
Search and Learn: Improving Semantic Coverage for Data-to-Text Generation

Shailza Jolly1, 2, Zi Xuan Zhang3, Andreas Dengel1, 2, Lili Mou3

1 TU Kaiserslautern, Germany
2 DFKI GmbH, Germany

3 Dept. Computing Science, Alberta Machine Intelligence Institute (Amii), University of Alberta, Canada
shailza.jolly@dfki.de, zixuan7@ualberta.ca, andreas.dengel@dfki.de, doublepower.mou@gmail.com

Abstract
Data-to-text generation systems aim to generate text descrip-
tions based on input data (often represented in the tabular
form). A typical system uses huge training samples for learn-
ing the correspondence between tables and texts. However,
large training sets are expensive to obtain, limiting the appli-
cability of these approaches in real-world scenarios. In this
work, we focus on few-shot data-to-text generation. We ob-
serve that, while fine-tuned pretrained language models may
generate plausible sentences, they suffer from the low seman-
tic coverage problem in the few-shot setting. In other words,
important input slots tend to be missing in the generated text.
To this end, we propose a search-and-learning approach that
leverages pretrained language models but inserts the miss-
ing slots to improve the semantic coverage. We further fine-
tune our system based on the search results to smooth out
the search noise, yielding better-quality text and improving
inference efficiency to a large extent. Experiments show that
our model achieves high performance on E2E and WikiBio
datasets. Especially, we cover 98.35% of input slots on E2E,
largely alleviating the low coverage problem.

Introduction
Data-to-text generation is a task that converts structured data
into human-readable text descriptions, illustrated in Fig-
ure 1. Data-to-text generation has gained much attention in
the field of natural language processing, with applications to
restaurant descriptions (Novikova, Dušek, and Rieser 2017),
biographies (Lebret, Grangier, and Auli 2016), and weather
forecasts (Liang, Jordan, and Klein 2009).

Traditional approaches to text generation (NLG) use
handcrafted rules with statistics (Langkilde and Knight
1998; Stent, Prasad, and Walker 2004; Rieser and Lemon
2009), usually lacking flexibility and output diversity.

Recently, data-to-text generation is generally accom-
plished by modern neural networks, such as sequence-to-
sequence recurrent neural networks (Lebret, Grangier, and
Auli 2016; Liu et al. 2018). These models use massive par-
allel training data, for example, 42K table–text training pairs
in the E2E dataset (Novikova, Dušek, and Rieser 2017). This
data-hungry nature of neural models makes data-to-text gen-
eration an expensive and time-consuming affair and restricts
its real-world applications.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Chen et al. (2020b) apply few-shot learning to data-to-
text generation by fine-tuning pre-trained language mod-
els (LMs) with a copy mechanism. Pretrained LMs learn
generic knowledge of natural language from massive unla-
beled corpora, and thus are able to generate plausible text
with fewer samples than traditional neural networks. How-
ever, we observe that fine-tuned LMs fail to fully learn the
correspondence between input and output in the few-shot
setting. They suffer from the problem of low semantic cov-
erage, that is, important information slots are often missing
in the generated text.

In our work, we propose a search-and-learning (S&L) ap-
proach to address the low coverage problem for few-shot
data-to-text generation. We first fine-tune the pre-trained T5
language model (Raffel et al. 2020), similar to previous work
of Chen et al. (2020b). To address the low coverage problem,
we iteratively insert a missing slot into the generated sen-
tence. We try all possible positions for the insertion, and pick
the most appropriate candidate sentence based on T5 prob-
ability. This can be thought of as greedy search that finds
a sentence containing all slots. Inspired by Li et al. (2020),
we then treat the search results as pseudo-groundtruth and
further fine-tune our T5 language model.

In this way, our model achieves high semantic coverage
of the input slots. Also, our model is efficient for generating
sentences and does not increase the inference complexity;
it also yields more fluent sentences compared with search-
based text generation (Liu et al. 2020).

In summary, our main contributions include: 1) We ad-
dress the low semantic coverage problem in few-shot data-
to-text generation. 2) To the best of our knowledge, we
are the first to propose search-and-learning approaches for
data-to-text generation, where we incorporate traditional
template-based methods as search actions to insert miss-
ing slots. 3) We conducted extensive experiments on E2E
and WikiBio datasets; our model outperforms previous few-
shot models in various metrics, largely closing the gap be-
tween few-shot and fully supervised learning. Especially, we
achieve 98.35% coverage on the E2E dataset1.

1Our code and output are available at
https://github.com/shailzajolly/FSDT

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10858

Slot Value

Name The golden
curry

Food Indian

Rating 1 out of 5

Area Riverside

Near Café rouge

Family
Friendly

Yes

the golden curry serves indian food with a customer

rating of 1 out of 5 . it is located near café rouge

(c) T5 output: the gold curry serves indian food with a customer rating of 1 out of 5. it
is located near café rouge. (Missing slots: riverside, family friendly)

(a) Input data (b) Reference: The golden curry is a indian restaurant. it has a customer rating of 1 out
of 5. it is family friendly. it is located near café rouge.

(d) Search to improve semantic coverage

Select the best
position

in riverside area, the golden curry serves indian food with a
customer rating of 1 out of 5. it is located near café rouge.

Iteratively insert all missing slots

(e) Learn from search results by fine-tuning T5

. . .

Insert “in
riverside area”

Figure 1: An example for data-to-text generation and our proposed approach.

