
CAISE: Conversational Agent for Image Search and Editing
Hyounghun Kim,1 Doo Soon Kim,2 Seunghyun Yoon,3

Franck Dernoncourt,3 Trung Bui,3 Mohit Bansal1

1UNC Chapel Hill
2Roku Inc.

3Adobe Research
{hyounghk, mbansal}@cs.unc.edu
{syoon, dernonco, bui}@adobe.com

Abstract

Demand for image editing has been increasing as users’ de-
sire for expression is also increasing. However, for most
users, image editing tools are not easy to use since the tools
require certain expertise in photo effects and have complex
interfaces. Hence, users might need someone to help edit their
images, but having a personal dedicated human assistant for
every user is impossible to scale. For that reason, an auto-
mated assistant system for image editing is desirable. Addi-
tionally, users want more image sources for diverse image
editing works, and integrating an image search functionality
into the editing tool is a potential remedy for this demand.
Thus, we propose a dataset of an automated Conversational
Agent for Image Search and Editing (CAISE). To our knowl-
edge, this is the first dataset that provides conversational im-
age search and editing annotations, where the agent holds a
grounded conversation with users and helps them to search
and edit images according to their requests. To build such
a system, we first collect image search and editing conver-
sations between pairs of annotators. The assistant-annotators
are equipped with a customized image search and editing tool
to address the requests from the user-annotators. The func-
tions that the assistant-annotators conduct with the tool are
recorded as executable commands, allowing the trained sys-
tem to be useful for real-world application execution. We
also introduce a generator-extractor baseline model for this
task, which can adaptively select the source of the next to-
ken (i.e., from the vocabulary or from textual/visual contexts)
for the executable command. This serves as a strong start-
ing point while still leaving a large human-machine perfor-
mance gap for useful future work. Data and code are avail-
able: https://github.com/hyounghk/CAISE.

Introduction
As the technology of image editing is developing and be-
ing refined, its utility is also increasing. It has become a
usual practice to add editing effects to photos to make them
look better. However, using image editing tools requires
the expertise and skill that regular layperson users do not
have. The names of these photo effects are not familiar and
even the implication of the effects on images are not intu-
itive for most users. Hence, to increase the accessibility to
these tools, proper individual expert guidance is required.
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Assistant: How may I help you?
User: I am looking for kids umbrella
Assistant: Surely I will help you

(1) [search kids_umbrella]

Assistant: Enjoy rain
User: Yeah
User: Please rotate the image

clockwise 90
Assistant: Okay

(2) [rotate 270]

Assistant: Is this good

User: Please find an image of 
towel which color is matches
with the color of girls jacket

Assistant: Sure
(3) [search yellow_towel]

Assistant: Do you like it
User: Wow
User: Could you please increase

the contrast by 60
Assistant: Definitely

(4) [adjust_attr contrast 60]

Assistant: Hope you like it

Figure 1: Conversational agent for image search and editing
(CAISE). The dialogue starts with the image search request
from the user. The assistant conducts the image search and
addresses the following image search or editing requests for
the user through 4 turns of request-execution exchange ([·]
shows the image search/editing commands to the system).

However, guidance assistant systems run by small groups
of available human experts could not cover all the requests
from a large number of users worldwide. Instead, editing
tools can benefit from having an automated assistant system
that can have a conversation with users at scale to help them
with their editing needs.

On the other hand, as the purpose and use cases of im-
age editing are getting diverse, source materials for image
editing also need to be diversified. For example, users might
want to recreate their photos by adding additional objects
from external sources. Users may also want to follow a ref-
erence image to make their photos more attractive (e.g., by
borrowing a color from the source image). Hence, these ac-
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Figure 2: The diverse image search and editing effect functions that our CAISE dataset employs.

tivities call for an image search interface to be integrated
with image editing tools to provide a more integrated and
comprehensive platform.

