallina pre-train tasks,
consistently outperforming current state-of-the-art (SOTA)

methods by a large margin (4.1 higher than T5), while
requiring fewer parameters (52.7% fewer parameters than
T5). More remarkably, our AutoBERT-Zero-base surpasses
RoBERTa-base (using much more data) and BERT-large
(with much larger model size) by 2.4 and 1.4 higher score
on GLUE test set.

Our main contributions are summarized as follows:
(i) This is the first work conducting NAS to automatically
discover new self-attention structures and better backbones
for PLM. (ii) The well-designed search space allows flex-
ible variations in self-attention structures/input nodes/com-
binations of local and global operations, which enables de-
riving powerful architectures. (iii) The proposed OP evo-
lution algorithm and BIWS training significantly accelerate
the model search and evaluation. (iv) Extensive downstream
evaluations demonstrate the effectiveness and scaling ability
of the searched model AutoBERT-Zero.

2 Related Works
Pre-trained Language Model (PLM). Recently, the
transformer-like paradigm (Vaswani et al. 2017; Radford
et al. 2018) has dominated the research on pre-trained lan-
guage models. BERT (Devlin et al. 2019) achieves SOTA
performance in various NLU tasks by stacking the encoder
of the transformer. Later, diverse BERT variants appear. For
example, UniLM (Dong et al. 2019), XLNet (Yang et al.
2019), ELECTRA (Clark et al. 2019) introduce new pre-
training objectives; Synthesizer (Tay et al. 2021) consid-
ers using random matrices to replace the dot-product self-
attention mechanism; ConvBERT (Jiang et al. 2020) re-
places part of attention heads with span-based convolu-
tion. However, to the best of our knowledge, apart from
ConvBERT and Synthesizer, no other work challenges the
transformer-based backbone that purely uses the dot-product
self-attention module. In this work, we delve into a more
general formulation of attention expression by the combina-
tion of primitive math operations.

Neural Architecture Search (NAS). Early NAS methods
search SOTA architectures based on reinforcement learning
(Zoph and Le 2016), which is computationally expensive.
Subsequently, AmoebaNet (Real et al. 2019) applies the evo-
lution algorithm for NAS. More EA-based methods were
further proposed, which exploit the evaluated candidates by
modifying how the population list is maintained (Zhu et al.
2019; Liu et al. 2019a). Gradient-based methods such as
DARTS (Liu, Simonyan, and Yang 2018) were designed to
speed up the model search at the expense of higher mem-
ory consumption. More recently, AutoML-Zero (Real et al.
2020) proves that using the basic mathematical operators can
successfully develop a machine learning algorithm.

NAS for Pre-trained LM. Despite the satisfying perfor-
mance in CV fields, for pre-trained language model, NAS
methods are only adopted to BERT compression. AdaBERT
(Chen et al. 2020) first introduces NAS to compress BERT
into small models using traditional convolution operations.
However, the searched architectures are task-specific rather
than general pre-trained language models. DynaBERT (Hou
et al. 2020) proposes a training method allowing compres-
sion in both width and depth directions w.r.t the full-sized
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Figure 2: An overview of our OP-NAS framework for pre-trained language models. Our method directly searches better back-
bone architectures from scratch (using primitive operations). We propose a hierarchical search space for exploring new self-
attention structures and an efficient combination of local and global dependencies. By introducing operation-priority(OP)
evolution algorithm with BIWS strategy, our method efficiently searches over a wide range of the possible arichitecures.

teacher BERT model, whose searched models are still trans-
former backbones. Orthogonal to the above methods, in-
spired by the view of AutoML-Zero, we design a search
space containing primitive operators and propose a novel
NAS method to develop novel attention structure and back-
bone for general PLM from scratch.

3 Methods
In this section, we present an efficient PLM architecture
searching pipeline that evolves the backbone from scratch,
as shown in Figure 2. We first introduce our hierarchical
coarse-to-fine search space, then elaborate on our operation-
priority Neural Architecture Search (OP-NAS) algorithm.