Related Work
Data-to-Text Generation. Generating human-readable sen-
tences from tabular data, known as data-to-text generation,
is a persistent problem from early NLP research. Traditional
work typically follows a pipeline approach of content plan-
ning and surface realization (Dale and Reiter 1997), us-
ing hand-engineered rules (Kukich 1983; McKeown 1992)
and statistical induction (Liang, Jordan, and Klein 2009;
Koncel-Kedziorski, Hajishirzi, and Farhadi 2014). However,
the generated text usually lacks flexibility and diversity.

With the rise of deep learning, neural models have be-
come a prevailing approach to data-to-text generation (Le-
bret, Grangier, and Auli 2016; Sha et al. 2018; Liu et al.
2018; Wiseman, Shieber, and Rush 2018; Liu et al. 2019).
Typically, these systems require massive parallel data for
training the text generator.

Recently, Chen et al. (2020b) address few-shot learning
for data-to-text generation, where they assume a small paral-
lel corpus is available. They propose to fine-tune pre-trained
language models (LMs) with a copy mechanism. We ob-
serve that, although such fine-tuned LMs generate fluent
sentences, they suffer from the problem of low semantic cov-
erage, as it is difficult to “force” a copy mechanism to copy
the entire source information.

In fact, Dhingra et al. (2019) point out the low semantic
coverage problem of human-written references. They pro-
pose a new metric for better evaluating data-to-text models.
In this paper, we emphasize the low coverage problem of
text generation models, and propose a search-and-learning
approach to overcome it.

Gong et al. (2020) improve the fidelity of data-to-text gen-
erators by table reconstruction and content matching along
with fine-tuning GPT-2. Our preliminary analysis during de-
velopment suggests that fine-tuned T5 does not generate
wrong information, but may miss important input slots.

Search-Based Text Generation. Previous work has ad-
dressed unsupervised text generation by various search ap-
proaches, such as simulated annealing (Liu et al. 2020) and
hill-climbing (Schumann et al. 2020; Kumar et al. 2020).
Their basic idea is to define a heuristic objective function

(typically involving language fluency, semantic coherence,
and other task-specific scores) and generate text by word-
level editing towards the objective. Li et al. (2020) further
propose a search-and-learning approach to improve model
performance and inference efficiency.

Our paper adopts the search-and-learning framework in Li
et al. (2020), but differs from previous approaches in several
significant ways: 1) We address the few-shot setting. Instead
of a heuristically defined objective, we use a fine-tuned lan-
guage model to evaluate candidate sentences. 2) The goal of
our search is for a higher semantic coverage, rather than a
generic fluent sentence. Our search space is relatively sim-
pler than the entire sentence space, and thus, the main focus
of our work is not the search algorithm. We adopt greedy
search over multiple missing slots, which turns out to work
well empirically. To the best of our knowledge, we are the
first to address few-shot data-to-text generation by search
and learning.

Other work learns word edits in a supervised way (Dong
et al. 2019), or treat rule-edited text as input (Li et al. 2018;
Wang et al. 2019). We instead perform editing as search
steps and further learn from the results of editing.

Problem Formulation
Data-to-text generation aims to generate a natural language
description for structured input data; we consider a common
setting, where the input is tabular data. For each sample,
the input table is a set of slot name–value pairs, denoted by
T = {(si, vi)}Si=1, where si is the name of the ith slot, vi is
the value, and S is the number of slots. The output is a sen-
tence y = (y1, y2, · · · , yn) that describes the given input T.
Notice that the table T is different for each sample, but we
may omit the sample index for clarity.

In this work, we consider the few-shot setting, where we
have a small parallel corpus Dp = {(T(i),y(i))}Mi=1 and an-
other small unlabeled corpus Du = {T(i)

u }Ni=1, where T
(i)
u

is a different table than T(i). Here, both M and N are small
numbers in our few-shot setting.

Few-shot learning is important to NLG, as it saves human
annotation labor and also helps to alleviate the cold-start

10859

problem of new NLG tasks. In our work, we assume a small
unlabeled corpus Du is available in addition to Dp. This is
a realistic setting for few-shot learning, because unlabeled
data are easier to obtain than labeled pairs with human-
written sentences, and sometimes Du may be synthesized
by recombining the slots of Dp for data-to-text generation.

Proposed Model
In our approach, we first fine-tune a pre-trained language
model (LM) for conditional text generation based on input
tables. The large model capacities and extensive pre-training
are among the reasons why LMs would help us with gener-
ating fluent sentences in the few-shot setting.

However, fine-tuned LMs may not fully learn the corre-
spondence between input slots and output text, and have the
problem of low semantic coverage. Thus, we iteratively in-
sert a missing slot into the generated sentence in a greedy
manner, so as to improve the semantic coverage. Finally,
these search results are treated as pseudo-groundtruth for
further fine-tuning our LM, which not only improves infer-
ence efficiency, but also yields better sentences.

First-Stage Fine-Tuning T5
We use the T5 model (Raffel et al. 2020) for data-to-
text conditional generation. T5 is a text-to-text Transformer
(Vaswani et al. 2017), pre-trained on multiple NLP tasks and
achieves state-of-the-art performance on question answer-
ing, document summarization, sentiment classification, etc.

It is worth noting that T5 is never pre-trained on any
tasks related to data-to-text generation. Therefore, our ex-
periments are indeed in the few-shot setting even if we use
pre-trained T5.

We linearize the input table by concatenating all slots in
the format of “name[value]”. In other words, a special
token “[” separates the name and value of a slot, and another
special token “]” separates different slots.