There have been some prior efforts towards automated im-
age editing systems. They have focused on intent/action/goal
identification from image editing requests (Manuvinakurike
et al. 2018a,b,c; Lin et al. 2018), exploring low-level
editing terms (Lin et al. 2020), editing images from de-
scriptions (Shi et al. 2020), and describing image differ-
ences caused by image editing (Tan et al. 2019). How-
ever, there has been limited effort to integrate conversa-
tional image search and editing functions in a directly ex-
ecutable end-to-end manner for deployment into real-world
applications. Therefore, we propose a new dataset, CAISE
(‘Conversational Agent for Image Search and Editing’), in
which a user and an assistant hold a conversation in natu-
ral language (English) about image search and editing (Fig-
ure 1). The user’s role is to make requests for image search
and editing and the assistant’s role is to search or edit images
according to the user’s requests and return the results while
responding with natural language.

To collect such data, we implement a dialogue interface
and ask pairs of annotators (one operating as the user and
the other one as the assistant) to converse and search/edit
images via the interface. The user is provided with multi-
ple seed images from which they can get some ideas about
what to search in the first place. Also, we show the user a
list of suggested image search/editing functions to keep the
command types diverse by asking them to follow the list as
long as they can. The assistant annotator, on the other hand,
is equipped with an image search and editing interface to
perform the user’s requests. All command executions lead
to the corresponding executable commands to be recorded.
A total of 1.6K dialogues and 6.2K task instances are col-
lected. The collected dialogues contain different types of im-
age search/editing requests from users (direct request, im-
plied request, object referring request; Table 3) and assis-
tants’ diverse responses (Section ‘Data Analysis’), requiring
models to understand the diverse grounded interactions in
the conversations.

The task on the CAISE dataset is to generate the exe-
cutable commands (e.g., search, color-change, brightness-
change, contrast-change, rotation, background-removal;

Figure 2) given the conversation and image contexts. This
task setup simulates real-world image editing tools, fa-
cilitating important initial steps towards deployment in
downstream applications. We introduce a novel generator-
extractor model as a strong starting point baseline for this
task and dataset. We employ a copying mechanism (Vinyals,
Fortunato, and Jaitly 2015; Gu et al. 2016; Miao and Blun-
som 2016; See, Liu, and Manning 2017), with which the
model adaptively selects a way (i.e., generate from the vo-
cabulary or extract from the context) to decode the next
word since the clues for arguments of an executable com-
mand could be implicitly mentioned in the user’s request
(e.g., “Please change the image color with color of bus”)
or the request contains the direct cues (e.g., “Is it possible
to increase the brightness of the image by 30 percent”). For
more effective model performance, we extend this mecha-
nism so that it can also cover visual concepts in images by
extracting object attributes or names from a set of object de-
tection based concepts. For example, for the request “Please
change the image color with the color of bus”, the corre-
sponding color can not only be generated from the vocabu-
lary, but also directly copied from one of object detection re-
sults, “red bus”. Our experiments show our baseline model
performs effectively as a starting point, and we demonstrate
a large human-machine performance gap to allow useful fu-
ture works on this important and understudied task.

Our contributions are two-fold: (1) we introduce a novel
grounded dialogue dataset, CAISE, which incorporates im-
age search and editing, featuring executable commands,
hence allowing for more practical use in real-world applica-
tions. (2) We also introduce a generator-extractor model as a
strong starting point baseline which extends the copy mech-
anism to the visual concept extraction, allowing for more
effective performance and helping the interpretation of the
model’s behavior, while also leaving a large human-machine
performance gap to allow useful future work by the commu-
nity on this new challenging multimodal task.