3.1 Search Space Design
We design a two-level search space for discovering novel
self-attention structures as well as an overall efficient PLM
backbone: (i) intra-layer level search space enables explor-
ing new self-attention structures from primitive operation
level; (ii) inter-layer level search space leverages global
attention layers and local convolution towards an efficient
combination of local and global dependencies.

Intra-layer Search Space As shown in Figure 1(b), the
original self-attention head can be expressed as follows:

Attn(X) = σ(XWQ(XWK)⊤/
√

dh)XWV W⊤
O (1)

= σ(QK⊤/
√

dh)VW⊤
O , (2)

where X ∈ Rn×d is the input, σ is softmax function and
self-attention layer is parametered by W k

Q,W
k
K ,W k

V ,W
k
O ∈

Rd×dh(dh = d/H). The input nodes for a typical self-
attention layer are calculated by three fully connected lay-
ers from the inputs, called query (Q = XWQ), key (K =
XWK) and value (V = XWV ). We raise two questions:
(a) Can we use fewer inputs (e.g., two inputs) to make the
transformer more efficient? (b) Can we build a more power-
ful self-attention architecture by incorporating various math-
ematical operations?

Type Operation Expression

unary

neg −x

transpose x⊤

scale x/
√
dx

softmax softmax(x)
logsigmoid log(1/(1 + exp(−x)))
softsign x/(1 + |x|)

binary

add x1 + x2

matmul x1 · x2

cosine similarity cos(x1, x2)
euclidean distance d(x1, x2)

Table 1: Mathematical primitive operations in our Intra-layer
Search Space. We try to find a better self-attention structure
by construct those operations in a DAG computation graph.

(1) Flexible Input Nodes. For question (a), we allow
flexible number of input nodes for our self-attention archi-
tecture. More specifically, we add another input node P to
construct a search space with four input nodes, where P is
mapped through another linear transformation matrix from
the original input (P = XWP ). Different from the origi-
nal transformers with fixed three input nodes, our intra-layer
search space allows a range of 2 ∼ 4 input nodes.

(2) Primitive Operations. The key component of trans-
former architecture is the self-attention layer, which first
generates an attention matrix, then use it to calculate the
weighted sum of values. The attention matrix measures the
similarity between the queries and keys. For question (b), we
enable finding a better structure of self-attention by design-
ing a more flexible primitive operation search space. Rather
than only using ⟨matmul⟩ and ⟨softmax⟩ as in the original
transformer, our primitive operation search space includes
various kinds of unary element-wise functions and binary
aggregation functions as shown in Table 1. The operations
such as neg, add and multiplication can be performed on
both scalar and matrix inputs.

(3) Computation Graph with Variable Path Length. As
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Figure 2 illustrates, we represent the new attention structure
as a directed acyclic graph (DAG), which transforms input
nodes into tensor output (i.e., the output of self-attention lay-
ers) with multiple primitive operators in intermediate graph.
To better explore attention structures, we do not fix the path
length of attention computation graphs. Note that it is pos-
sible that the dimension of the input features in the com-
putation graph are not matched during the calculation. We
examine whether every operation is legit and early reject
those illegal computation graphs. We also verify that the in-
put and output dimensions of searched attention architec-
tures are matched to ensure layers can be stacked correctly.

Inter-layer Search Space For the design of the whole
backbone, we 1) incorporate local dependency via
lightweight convolution and 2) adopt a macro search space
to promote the flexibility of design.

(1) Incorporating Local Dependencies. As pointed out
by (Jiang et al. 2020; Wu et al. 2018), some of the at-
tention heads can be replaced by local operations to bet-
ter learn local dependencies as well as reduce model com-
plexity. Thus, to enable a powerful and efficient language
model, we consider searching a hybrid backbone to replace
the attention-only architecture by adding local operations
into our inter-layer search space. Specifically, we incorpo-
rate the lightweight convolution as our candidate operation,
since its effectiveness has been proven in NLP tasks such as
machine translation (Wu et al. 2018).