In our few-shot setting, we fine-tune T5 using a corpus
with several hundred data–text pairs, which is considerably
smaller than a usual NLG training set. The model learns
to estimate the conditional probability P (y|T) in an auto-
regressive way:

P (y|T;θ) =
∏n

i=1
P (yi|y<i,T;θ), (1)

where y is the output with length n, T is the input table, and
θ represents model parameters.

We fine-tune T5 with the cross-entropy loss

J(θ) = − logP (y|T;θ) (2)

Search to Improve Semantic Coverage
We observe that T5 indeed generates fluent sentences, but it
has a low coverage of the input slots. In Figure 1, for exam-
ple, the slots “riverside” and “family friendly” are not men-
tioned in the generated text, although they are present in the
groundtruth.

The low semantic coverage is because the few-shot par-
allel corpus cannot fully support T5 learning the correspon-
dence between input and output. This is evidenced by an-
alyzing the coverage percentage and the training size: T5

fine-tuned on 1% of E2E data has a coverage of 84.46% in-
put slots, whereas it has a coverage of 97.74% if fine-tuned
on the whole dataset.

To this end, we propose a simple yet effective search ap-
proach that explicitly inserts the missing slots into the gen-
erated text.

We start by checking the occurrence of each slot value vi
in T5’s output. This can be done by either a verbatim match
of the slot value or a soft match based on script that uses
regular expressions to find missing slots (Dušek, Howcroft,
and Rieser 2019). While verbatim match may be strict and
noisy, our results will show that it achieves equally good
performance in our S&L approach.

If a slot value vi does not appear in the output, we in-
sert a phrase ṽi that contains the original slot value vi along
with possible supporting prepositions. For example, if the
slot “area[riverside]” is missing, we insert the phrase
ṽi = “in riverside area”. The E2E dataset has a
boolean slot “familyFriendly[yes/no]”, and we de-
sign the phrase as either “family friendly” or “not
family friendly”. Designing these phrases does not
require much human labor, as we have no more than 10
phrases for each dataset, and quite a few of them are sim-
ply copying the slot value. The complete list of our phrases
is shown in Appendix.

For every missing slot, we determine the most appropriate
position for inserting the slot. This is given by an enumera-
tion of all possible positions within a sentence, and we select
the candidate that has the highest T5 probability P (y|T) as
fine-tuned by Eq. (1), shown in Figure 1d.

This process is repeated in a greedy fashion for all miss-
ing slots that we would like to insert.2 Our approach can be
thought of as an optimization towards

maximize P (y|T), subject to vi ∈ y, ∀i (3)

Specifically, we optimize the T5 conditional probability for
data-to-text generation by starting from an infeasible solu-
tion (i.e., an output that violates the constraint). We then
project the solution into the feasible set by satisfying each
constraint greedily.

Our search method is inspired by recent development of
search-based unsupervised text generation, such us simu-
lated annealing for paraphrasing (Liu et al. 2020) and hill-
climbing for summarization (Schumann et al. 2020). How-
ever, our search effort is mainly devoted to projecting an in-
feasible solution to the feasible set, instead of searching for a
generic sentence that maximizes a heuristically defined ob-
jective.

Our approach is also related to template-based text gen-
eration systems in the early years (Langkilde and Knight
1998; Stent, Prasad, and Walker 2004). Our work differs sig-
nificantly, as we use rules only for revision, rather than for
generation. Traditional rule-based systems often generate in-
flexible and disfluent text. We will have a learning compo-
nent that learns from the search results to smooth out disflu-
ent text.

2For our E2E experiment, we would insert all slots. If a task
does not require that the output sentence contains all slots, we may
select the desired slots by statistics (see the WikiBio experiment).

10860

Algorithm 1: Search and Learn
Input: Small parallel data Dp={(T(m),y(m))}Mm=1

Small unlabeled data Du = {T(n))}Nn=1

Pre-trained language model T5
Output: Few-shot learned data-to-text model
✄ First-stage fine-tuning T5
for (T,y) ∈ Dp in each epoch do

Fine-tune T5 by minimizing − logP (y|T)

✄ Search to improve semantic coverage
D̃p = ∅
for Tu ∈ Du do

ŷsearch = T5(Tu) ✄ search to be performed
for missing slot (s, v) ∈ Tu that v /∈ ŷsearch do

Update ŷsearch by inserting v with templates into the most
appropriate position

D̃p = D̃p ∪ {(Tu, ŷsearch)}
✄ Second-stage fine-tuning T5
for (T,y) ∈ Dp ∪ D̃p in each epoch do

Fine-tune T5 by minimizing − logP (y|T)

Return: Two-stage fine-tuned T5

Second-Stage Fine-Tuning T5 with Search Results
The search approach in our previous section ensures a high
semantic coverage of the output sentence, but has two ma-
jor drawbacks: 1) the edited sentence may not be fluent due
to the fixed template, and 2) it has a low inference effi-
ciency when evaluating multiple candidate outputs given a
data sample. To address them, we further fine-tune T5 that
learns from the search results, inspired by Li et al. (2020).

In our few-shot setting, we assume there is a small un-
labeled corpus Du containing input tables only. In practice,
Du can be either obtained inexpensively or synthesized by
recombining the table slots and values in Dp.

For a given input table T
(i)
u ∈ Du, we use T5 to gen-

erate a candidate output and perform search for higher se-
mantic coverage. The search result is treated as a pseudo-
groundtruth, denoted by ŷ

(i)
search. This in turn yields a pseudo-

parallel corpus D̃p = {(T(i)
u , ŷ

(i)
search) : T

(i)
u ∈ Du}. It

is mixed with the original parallel corpus for further fine-
tuning T5. In other words, our dataset becomes Dp ∪ D̃p,
and T5 is further fine-tuned by the same cross-entropy loss
as Eq. (2). Algorithm 1 summarizes our training algorithm.