Related Work
Image Editing. There have been some prior efforts to auto-
mate image editing programs. The research on image editing
has been focused on intent identification (Manuvinakurike
et al. 2018c), request to actionable command map-
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ping (Manuvinakurike et al. 2018b; Lin et al. 2018), dia-
logue act labeling (Manuvinakurike et al. 2018a), low-level
image edit requests (Lin et al. 2020), description to edit-
ing (Shi et al. 2020), or editing to description (Tan et al.
2019). Also, language-based image editing (Shinagawa et al.
2017; Chen et al. 2018; El-Nouby et al. 2019; Fu et al.
2020) focuses on an image generation task setup. However,
there have been relatively few studies that pursue end-to-
end conversational image editing agent systems combined
with image search functionality. Our CAISE dataset supports
the direct deployment of conversational image editing assis-
tant systems by incorporating executable commands in the
dataset, and also integrates image search functionality so as
to make it more comprehensively useful.
Referring Expression Comprehension. Referring to an ob-
ject using neighboring objects and relations between them
is important to specify the object exactly and reduce ambi-
guities. Agents should have the ability to understand these
expressions for better communication with humans or other
agents. Referring expression comprehension has been stud-
ied actively (Kazemzadeh et al. 2014; Mao et al. 2016; Hu
et al. 2016; Yu et al. 2018; Chen et al. 2019; Qi et al. 2020).
Object referring expression plays an important role in image
search and editing activities too. Users might need to specify
an object or region that photo effects should be applied to, or
want to search an item, of which they don’t know the exact
name, by referring it using spatial relations with other ob-
jects in an image. Our CAISE dataset contains a large amount
of referring expressions to encourage agents to have the abil-
ity to understand such expressions.
Multimodal Dialogue. Multimodal dialogue has been ac-
tively studied in previous works (Das et al. 2017; De Vries
et al. 2017; Mostafazadeh et al. 2017; Saha, Khapra, and
Sankaranarayanan 2017; Pasunuru and Bansal 2018; Alamri
et al. 2019; Haber et al. 2019; Kim et al. 2019; Moon et al.
2020; Shuster et al. 2020; Cheng et al. 2020). Although
all these works involve interesting task setups (question an-
swering/generation, object discovery, shopping, collabora-
tive drawing, response retrieval/generation, image identifi-
cation/generation, etc.) with different multimodal features
(text, image, video, audio), there has not been a focus on
how to generate directly executable commands from the
grounded multimodal dialogue. Moreover, to the best of our
knowledge, our CAISE dataset and task is the first large-
scale multimodal dialogue setup which combines the image
search and editing tasks.

Task Description
Multimodal dialogue based executable command genera-
tion is one task that can be introduced from our CAISE
dataset. Specifically, given a conversation history, previously
searched and edited images, and previously executed com-
mands, the agent should generate an executable command
which can return the correct result for the user’s request. The
definitions of the executable commands are as follows:
Search. The search command retrieves images that are
searched online with a query string. The format of the search
command is [search argument 1 ... argument n ...]. ‘argu-

ment n’ is the n-th token in the query string and there is no
limit for the number of arguments.

Color Change. The color change command paints a whole
image with a designated color. The format of the color
change command is [adjust color argument 1 argument 2].
‘argument 1’ is a name of the colors (red, orange, green,
blue, sky blue, purple, brown, yellow, pink), and ‘argu-
ment 2’ is the value of intensity (0.0-1.0).

Brightness Change. The brightness change command
changes the brightness of a whole image with a designated
intensity. The format of the brightness change command
is [adjust attr brightness argument 1]. ‘argument 1’ is the
value of intensity (-100-100%).

Contrast Change. The contrast change command changes
the contrast of a whole image with a designated intensity.
The format of the contrast change command is [adjust attr
contrast argument 1]. ‘argument 1’ is the value of intensity
(0-100%).

Rotation. The rotation command rotates a whole image by
a designated degree. The format of the rotation command
is [rotate argument 1]. ‘argument 1’ is the value of degree
(0-360).

Background Removal. The background removal command
makes a whole image black except the main subject. The for-
mat of the background removal command is [image cutout].
There is no argument.
For illustrations of these photo effects, see Figure 2.

Dataset
Our CAISE dataset consists of conversations between a
‘user’ and an ‘assistant’. Each conversation includes utter-
ances of the user and assistant, searched or edited images,
and executed commands.

Conversation Interface. We implement a dialogue system
through which a pair of people chat about image search and
editing. We build the user-side and the assistant-side inter-
faces separately since their roles are quite different. In the
user-side interface, we provide 15 random seed images from
COCO dataset (Lin et al. 2014) to help the user decide what
to request for the first image search. We also present a sug-
gestion for types of search and editing, which is a list of four
commands from different types being randomly selected and
ordered to avoid repeating the same search/editing order so
that the user can follow it when they request to the assis-
tant. In the assistant-side interface, we prepare a customized
light-weight search and editing tool for the assistant to ad-
dress the users’ requests. We use Adobe Stock1 for the im-
age search engine, Adobe Photoshop2 for the background re-
moval function, and OpenCV3 to implement the other edit-
ing functions. All the search and editing effects conducted
from the tool are recorded in the form of executable com-

1https://www.adobe.io/apis/creativecloud/stock.html (the wa-
termarks on the images are from using the Adobe Stock API).