To explore whether different reception fields are preferred
for different layers, we further allow different kernel sizes
(3×1, 5×1, 7×1, 9×1, 15×1, 31×1, 65×1) across layers.
For each convolution layer, the projected input is followed
by a Gated Linear Unit (GLU) (Dauphin et al. 2017).

(2) Macro Search Space. We adopt macro search space
for the backbone architecture. Specifically, we allow each
layer to have different searched self-attention structure and
convolution block. Comparing with the micro (cell-based)
search space adopted in previous works (Liu, Simonyan, and
Yang 2018; Shi et al. 2020), from which a cell structure
is searched and the backbone is constructed by repeatedly
stacking the cell, our search space is much more flexible,
which has more than 1020 possible combinations. As a re-
sult, the searched backbone architecture is more efficient and
can effectively capture both global and local contexts.

3.2 Operation-Priority Neural Architecture
Search Algorithm (OP-NAS)

Since we search for new architectures from scratch in an
extremely large macro search space, which involves both
intra-layer and inter-layer level, our NAS algorithm must
be efficient, scalable, and computationally feasible. Though
gradient-based search algorithms such as DARTS are attrac-
tive due to their search speed, they do not fit our demand
for exploring novel attention mechanism with more flexibil-
ity. The supernet in gradient-based algorithms needs to store
all the intermediate variables for gradient updates, which re-
quires huge memory cost. This drawback hinders their ap-
plication on our search space, since we do not restrict the

length of attention path and allow a large number of possi-
ble operation combinations.

Evolution algorithms (EA) (Real et al. 2019) poses less
constraints over the search space as per our request. How-
ever, traditional EA suffers from the risk of being trapped
by local optimal in a huge search space. To this end, we
propose an operation-priority(OP) acquisition method to im-
prove the search efficiency by balancing exploration and
exploitation. Furthermore, we propose Bi-branch Weight-
Sharing (BIWS) training strategy to boost model evaluation
by preventing repeated pretraining, as shown in Algorithm1.

Algorithm 1: OP-NAS Algorithm.

1: Initialize populationM from search space A;
2: Model evaluation inM;
3: repeat
4: P ← Top-K (M);
5: for each parent p in P do
6: p′ ←MutationInterLayer(p);
7: c←MutationIntraLayer(p

′,UCB);
8: Initialize c with BIWS strategy ;
9: Evaluate c on the proxy task;

10: end for
11: UpdateM with the newly evaluated children.
12: Update UCB scores by Equation (3);
13: until convergence

Operation-priority Evolution Strategy Our OP-NAS is
an evolution-based search algorithm. Specifically, it begins
by randomly sampling candidates and evaluating them to
initialize the population M. In every iteration, the top-K
individuals inM are treated as the parents to generate the
children via mutation. In inter-layer level, the parent fol-
lows the vanilla EA (Goldberg and Deb 1991) to perform
random mutation. In intra-layer level, however, random mu-
tation leads to severe inefficiency when searching for atten-
tion structures, as there are many possible operation combi-
nations and the length of attention path is unconstrained.

To address the aforementioned issue, we leverage the
prior information of each operation when performing intra-
layer mutation. The greedy assumption is that if a model
performs well, then the operations in its architecture (path)
are promising, which should have a higher chance to be sam-
pled. However, the algorithm should also encourage the less
frequently sampled operations to prevent getting trapped in
local optimal. Thus, we adopt the upper confidence bound
(UCB) (Auer, Cesa-Bianchi, and Fischer 2002) acquisition
function, which balances exploitation and exploration to en-
hance the search efficiency and reduce the number of candi-
dates that need to be evaluated.