Inference
For inference on the test set, we only use the two-stage fine-
tuned T5 (i.e., fine-tuned with the search results) to predict
the output. We do not use the search procedure during infer-
ence.

In this way, our inference efficiency is improved com-
pared with the search approach, because we do not have
to evaluate multiple candidate sentences during prediction.
More importantly, we leverage the power of pre-trained lan-
guage models, and are able to generate more fluent sentences
than the search itself.

Compared with one-stage fine-tuning , T5 this time is ex-
plicitly trained with pseudo-groundtruth that has high se-

mantic coverage. Experiments will show our S&L approach
achieves near-perfect semantic coverage on the E2E dataset.

Experiments
Experiment I: E2E Dataset
Dataset. In this experiment, we used the E2E dataset3
(Novikova, Dušek, and Rieser 2017), which is a crowd-
sourced dataset for data-to-text generation and contains
more than 50K table–text pairs for the restaurant domain.
For each data sample, the input contains 3–8 slots, and the
reference contains one or a few sentences as the output. We
followed the standard train/val/test split.

Implementation details. We used the T5-small model
(Raffel et al. 2020), which comprises 6 layers in the en-
coder and the decoder. We trained the model using the
AdamW (Loshchilov and Hutter 2018) optimizer, with an
initial learning rate of 3e-4 and a batch size of 64.

Evaluation metrics. We used the standard evaluation
scripts accompanied with the E2E dataset (Novikova,
Dušek, and Rieser 2017), including BLEU (Papineni et al.
2002), NIST (Doddington 2002), METEOR (Lavie and
Agarwal 2007), ROUGE-L (Lin 2004), and CIDEr (Vedan-
tam, Lawrence Zitnick, and Parikh 2015).

Recently, Dhingra et al. (2019) observe that BLEU does
not correlate well to human satisfaction for data-to-text gen-
eration. They propose a set of PARENT metrics (including
precision, recall, and the F-score) against both the references
and the input data. They show PARENT metrics have high
correlation with human judgment. Based on such evidence,
we consider PARENT as the main metric. Specifically, we
used the word-overlap version PARETNT-W in our paper.

In addition, we use GPT-2 perplexity (without fine-
tuning) to estimate the fluency of generated text, and present
the average sentence length (AvgLen) for reference. We also
computed semantic coverage ratio (Hard Coverage), which
is the fraction of input slots that appear verbatim in the out-
put. This requirement appears to be strict, but is actually a
good approximation, because most slots contain only one or
a few words and some slots are proper nouns that should not
be changed.

We also consider slot error rate (SER, Dušek, Howcroft,
and Rieser 2019), designed specifically for the E2E dataset.
The metric checks if all E2E slot values are present, or
missing/incorrect4 in the output text based on manually de-
signed regular expressions. Unlike verbatim matching, SER
accounts for soft matching, and we consider 1 − SER as
Soft Coverage. We also conducted a human evaluation on a
randomly selected subset of test samples, and the coverage
percentage (Table 3) is close to these automatic metric.

Results. Table 1 shows the results on the E2E dataset.
We consider a few-shot setting, where we have 1% parallel
samples as Dp, and another 4% samples as Du with input
tables only.

Before few-shot learning, we fine-tuned T5 with 100%
samples (Line 4) and 5% samples (Line 5), respectively, be-
ing an “upper bound” performance of our few-shot learning.

3http://www.macs.hw.ac.uk/InteractionLab/E2E/
4SER breakdown is presented in Appendix.

10861

Coverage (%)

Model #Train BLEU NIST METEOR RougeL CIDEr PARENT (P/R/F1) PPL AvgLen Hard SER Soft

1 TGEN p:42K 65.93 8.61 44.83 68.50 2.23 – – – – 4.27 95.73
2 SLUG p:42K 66.19 8.61 44.54 67.72 – – – – – – –
3 SR

1 (Shen et al. 2019) p:42K 68.60 8.73 45.25 70.82 2.37 – – – – – –
4 T5 p:42K 67.59 8.81 45.17 70.44 2.33 67.40/61.75/63.43 154.49 23.58 97.50 2.62 97.38

5 T5 p:2100 62.45 8.30 44.10 67.15 2.17 64.25/61.69/62.00 136.54 24.82 96.21 3.72 96.28

6 T5 p:420 61.72 7.96 40.52 65.61 1.96 65.63/57.25/60.10 141.61 21.97 84.19 16.68 84.32
7 T5 self-train p:420,u:1680 60.83 7.74 39.85 66.36 1.95 66.60/57.31/60.63 154.74 21.50 81.82 17.97 82.03
8 T5 S&L p:420,u:1680 60.70 8.13 43.60 65.84 2.12 66.97/63.63/64.29 160.40 25.01 98.35 1.84 98.16
9 T5 S&L w/ SER p:420,u:1680 60.89 8.14 43.71 66.76 2.07 65.16/62.97/63.04 170.26 25.71 99.46 0.80 99.20

Table 1: Test results on E2E. “p:” and “u:” denote the number of parallel and unlabeled training samples, respectively. Baseline
results are quoted from original papers. All results of fine-tuning T5 are obtained by our experiments. Based on the evidence in
Dhingra et al. (2019), we consider PARENT as our main metrics. Hard Coverage measures the verbatim coverage of slot values
presented in text. The slot error rate (SER, Dušek, Howcroft, and Rieser 2019) measures the percentage of missing, added, or
wrong slots in the generated sentence. We consider Soft Coverage as 1− SER.