2https://adobedocs.github.io/photoshop-api-docs-pre-release/
3https://opencv.org/
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Count
Per Dialogue Total

Dialogue - 1,611
Utterance 15.5 24,938
Utterance (user) 7.9 12,641
Utterance (assistant) 7.6 12,297
Executable Command 3.8 6,173
Image 3.8 6,173

Table 1: The number of dialogue components. Dialogues in
our CAISE dataset are long (15.5 utterances) with four turns
of image search/editing request-execution exchanges.

Length
avg stddev median max min

Utterance 5.26 4.98 4.0 38 1
Utterance (user) 6.99 6.16 6.0 38 1
Utterance (assistant) 3.49 2.24 3.0 24 1

Table 2: The lengths of utterances in the dialogue collection.
The user utterances are longer than assistant’s due to the dif-
ference in their roles. The standard deviation of the lengths
is large, indicating the utterances have various lengths.

mands that are used for corresponding functions. See Ap-
pendix in arxiv full version for the images of the interfaces.
Data Collection. We employ 10 annotators and train them
to make them familiar with the collection interfaces and
their primary roles, and guarantee the quality of the dataset.
In the training session, we check all the practice dialogues
manually and give feedback. We perform this training ses-
sion multiple times until the quality of the dialogues gets
above some threshold (see Appendix in arxiv full version
for the detailed training process). After the training period,
two annotators are paired so that one of them takes the user
role and the other takes the assistant role. User-annotators
are asked to give four requests throughout a conversation.
Assistant-annotators are asked to perform the image search
and editing functions according to the user-annotators’ re-
quests. If the user-annotators’ requests are not clear, the
assistant-annotators can ask them to clarify. We hire free-
lancers since the collection process needs some training to
build expertise (especially for manipulating the search/edit-
ing interface), and pairing between the user and assistant an-
notators via a general crowd-sourcing platform is not easy.4

Payment. We pay up to 2 USD per dialogue, including
bonuses. We also pay for dialogues which are created by an-
notators in their training period. Considering the time taken
for a dialogue (around 5 minutes for a pair of trained anno-
tators), the hourly wage is competitive (nearly 12 USD/hour

4We use Upwork (https://www.upwork.com) to hire free-
lancer annotators for high-quality, trained-expert human feedback.
Upwork provides various communication tools (text chat and
video/audio call interfaces) to facilitate communication with an-
notators and thus enable effective and efficient annotator training,
as also shown in (Stiennon et al. 2020).

Type Examples

Dir-Req

“I was looking for an image of zoo”
“Now increase the brightness
of the image by 40 percent”

“Please get rid of the background”

Impl-Req “Can we repeat further by 130 degree more”
“Can we try increasing further by 50 more”

ObjRef-Req

“Please find an image of the object seen
to the right of the juicer in the above image”

“Please change the color of image
which matches with the color of cushion”

Table 3: The examples of different types of requests (Dir-
Req: direct request, Impl-Req: implied request, ObjRef-Req:
object referring request).

Search Brightness Contrast Rotate Color BR
Freq. 56.2 % 12.8 % 10.5 % 9.1 % 8.7 % 2.7 %

Table 4: The executable commands frequency. The search
command has the highest frequency since each dialogue be-
gins with a search request (BR: background removal).

per annotator).