In contrast to previous methods which utilize acquisition
functions to measure the potential of whole architectures
(Li et al. 2017; Shi et al. 2020), while the mutation is still
performed randomly, our method uses the UCB acquisition
function as a metric to guide the operation selection on each
position during mutation. Our method is therefore more effi-
cient and flexible, as the prior knowledge of each operation
can be harnessed to generate promising children. For opera-
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tion i, the UCB score ui is calculated as:

ui = µi + α
√

2 logN/Ni (3)

where µi is the average proxy task score of the enumer-
ated paths where operation i is included, α is the hyper-
parameter controlling the level of exploration, Ni is the
number of times that operation i has been sampled and N
is the total number of operations sampled in history. When
the operation is infrequently sampled, the right part domi-
nates the score function.

As opposed to other NAS methods such as DARTS (Liu,
Simonyan, and Yang 2018) and ENAS (Pham et al. 2018),
whose architecture path lengths are fixed, the length of our
attention path is flexible and is allowed to change during
the search. Thus, assigning independent probability distri-
butions for operations at each position is not feasible, as the
position may shift due to the change of path length. To tackle
this problem, we model n probability distributions, where n
is the length of the longest path sampled during the search.
For parent path of length k, the child path is always mu-
tated based on the first k distributions. For convolution lay-
ers, the empirical probability distribution for different ker-
nel sizes can be directly calculated for each layer. The prob-
abilities for operations (or kernel sizes) are calculated as:
p1, . . . , pn = softmax(u1, . . . , un), where ui represents the
UCB score for operation i.

Bi-branch Weight-Sharing (BIWS) Training Strategy
To avoid the repeated pretraining of candidate models, we
design BIWS training strategy to speed up the model evalu-
ation. Note that even using a very reduced training scheme,
evaluating one architecture by training from scratch requires
200 GPU hours. With our BIWS, the evaluation cost is
greatly reduced by 80%. The main idea of our strategy is
to reuse the trained model parameters in the previous round
of searching. To achieve this, we first introduce a bi-branch
super-net which contains the largest set of the possible can-
didate models: one branch contains max attention structure
(4 input nodes), and the other branch contains the largest
convolution structure (kernel size = 65× 1). Each candidate
model is initialized by the parameters fetched from the cor-
responding layers and positions of the super-net. In this way,
we can obtain evaluation results with high fidelity after only
a few epochs of fine-tuning. To enable a reusable super-net,
we design the following strategies:

Figure 3: BIWS strategy. For attention, transformation ma-
trices of K,Q are initialized from corresponding positions of
the largest 4-node attention. For convolution, small kernels
are initialized by the center of the largest kernel.

(1) Convolution layer weight-sharing. Inspired by (Cai
et al. 2019), we maintain the weights for the largest convo-
lution layer (kernel size = 65 × 1) throughout searching,
then the weights at the center position are shared to initial-
ize the small kernels for the candidate models (as shown in
Figure 3). Since the shared weights play multiple roles when
they are applied to sub-kernels of various sizes, the weights
in those sub-kernels should have different properties of dis-
tributions and magnitudes. To this end, we introduce the ker-
nel transformation matrices to adapt the shared weights for
sub-kernels of different sizes. Specifically, different kernel
transformation matrices are learnt during training for differ-
ent layers, while being shared across all the channels within
each layer. The weights of the sub-kernels are updated to the
largest kernel in the super-net after training the candidate
models in each round.

(2) Attention layer weight-sharing. The parameters in
self-attention structure lie in the linear transformation matri-
ces for key, query, value and P . Since we only mutate parts
of the computation graph in each round of searching, we can
directly initialize these fully-connected layers in the child in-
dividuals using the weights extracted from the correspond-
ing layers of the super-net.

4 Experiments
4.1 Dataset and Setting

Datasets and metrics. We first pre-train the backbone ar-
chitectures using a large corpus of text data and then fine-
tune the model for each specific downstream task. For pre-
training, we use the BooksCorpus (Zhu et al. 2015) and En-
glish Wikipedia (Devlin et al. 2019). For finetuning and eval-
uation, we use the General Language Understanding Evalu-
ation (GLUE) (Wang et al. 2018) and the Stanford Question
Answering Dataset (SQuAD) (Rajpurkar et al. 2016). Un-
less stated otherwise, downstream tasks are reported using
the same metrics in BERT (Devlin et al. 2019). For other
settings, we follow the settings of BERT paper.