We see that, with the entire dataset, fine-tuning T5 achieves
similar scores to previous state-of-the-art models, including
TGEN (Novikova, Dušek, and Rieser 2017), SLUG (Juraska
et al. 2018), and the SR

1 model (Shen et al. 2019). This shows
that the use of T5 sets up a solid foundation for our study.

We started few-shot learning by directly fine-tuning T5 on
the small parallel training set. We observe that the perfor-
mance worsens in all metrics (comparing Lines 4–6). Espe-
cially, both hard and soft coverage scores drop quickly from
more than 97% to around 84.19%.

We would like to see if a small unlabeled dataset Du,
which contains tables only, could help the performance. We
experimented with self-training (Zhu and Goldberg 2009),
which is a common strategy for semi-supervised machine
learning. In this competing method, we first fine-tune T5
on the parallel corpus Dp, and use it to predict the out-
put on Du. The predicted sentences are treated as pseudo-
groundtruth for further fine-tuning. Unfortunately, we ob-
serve from Lines 6 and 7 that such strategy does not help the
performance much.

Finally, we applied two variants of our S&L approach,
where Line 8 is a variant that determines missing slots by
verbatim match, and Line 9 determines missing slots by
SER. Results show that both variants achieve higher perfor-
mance than other few-shot models in terms of most met-
rics. Especially, our model achieve 98–99% coverage of in-
put slots, mostly solving the low coverage problem.

Based on the numerical results, it appears that our model
generate less fluent sentences, given by high perplexity
(PPL) scores.5 However, we notice that our sentences are
longer and contain more input slots, which are oftentimes

5It should be mentioned that PPL may refer to very different
evaluation protocols. In Chen et al. (2020a), for example, they
use their trained model to evaluate the human-written references’
PPL. Such protocol, although giving small PPL values, does not
directly evaluate the generated text, and therefore, is not adopted in
our study. By contrast, we used a third-party pre-trained language
model, namely, GPT-2, to evaluate the PPL of our generated text.
Different from Li et al. (2020), we did not fine-tune GPT-2 on our
corpus. Our PPL approximately evaluates how fluent the generated
text is as general English.

very specific information such as the restaurant name (in the
E2E dataset) as a proper noun. Therefore, it is understand-
able that our PPL is slightly higher, but in general, all mod-
els are in the same ballpark in terms of fluency. This will be
further analyzed by human evaluation (Table 3).

Generally, our S&L approach (Lines 8 and 9) achieves
comparable results to T5 trained with 4 times more paral-
lel data (Line 5) in several metrics, such as METEOR and
CIDEr. In terms of PARENT metrics that are specifically
designed for data-to-text generation, we observe our S&L
approach outperforms Line 5 with a reasonable margin. It
even achieves close PARENT scores and coverage scores to
the fully supervised setting (Line 4).

Experiment II: WikiBio Dataset
Dataset. We further evaluate our approach on the Humans
domain of WikiBio data6 (Lebret, Grangier, and Auli 2016).
It contains 700K English biographies from Wikipedia, asso-
ciated with a tabular infobox. For each biography, the first
sentence of the article is treated as the reference.

In our few-shot setting, we used 100 parallel samples as
the training set Dp, following one of the settings in Chen
et al. (2020b). In accordance with our assumption, we in-
cluded another 400 samples of unlabeled input tables as Du.
When comparing with Chen et al. (2020b), we did not use
Du, but synthesized 400 samples by recombining the table
slots in Dp. This sets up a fair comparison as we did not
include any new data. We validated our approach on 1000
samples and tested it on the standard split.

Implementation details. We used the T5-base model,
which consists of a 12-layer Transformer encoder and de-
coder. This sets up a fair comparison with the prior work for
few-shot data-to-text generation (Chen et al. 2020b), which
uses a 12-layer GPT-2 model. Due to GPU memory con-
straints, we use a batch size of 20 during training and accu-
mulate gradients for 3 steps, which results in an actual batch
size of 60. Other implementation details are mostly adopted
from Experiment I.

6https://github.com/DavidGrangier/wikipedia-biography-
dataset

10862

Model #Train BLEU PARENT (P/R/F1) PPL AvgLen Coverage (Table) Coverage (Reference)

1 GPT2+copy (Chen et al. 2020b) p:100 29.5 – – – – –
2 GPT2+copy (our replication) p:100 29.05 59.03 / 26.63 / 33.59 314.03 20.01 27.07% 55.27%
3 TableGPT2 (Gong et al. 2020) p:100 34.5 – – – – –
4 T5 p:100 35.87 65.21 / 29.59 / 38.00 219.03 17.35 38.45% 76.61%

5 T5 self-train (Recomb) p:100 36.00 64.74 / 29.58 / 37.91 219.40 17.27 38.20% 76.01%
6 T5 S&L (Recomb) p:100 35.41 64.10 / 30.23 / 38.34 218.48 18.75 41.29% 76.75%
7 T5 self-train p:100, u:400 35.62 64.68 / 29.92 / 38.19 216.19 18.17 40.22% 76.85%
8 T5 S&L p:100, u:400 35.92 64.56 / 32.28 / 40.27 211.35 19.84 42.45% 79.14%
9 T5 S&L (cosine similarity) p:100, u:400 35.44 63.63 / 31.32 / 39.36 233.18 18.92 41.28% 75.68%

Table 2: Test results on WikiBio (in the Humans domain). “p:” and “u:” denote the number of parallel and unlabeled training
samples, respectively. “Recomb” means that we synthesize 400 samples by recombining table slots in the parallel corpus. The
bold font indicates the best performance in each group that also outperforms the baselines in Lines 1–4. Coverage scores are
computed against the input table and the reference text, respectively.