Data Analysis
We collect 1,611 dialogues and create 6,173 task instances
from the dialogue collection (since each dialogue has around
four executable commands).
Dialogue Length. As shown in Table 1, the average num-
ber of utterances from both the users and assistants is 15.5
(7.9 and 7.6 from users and assistants, respectively). The av-
erage number of executable commands and images are the
same (3.8 per dialogue) since each image is the result of the
execution of each corresponding command.
Utterance Length. As shown in Table 2, the average length
of user utterances is larger than that of assistant utterances
(6.99 vs. 3.49). The reason is that user utterances are mainly
about image search and editing requests, requiring detailed
explanations (e.g., “Could you also find me an image of
dress for my wife matching the color of hat in the above im-
age?”). On the other hand, assistant utterances are usually
short responses to users’ requests (e.g., “okay”, “sure”) or
questions for users’ confirmation (e.g., “Do you like it?”,
“Is this fine?”), and clarifications (e.g., “clock wise or anti
clockwise?”). Also, the standard deviations of the utterance
lengths are large compared to the average lengths, confirm-
ing utterances in our CAISE dataset have various lengths.
User Request Types. As shown in Table 3, we can catego-
rize the image search and editing requests mainly into three
types: direct request, implied request, and object referring
request. Direct requests are self-contained requests which
have direct clues about what users are asking. Implied re-
quests are the ones that do not explicitly mention what types
of functions are asked to be performed but imply them from
the conversation contexts. Object referring requests are the

10906



LSTM

L
S
T
M

search

red pencil

U: Now can you find me 
an image of guitar 
matching the color of 
upper case of piano

BiLSTM

…

Faster
RCNN

&
Positional
Encoding

Selection 
Gate

Concept
Extractor

BiLSTM

BiLSTM

BiLSTM

Attn

search white

white

guitar

LSTM LSTM

<bos>

Attn Generator

[search white_guitar]

Utterance
Extractor

U: Can you remove the 
background of the 
image
A: Certainly

Type Examples

Dir-Req

‘I was looking for an image of zoo”
“Now increase the brightness
of the image by 40 percent”

“Please get rid of the background”
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Figure 3: The executable commands frequency. The
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dialog begins with a search request (BR: background
removal).
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Û = Embed(W u) (6) 365

U = LSTM([Ûf
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N ; Û b
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Generator. The generator calculates the proba-389

bility of each token from the vocabulary which390

contains all possible candidates.391

lt = Linear(et) (14)392

agt = softmax(lt) (15)393

Extractor. Utterances in our CASE dataset con- 394

tain many direct clues for generating command 395

lines. Thus, the model would benefit from extract- 396

ing keywords from the context for better perfor- 397

mance. We employ copying mechanism (Vinyals 398

et al., 2015; Gu et al., 2016; Miao and Blunsom, 399

2016; See et al., 2017) to implement the extraction. 400

(Au
t )i = ht � Ui (16) 401

aut = softmax(Au
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The model also can obtain useful information 403

from visual concept directly since the visual con- 404

cept feature can provide object names and attributes 405
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(Ac
t)i = et � Ci (18) 407
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t) (19) 408

Selection Gate. To adaptively select the source 409

of the next token, we employ gating approach (See 410

et al., 2017) to obtain the adaptive weights. 411

gt = softmax(W>
g et) (20) 412
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Figure 3: The Generator-Extractor model. The model adaptively selects the source of the next token via the selection gate (for
the simplicity purpose, some blocks and relationship arrows are omitted; input “<bos> search white” to the LSTM block is
previously generated tokens, i.e., an autoregressive decoding setup; the model produces the command word-by-word).

ones that use the information of objects (i.e., color, name,
location) in images to specify what should be done.
Assistant Response Types. Although several assistant re-
sponses are generic confirmation-based (since the assistants’
main role is to perform image search and editing according
to users’ requests), there are also several other types of inter-
esting responses such as correction (user: “... image of sea-
saw ...” - assistant: “Do you mean see-saw?”), ambiguity-
clarification (user: “... rotate the image to 40 degree” - assis-
tant: “... clock wise or anti clockwise?”), coreference (assis-
tant: “How would you like it by”), etc., encouraging models
to understand the diverse grounded interactions in the con-
versations between users and assistants to perform the task.
Executable Commands Frequency. As shown in Table 4,
the search command is the most frequent. The reason is that
search is the first command that must be performed in every
dialogue, and we design the collection interface so that each
dialogue has one additional search command on average (the
ratio of the first-line search commands to the other search
commands is 46.5% vs. 53.5%). The low frequency of the
background removal command (“BR” in the table) is due to
the command’s instability. Unlike the other commands that
do not fail, the background removal command could fail
depending on images’ contents (it seems that images that
have complicated contents are hard to remove background
from). Once the background removal command fails, the
user-annotators might not try it again and perform one of
the other functions instead.