Implementation Details. We use Masked Language
Model (MLM) and Next Sentence Prediction (NSP) as pre-
training tasks. The whole process can be divided into two
phases, namely the NAS phase and the fully-train phase. For
NAS phase, we train the base model, whose configuration is
the same as BERT-base (L = 12, H = 768, A = 12). Initial
M is set as 100, and K is set as 5. Each parent will mu-
tate 5 child architectures. In the NAS phase, we train each
candidate architecture for 40,000 steps, which is then eval-
uated on the proxy task (GLUE). The searching phase costs
around 24K GPU hours (760+ candidates) on Nvidia V100.
If we only use EA without BIWS strategy, the computation
cost is estimated to be about 182K GPU hours. In fully-train
phase, we first pre-train the searched base-size model. To
further verify the model’s scaling ability, we also fully-train
the model on small model (L = 12, H = 256, A = 4) and
large model (L = 24, H = 1024, A = 16). Specifically, we
treat each two continuous layers as a block and expand the
base model to large model by inserting the same block after
the original one. More details are attached to Appendix.
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#Params Infer FLOPs CoLA MRPC MNLI-(m/mm) STS-B RTE QQP QNLI SST-2 AVG
Development Set
BERT-base(ours) 110M 2.9e10 58.1 89.7 84.8/85.2 88.8 69.0 88.2 91.5 92.9 83.1
AutoBERT-att 104M 2.3e10 65.4 92.2 84.6/85.0 90.4 81.6 88.5 91.8 93.8 85.9
AutoBERT-conv 104M 2.2e10 63.8 92.6 84.4/84.6 90.1 80.5 88.3 91.7 93.5 85.5
AutoBERT-w/o-desc 104M 2.3e10 65.1 92.8 84.5/85.0 90.5 78.7 88.2 91.6 93.7 85.6
AutoBERT-Zero 104M 2.3e10 64.5 93.3 85.5/85.3 90.8 81.9 88.9 92.0 94.2 86.3
AutoBERT-Zero∗ 104M 2.3e10 67.3 93.8 86.4/86.3 90.8 85.2 91.7 92.5 95.2 87.7
Test Set
GPT(Radford et al. 2018) 117M 3.0e10 45.4 82.3 82.1/81.4 82.0 56.0 70.3 88.1 91.3 75.4
BERT-base(Devlin et al. 2019) 110M 2.9e10 52.1 88.9 84.6/83.4 85.8 66.4 71.2 90.5 93.5 79.6
DynaBERT-base(Hou et al. 2020) 110M 2.9e10 54.9 87.9 84.5/84.1 84.4 69.9 72.1 91.3 93.0 80.2
ConvBERT-base (Jiang et al. 2020) 106M 2.7e10 53.7 89.3 84.6/83.6 86.1 72.1 71.3 90.1 93.5 80.5
Roberta-base (Liu et al. 2019b) 110M 2.9e10 50.5 90.0 86.0/85.4 88.1 73.0 70.9 92.5 94.6 81.1
BERT-Large(Devlin et al. 2019) 340M 8.7e10 60.5 89.3 86.7/89.5 86.5 70.1 72.1 92.7 94.9 82.1
AutoBERT-Zero 104M 2.3e10 55.9 89.5 85.4/84.9 88.3 77.8 71.8 91.2 94.6 82.2
AutoBERT-Zero∗ 104M 2.3e10 59.5 90.5 86.1/86.0 88.9 80.2 72.8 92.1 95.1 83.5
AutoBERT-Zero-Large 318M 6.8e10 63.8 90.7 87.7/87.1 90.1 80.4 72.1 93.6 95.4 84.5

Table 2: Performance comparison on the test set of GLUE. Our 12-layer base model AutoBERT-Zero significantly surpasses
RoBERTa-Base and BERT-large (24 layers). Note that Roberta (Liu et al. 2019b) runs on 160G corpus, whereas our model runs
on 16G corpus. Infer FLOPs assumes single inputs with length 128. AutoBERT-Zero∗ is initialized from the surpernet.
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Figure 4: The detailed architecture of AutoBERT-Zero. We
only show the 2nd, 6th and 12th discovered attention struc-
tures due to limited space. Att. and Conv. represents the
searched attention layer and convolution layer respectively.