In WikiBio, we used a different strategy to add missing
slots. Unlike E2E, WikiBio contains longer input tables and
not all input slots are present in the references (the first sen-
tence of the Wiki article). Therefore, our search algorithm
inserts a subset of input slots, determined by co-occurrence
statistics on the few-shot training dataset. As a heuristic, we
select slots which occur at least in 10% tables of the dataset
and are present in at least 10% output references.

Evaluation metrics. We included BLEU for reference,
as it is the metric in Chen et al. (2020b). However, we still
consider the PARENT-W scores as the main metric in our
study, due to the evidence from Dhingra et al. (2019).

For semantic coverage, we mainly consider the hard ver-
sion, because no soft coverage has been developed for Wik-
iBio and because our E2E experiments show that hard and
soft coverages are generally close to each other. It is noted
that WikiBio does not aim to cover every input slot; thus, we
also compute the coverage against the reference.

Results. Table 2 shows the results on WikiBio. Since
Chen et al. (2020b) did not report PARENT metrics for their
fine-tuned GPT-2 model, we replicated the model by using
their released code.7 As seen from Lines 1–2, we achieved a
similar BLEU score to Chen et al. (2020b), showing that our
replication was fair.

We applied our S&L approach to the WikiBio dataset.
We see that, with 400 unlabeled tables, we improve the T5
model by 2–3 points in terms of PARENT Recall and F1
(Lines 4, 7–8). This suggests that our model not only gen-
erates high-quality sentences in general for the data-to-text
task, but also has a higher coverage of input slots due to
the nature of PARENT metrics. This is further confirmed by
our coverage scores. Relatively low PPL shows that our sen-
tences are fluent.8

We also implemented a variant that determines miss-
ing slots by thresholding cosine similarity of embeddings
(Line 9). Different from SER which is specifically engi-

7Gong et al. (2020) did not release code or output; thus some
metric evaluations are unavailable. Nevertheless, the BLEU score
shows the superiority of our approach.

8The PPL for WikiBio sentences is higher than E2E because the
WikiBio corpus is more complex. Especially, WikiBio sentences
contain quite a few proper nouns, such as the person names.

neered for E2E, the cosine similarity here is generic and does
not work well compared with our verbatim matching. This
further confirms that our approach is simple yet effective in
alleviating the low semantic coverage problem.

Compared with previous state-of-the-art few-shot learn-
ing (Chen et al. 2020b), our setting uses extra 400 tables. For
a fair comparison, we synthesized 400 tables by recombin-
ing the slots without using any additional data. Comparing
Line 6 with Line 2 suggests that, even without an unlabeled
corpus, our approach still outperforms the previous state-of-
the-art model in all metrics.

We observe that recombining table slot does not give
as good performance as using additional unlabeled tables
(Lines 6 vs. 8). A plausible reason is that new tables are able
to train T5 with more slot values, which is especially useful
for few-shot data-to-text generation, where we only have a
few hundred parallel samples. Recombining table slots can-
not serve for this goal. Future research can be addressed here
on effective data augmentation for data-to-text generation.

Analysis
In this part, we provide detailed analysis of our approach.
Due to the limit of space and resources, we chose E2E and
the standard variant (Line 8, Table 1) as our testbed.

Human evaluation. We conducted human evaluation for
our model, as automatic metrics may not fully reflect the per-
formance of a text generator. We selected a random subset of
50 samples and obtained the outputs from T5 self-train and
T5 S&L. While the subset may appear to be small, we com-
puted statistical significance to demonstrate that it suffices
to draw a conclusion.

We asked three annotators to evaluate each table–text pair
on three criteria: coverage, fluency, and overall quality. Cov-
erage measures the number of input table slots present in the
text divided by the total number of input slots. Fluency mea-
sures if the sentence is clear, natural, and grammatically cor-
rect (3: Fluent, natural and grammatically correct; 2: Mostly
fluent, with minor errors; 1: Not fluent, multiple grammati-
cal errors). The annotators were also asked to assign an over-
all quality to each sentence (3: good; 2: average; 1: poor).
Our human annotation was conducted in a strict blind fash-
ion, i.e., samples were randomly shuffled and the annotator

10863

Slot Value
Name The Phoenix
Eat type Restaurant
Food Indian
PriceRange £ 20-25
Customer
Rating High

Area Riverside

Near Crowne
plaza hotel

Family
Friendly No

Input table Reference 1: the phoenix is a restaurant that also serves indian food priced between £20-25, located near
crowne plaza hotel on the riverside. it’s customer rating is high, and the establishment is kids friendly.
(All slots are present)

Reference 2: the phoenix, located near crowne plaza hotel on the riverside, is a restaurant that also serves
indian food. it is kids friendly and food is priced between £20-25. (Missing slot: customer rating)

T5 few-shot fine-tuned: the phoenix is a restaurant that serves indian food in the price range of £20-25. it
is near crowne plaza hotel. it has a high customer rating. (Missing slots: riverside, family friendly)

T5 self-train: the phoenix is a restaurant that serves indian food in the price range of £20-25. it is near
crowne plaza hotel. (Missing slots: high, riverside, family friendly)

T5 search for inference: the phoenix is a restaurant that serves indian food in the price range of £20-25. it
is near crowne plaza high customer rating in riverside area not family friendly hotel. (All slots are
present, but the sentence is not fluent)

T5 S&L: in riverside area the phoenix is a restaurant that serves indian food in the price range of £20-25. it
is near crowne plaza hotel. it has a high customer rating and is not family-friendly. (All slots are present)

Figure 2: A case study of few-shot data-to-text generation on the E2E dataset.