Models
We present the generator-extractor model as a starting point
baseline (Figure 3). The model takes the history of utter-
ances, images, and previously executed commands as input,
and predicts a next executable command.
Encoder. A large part of our CAISE dataset involves objects
and their concepts (names and attributes) in images, espe-

cially for the search command. Thus, we employ Faster R-
CNN (Girshick 2015) to extract object visual features V̂ ,
bounding box features B, and their concept features W c,
which are usually made of a couple of tokens, from images
I . V̂ and B are combined through a linear layer, and W c is
further encoded by a word embedding layer and the bidirec-
tional LSTM (Hochreiter and Schmidhuber 1997):

V̂ , B,W c = FRCNN(I), V = PE(Linear([V̂ ;B])) (1)

Ĉ = Emb(W c), C = PE(BiLSTM(Ĉ)) (2)
where PE denotes positional encoding (Gehring et al. 2017;
Vaswani et al. 2017) and it is applied image-wise (i.e., the
same encoding value is applied to the features from the same
image). Sequences of tokens from utterances Wu in dia-
logue D are encoded by the bidirectional LSTM, and the
last forward hidden state and the first backward hidden state
of Û ∈ RM×N×d are extracted and concatenated to create a
vector which represents each utterance, where M is the dia-
logue length, N is the utterance length, and d is the feature
dimension. Then, the sequence of the utterance features is
fed to a LSTM to learn the dialogue context:

Û = BiLSTM(Emb(Wu)), U = LSTM([Ûf
N−1; Û

b
0 ]) (3)

We employ the attention mechanism to align the visual fea-
tures V , and utterance features U ∈ RM×d. We calculate the
similarity matrix S ∈ RO×M between visual and utterance
features, where O is the total number of all object features
from the images: Sij = V ⊤

i Uj . From the similarity matrix,
the new fused visual and utterance feature is:

Ū = softmax(S) · U, V̄ = [V ; Ū ;V ⊙ Ū ] ·Wv (4)

where Wv ∈ R3d×d is the trainable parameter, ⊙ is element-
wise product, and · is matrix multiplication. Tokens from an
executable command, {wt}Tt=1, are embedded in the embed-
ding layer, and then sequentially fed to the LSTM layer.

ŵt−1 = Emb(wt−1), ht = LSTM(ŵt−1, ht−1) (5)
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Models Accuracy (%)
total search color brightness contrast rotation remove-back

1 Base 22.33 11.45 28.63 32.13 46.46 9.52 100.0
2 Base+VE 22.12 11.00 30.77 30.12 48.56 8.93 100.0
3 Base+UE 45.23 36.42 26.07 49.80 92.13 29.17 97.14
4 Base+UE+VE 46.43 37.43 40.60 48.39 93.18 26.49 97.14
5 Human Expert 90.0 82.0 90.0 100.0 100.0 100.0 100.0

Table 5: Model performance on the test split. The extractors help improve the model’s performance (Base: the basic encoder-
decoder model only with generator (without extractors), UE: utterance extractor, VE: visual concept extractor).

The same (but with different parameters) attention mecha-
nism (Attn), which is applied to visual and utterance fea-
tures, is used for aligning the command feature, ht, and V̄ .

et = Attn(ht, V̄ ) (6)

Generator. The generator calculates the probability of each
token in the vocabulary that contains all possible candidates.

lt = Linear(et), agt = softmax(lt) (7)

Extractor. Utterances in our CAISE dataset contain many
direct clues for generating commands. Thus, the model
would benefit from extracting keywords from the context.
We employ a copying mechanism (Vinyals, Fortunato, and
Jaitly 2015; Gu et al. 2016; Miao and Blunsom 2016; See,
Liu, and Manning 2017) to implement the extraction.

(Au
t )i = h⊤

t Ui, aut = softmax(Au
t ) (8)

The model also can directly obtain useful information from
the visual concept since visual concept features can provide
object names/attributes in a textual semi-symbolic format.