4.2 Results and Analysis
Structure Analysis of AutoBERT-Zero. We name the
best searched architecture of OP-NAS AutoBERT-Zero. As
shown in Figure 4, the hybrid backbone of AutoBERT-Zero
is constructed with stacked conv-att blocks (searched con-
volution followed by searched attention layer), which effec-
tively integrates the local and global dependencies of natural
language. For the searched attentions, V is shared with Q/K
in shallow layers, but non-shared in the deeper layers. This
is reasonable since the shallow layer only process the low-
level features, whereas the deep layers need more parame-
ters to capture the complex semantic features. For example,
ˆAttn(X)L2

introduces K-V and Q-V sharing mechanisms,
while ˆAttn(X)L12

adopts separate weights for K, Q and V :

ˆAttn(X)L2 = σ(Q log(1 + exp(K⊤))/
√

dh)(K +Q)W⊤
O .

ˆAttn(X)L12 = σ(Q(K/
√

dh + V )⊤/
√

dh)VW⊤
O .

#Params of Att SQuAD v1.1 SQuAD v2.0
EM F1 EM F1

BERT-base(ours) 21.3M 78.9 86.7 70.2 72.8
AutoBERT-att 15.9M 79.7 87.5 72.9 75.7
AutoBERT-conv 15.4M 79.1 86.5 71.9 74.6
AutoBERT-w/o-desc 15.4M 79.5 87.0 71.5 73.9
AutoBERT-Zero 15.4M 79.9 87.6 72.5 75.0

Table 3: Results on SQuAD(dev). “#Params of Att” counts
parameters in attention structures.

#Params FLOPs Pre-train Task GLUE
ELMO 96M 2.6e10 LM 71.2
GPT 117M 3.0e10 LM 78.8
BERT-small 14M 3.7e9 MLM 75.1
ELECTRA-small 14M 3.7e9 RTD 79.9
ConvBERT-small 14M 4.1e9 MLM 75.9
AutoBERT-Zero-small 13M 2.9e9 MLM 80.5
BERT-large 340M 8.7e10 MLM 84.4
AutoBERT-Zero-large 318M 6.8e10 MLM 87.9

Table 4: Scaling ability of the searched model. Results are
reported on GLUE dev set.2

Besides, the kernel sizes of convolution layers roughly fol-
low a descending order (changing from 65 to 3), which in-
dicates the convolution layers learn local information from
wide to narrow. This is justifiable as the a larger recep-
tive field captures more information, which helps emphasize
on the informative features while suppress the unimportant
ones. After the shallower layers effectively reduce the in-
formation redundancy, the deeper layers can focus on the
important semantic features.

Results on GLUE & SQuAD. After the NAS phase, the
searched models are fully-trained and evaluated on down-
stream tasks. Our AutoBERT-Zero consistently outperforms
other baselines by a large margin. To demonstrate the supe-
riority of AutoBERT-Zero’s structure, we fully-train several
other searched backbones for comparison: (i) AutoBERT-

2Following ConvBERT, we count accuracy for MRPC and QQP
for small model. Small model results are median results of 3 runs.