Model Coverage Fluency Overall Quality

T5 w/ self-train 81.66% 2.88±0.32 2.1±0.34
T5 w/ S&L 99.58% 2.75±0.43 2.81±0.39
p-value 6.08e-24 0.00664 3.84e-22

Table 3: Human evaluation results on E2E. The p-values
are given by two-sided Wilcoxon paired test. It only shows
whether our annotated subset has collected enough evidence
for drawing a conclusion or not, instead of how different two
models are. We show the standard deviation, which roughly
estimates if the gap is relatively large or not.

Model PARENT(P/R/F1) InfTime RelTime PPL

S&L 66.97/63.63/64.29 78.05 1x 160.40
SearchInf. 65.71/60.17/61.67 113.4 1.45x 234.19

Table 4: Search and learning vs. search for inference.
Inference time (in seconds) and Relative time were obtained
by predicting the test set on a single V100 GPU.

did not know the model of a generated sentence.
Table 3 presents human evaluation results. We observe

that the human-annotated coverage ratio is similar to au-
tomatic counting in Table 1. Our S&L achieved near-
perfect semantic coverage, whereas a fine-tuned T5 with
self-training only achieves 81.66% coverage. In both mod-
els, annotators did not observe false information.

In terms of fluency, S&L behaves slightly worse than T5
self-training. However, the difference is one-third of a stan-
dard deviation, which is relatively small compared with our
improvements in other aspects. The overall quality of our
approach is considerably higher than the competing method
by more than two standard deviations, showing the effec-
tiveness of our approach. The human annotation results are
generally consistent with our automatic measures.

Search and learning vs. Search for inference. An in-
teresting analysis of our approach is to see how search and

learning (S&L) improves the search itself. This can be seen
by performing search for inference on the test set. From Ta-
ble 4, we observe that S&L largely improves the results in
terms of all metrics. Especially, the PPL of S&L is consid-
erably smaller than search for inference. This shows that the
second-stage fine-tuning not only learns from the search re-
sults for higher semantic coverage, but also smooths out the
search noise and yields better sentences in general.

In addition, S&L has a better inference efficiency. Despite
our batch implementation and the V100 GPU device, search
for inference takes 45% more time than S&L in inference.
This shows that our approach is efficient in practice.

Case Study. We conduct a case study in Figure 2. There
are 7 references for this data sample. We present two to illus-
trate that the input slots may be missing even in references.
We see that T5 (fine-tuned with few-shot Dp or further self-
trained with Du) yields fluent sentences and does not gen-
erate wrong information as addressed in Gong et al. (2020).
However, a few input slots are missing in T5’s output. If we
perform search for inference, we are guaranteed to have per-
fect slot coverage, but the sentence may not be fluent, such
as “it is near crowne plaza high customer rating in riverside
area not family friendly hotel”. Our S&L approach yields a
fluent sentence with a high semantic coverage.

Appendices. We show the complete list of rules and
slot error rate (SER) details in appendices, available at
https://arxiv.org/abs/2112.02770.

Conclusion
In this work, we present a search-and-learning approach to
address the low coverage problem for few-shot data-to-text
generation. We first fine-tune the pre-trained T5 language
model based on a small parallel corpus. Then, we use the
T5 to predict on an unlabeled corpus, and search for higher
semantic coverage. The T5 is further fine-tuned with search
results. Experiments on E2E and WikiBio datasets show that
our model achieves higher performance than previous ap-
proaches to few-shot data-to-text generation, largely closing
the gap between few-shot and fully supervised learning.

10864

Acknowledgments
Shailza Jolly was supported by the TU Kaiserslautern CS
Ph.D. scholarship program, the BMBF project XAINES
(Grant 01IW20005), and the NVIDIA AI Lab (NVAIL)
program. Lili Mou is supported in part by the Amii
Fellow Program, the Canada CIFAR AI Chair Program,
a UAHJIC project, and a donation from DeepMind.
This research is also supported by Compute Canada
(www.computecanada.ca) and the Natural Sciences and En-
gineering Research Council of Canada (NSERC) under
Grant No. RGPIN2020-04465.

References
Chen, W.; Chen, J.; Su, Y.; Chen, Z.; and Wang, W. Y. 2020a.
Logical natural language generation from open-domain ta-
bles. In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, 7929–7942.
Chen, Z.; Eavani, H.; Chen, W.; Liu, Y.; and Wang, W. Y.
2020b. Few-shot NLG with pre-trained language model. In
Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, 183–190.
Dale, R.; and Reiter, E. 1997. Building applied natural lan-
guage generation systems. Natural Language Engineering,
3(1): 57–87.
Dhingra, B.; Faruqui, M.; Parikh, A.; Chang, M.-W.; Das,
D.; and Cohen, W. 2019. Handling divergent reference texts
when evaluating table-to-text generation. In Proceedings of
the 57th Annual Meeting of the Association for Computa-
tional Linguistics, 4884–4895.
Doddington, G. 2002. Automatic evaluation of machine
translation quality using n-gram co-occurrence statistics. In
Proceedings of the Second International Conference on Hu-
man Language Technology Research, 138–145.
Dong, Y.; Li, Z.; Rezagholizadeh, M.; and Cheung, J. C. K.
2019. EditNTS: An neural programmer-interpreter model
for sentence simplification through explicit editing. In Pro-
ceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 3393–3402.
Dušek, O.; Howcroft, D. M.; and Rieser, V. 2019. Seman-
tic noise matters for neural natural language generation. In
Proceedings of the 12th International Conference on Natu-
ral Language Generation, 421–426.
Gong, H.; Sun, Y.; Feng, X.; Qin, B.; Bi, W.; Liu, X.; and
Liu, T. 2020. TableGPT: Few-shot table-to-text generation
with table structure reconstruction and content matching. In
Proceedings of the 28th International Conference on Com-
putational Linguistics, 1978–1988.
Juraska, J.; Karagiannis, P.; Bowden, K.; and Walker, M.
2018. A deep ensemble model with slot alignment for
sequence-to-sequence natural language generation. In Pro-
ceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers),
152–162.
Koncel-Kedziorski, R.; Hajishirzi, H.; and Farhadi, A. 2014.
Multi-resolution language grounding with weak supervi-