10668



#Params of Att CoLA MRPC MNLI-(m/mm) STS-B RTE QQP QNLI SST-2 AVG
BERT-base 21.3M 58.1 89.7 84.8/85.2 88.8 69.0 88.2 91.5 92.9 83.1
Att-only 16.5M 60.0 92.1 84.9 /84.1 90.6 79.4 88.3 91.5 92.5 84.8
Conv-only 15.4M 53.7 82.9 69.0/66.1 81.0 64.2 82.0 75.7 86.7 73.3
AutoBERT-Zero 15.4M 64.5 93.3 85.5/85.3 90.8 81.9 88.9 92.0 94.2 86.3

Table 5: Model comparison among AutoBERT-Zero and its variants. Models are fully-trained and evaluated on GLUE dev set.
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Figure 5: Residual and similarity of token representations.

w/o-desc. A backbone without descending kernel sizes for
convolution layers. (ii) AutoBERT-att. A backbone con-
taining three continuous attention layers. (iii) AutoBERT-
conv. A backbone containing three continuous convolution
layers. The details of architectures can be found in Ap-
pendix. As shown in Table 2, AutoBERT-Zero achieves
the highest GLUE score, with a significant performance
gain over BERT-base while having less parameters and
FLOPs. Specifically, AutoBERT-Zero performs much bet-
ter than AutoBERT-att and AutoBERT-conv, demonstrating
that the conv-att block can better integrate the local and
global dependencies. Besides, AutoBERT-Zero’s advantage
over AutoBERT-w/o-desc indicates that the kernel size pat-
tern from wide to narrow in convolution layers benefits the
performance. As shown in Table 3, AutoBERT-Zero consis-
tently surpasses BERT-base on both SQuAD v1.1 and v2.0,
demonstrating the generalizibility of our searched model.

Representation ability of AutoBERT-Zero. “Token-
uniformity” damages model’s representation ability. To
measure the degree of “token-uniformity”, following (Dong,
Cordonnier, and Loukas 2021; Gong et al. 2021), we use
relative norm of residual to measure the rank of output,
and measure the average pairwise cosine-similarity between
the representations of different tokens on 1,280 samples of
STS-B. As shown in Figure 5, latent representations from
purely-stacked BERT-base have high similarity, and the rank
of output is closer to 1 (relative norm of residual is closer to
0), showing no significant difference between the tokens. On
the other hand, the output of AutoBERT-Zero has relatively
larger residual and lower token similarity, showing that the
hybrid backbone helps mitigate this problem.

Scaling ability of AutoBERT-Zero. We further extend
AutoBERT-Zero structure to different capacities. Table 4
shows that our large model surpasses BERT-large by 3.5
in GLUE. Remarkably, our small model significantly sur-
passes the SOTA ConvBERT-small (4.6 higher) and BERT-
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Figure 6: Performances of Random Search (RS), RS with
weight sharing, EA with weight sharing and OP-NAS.

small (5.4 higher) using the vanilla MLM task. Besides, our
model considerably outperforms the large GPT in terms of
both performance and complexity: 1.7 higher GLUE, 88%
less parameters, and 90% less FLOPs.

The Efficiency of OP-NAS. During the search, we ob-
serve that by adopting the proposed operation-priority strat-
egy, the exploration ability of the EA is highly improved,
which prevents getting trapped in local optimal (see Fig-
ure 6). The results shows that searched model using OP-
NAS outperforms other NAS algorithms by a large margin.
As the quality of model evaluation during NAS phase greatly
impacts the algorithm’s effectiveness, we further examine
the fidelity of the evaluation results. Kendall (Kendall 1938)
correlation analysis is performed to evaluate the correlation
between model performances in the NAS phase and fully-
train phase. As shown in Appendix B, high correlations are
captured in most of the downstream tasks, which is owing to
the effectiveness of our BIWS strategy.

Ablation study. To investigate the superiority of searched
hybrid architecture, we evaluate performance of attention-
only and convolution-only variants, which are constructed
by stacking either the searched attention or the convolution
layers of AutoBERT-Zero. For example, for the attention-
only variant, each convolution block is replaced with the
attention layer directly behind it. From Table 5, we find
that the hybrid backbone architecture outperforms both
attention-only and convolution-only variants.

5 Conclusion
In this work, we propose a novel hierarchical search space
and an efficient NAS framework to automatically find
promising PLM backbones from scratch, which prevents the
tedious manual tuning. The searched self-attention struc-
ture and backbone architecture can inspire new insights for
model design in the NLP community.
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