sion. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, 386–396.
Kukich, K. 1983. Design of a knowledge-based report gen-
erator. In Proceedings of the 21st Annual Meeting of the
Association for Computational Linguistics, 145–150.
Kumar, D.; Mou, L.; Golab, L.; and Vechtomova, O. 2020.
Iterative edit-based unsupervised sentence simplification. In
Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, 7918–7928.
Langkilde, I.; and Knight, K. 1998. Generation that exploits
corpus-based statistical knowledge. In Proceedings of the
36th Annual Meeting of the Association for Computational
Linguistics and 17th International Conference on Computa-
tional Linguistics, Volume 1, 704–710.
Lavie, A.; and Agarwal, A. 2007. METEOR: An automatic
metric for MT evaluation with high levels of correlation with
human judgments. In Proceedings of the Second Workshop
on Statistical Machine Translation, 228–231.
Lebret, R.; Grangier, D.; and Auli, M. 2016. Neural text
generation from structured data with application to the bi-
ography domain. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, 1203–
1213.
Li, J.; Jia, R.; He, H.; and Liang, P. 2018. Delete, retrieve,
generate: A simple approach to sentiment and style transfer.
In Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long Pa-
pers), 1865–1874.
Li, J.; Li, Z.; Mou, L.; Jiang, X.; Lyu, M. R.; and King, I.
2020. Unsupervised text generation by learning from search.
In Advances in Neural Information Processing Systems.
Liang, P.; Jordan, M.; and Klein, D. 2009. Learning seman-
tic correspondences with less supervision. In Proceedings
of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, 91–99.
Lin, C.-Y. 2004. ROUGE: A package for automatic evalu-
ation of summaries. In Text Summarization Branches Out,
74–81.
Liu, T.; Luo, F.; Xia, Q.; Ma, S.; Chang, B.; and Sui, Z. 2019.
Hierarchical encoder with auxiliary supervision for neural
table-to-text generation: Learning better representation for
tables. In Proceedings of the AAAI Conference on Artificial
Intelligence, 6786–6793.
Liu, T.; Wang, K.; Sha, L.; Chang, B.; and Sui, Z. 2018.
Table-to-text generation by structure-aware seq2seq learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, 4881–4888.
Liu, X.; Mou, L.; Meng, F.; Zhou, H.; Zhou, J.; and Song, S.
2020. Unsupervised paraphrasing by simulated annealing.
In Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, 302–312.
Loshchilov, I.; and Hutter, F. 2018. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations.

10865

McKeown, K. 1992. Text Generation. Cambridge University
Press.
Novikova, J.; Dušek, O.; and Rieser, V. 2017. The E2E
dataset: New challenges for end-to-end generation. In Pro-
ceedings of the 18th Annual SIGdial Meeting on Discourse
and Dialogue, 201–206.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
BLEU: A method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, 311–318.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Explor-
ing the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21: 1–
67.
Rieser, V.; and Lemon, O. 2009. Natural language genera-
tion as planning under uncertainty for spoken dialogue sys-
tems. In Proceedings of the 12th Conference of the European
Chapter of the ACL, 683–691.
Schumann, R.; Mou, L.; Lu, Y.; Vechtomova, O.; and Mark-
ert, K. 2020. Discrete optimization for unsupervised sen-
tence summarization with word-level extraction. In Pro-
ceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 5032–5042.
Sha, L.; Mou, L.; Liu, T.; Poupart, P.; Li, S.; Chang, B.; and
Sui, Z. 2018. Order-planning neural text generation from
structured data. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, 5414–5421.
Shen, S.; Fried, D.; Andreas, J.; and Klein, D. 2019. Prag-
matically informative text generation. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 4060–
4067.
Stent, A.; Prasad, R.; and Walker, M. 2004. Trainable
sentence planning for complex information presentations in
spoken dialog systems. In Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics,
79–86.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Sys-
tems, 5998–6008.
Vedantam, R.; Lawrence Zitnick, C.; and Parikh, D. 2015.
CIDEr: Consensus-based image description evaluation. In
Proceedings of the 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition, 4566–4575.
Wang, Y.; Wu, Y.; Mou, L.; Li, Z.; and Chao, W. 2019. Har-
nessing pre-trained neural networks with rules for formal-
ity style transfer. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language
Processing, 3573–3578.
Wiseman, S.; Shieber, S.; and Rush, A. 2018. Learning
neural templates for text generation. In Proceedings of the

2018 Conference on Empirical Methods in Natural Lan-
guage Processing, 3174–3187.
Zhu, X.; and Goldberg, A. B. 2009. Introduction to semi-
supervised learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, 3(1): 1–130.

10866