(Ac
t)i = e⊤t Ci, act = softmax(Ac

t) (9)

Selection Gate. To adaptively select the source of the next
token, we employ gating approach (See, Liu, and Manning
2017) to obtain the adaptive weights: gt = softmax(W⊤

g et),
where Wg ∈ Rd×3 is the trainable parameter. The weighted
sum of each probability from each source is the final proba-
bility of the next token.

p(wt|w1:t−1, I,D) = gt,0 · agt + gt,1 · aut + gt,2 · act (10)

The loss is: L = −∑T
t=1 log p(w

∗
t |w0:t−1, I,D), where w∗

t
is the GT token.

Experiments
Data Splits. We split the total 1,611 dialogues into 1,052,
262, and 297 for train, validation, and test set, respec-
tively. From the dialogue splits, we obtain 4,059/1,002/1,112
(train/valid/test) instance splits.
Evaluation Metric. We use accuracy as the evaluation met-
ric. For image search and editing systems, it is important
to feed the correct command, and automatic metrics for text
generation tasks such as BLEU (Papineni et al. 2002) are not
appropriate. So, we only count generated commands which

Models Accuracy (%)
1 Request-Only 42.30
2 DialogHistory-Only 0.66
3 Request+DialogHistory 43.17
4 Vision-Only 0.93
5 Request+Vision 45.56
6 Request+DialogHistory+Vision 46.43

Table 6: Modality ablations. Each modality/component
helps improve the model’s performance.

exactly match the ground-truth commands (i.e., command
types and their arguments) as the correct ones. For the search
command, generated commands with different query word
orders (e.g., [search juice glass] and [search glass juice])
are also considered correct since queries with different word
orders usually return the same or similar outcomes. For the
color change command, we only compare the command type
and color names but not up to intensity (e.g., [adjust color
blue]) since, in most cases, users ask to change colors with-
out saying a specific value of intensity (e.g., “Color the im-
age to the same color as the salmon in the above image”).
Human Expert Performance. We randomly sample 50 in-
stances for the search command and 10 instances for each of
the other commands (total 100 instances) and ask an expert
who knows the task well to predict the commands based on
the textual and visual context.
Training Details. We use 512 as the hidden size and 256 as
the word embedding dimension. We use Adam (Kingma and
Ba 2015) as the optimizer with the learning rate 1 × 10−4.
See Appendix in arxiv full version for more details.

Results
As shown in Table 5, the extractor modules help improve the
model’s performance. The utterance extractor helps much to
improve the model’s performance (row 1 and 3). Especially,
the scores for the search, brightness change, contrast change,
and rotation commands get increased, implying that the ut-
terance extractor can effectively locate the direct clues from
the dialogue history context. Applying the visual concept ex-
tractor additionally increases the score (rows 3 and 4).5 The

5The stddev of the full model (Base+UE+VE) scores is 0.74,
and the score of the model on validation split is 49.7%.
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….

User: Get me an image of 

scooter which color is 

matches with the color of 

bowl
Assistant: Roger that

“brown table”

“red bowl”

“orange carrot”

“black olive” 

…

search              red                scooter

[1.0, 0.0, 0.0] [0.33, 0.02, 0.65] [0.05, 0.95, 0.0]      
Predicted Command:

Utterances Image & Visual Concept

….

User: Now change the color of 

the  image to the same color as 

the shirt in the above image

Assistant: I will do this task for 

you

adjust_color blue

[1.0, 0.0, 0.0] [0.32, 0.16, 0.52]
Predicted Command:

“blue shirt”

“brown hair”

“white wall”

“clear glass”

…

….

User: I like the object worn by 
the girl on her wrist in the 

above picture. Please search a 

similar one for me

Assistant: One moment please

Predicted Command:

“blurry hand”

“blurry face”

“black watch”

“wooden chair”

…

search                laptop

[1.0, 0.0, 0.0] [0.98, 0.02, 0.0]

Figure 4: The examples of the model output (1st and 2nd ex-
amples: correct / 3rd: incorrect). Our model can effectively
use the generator and extractors by selecting them with the
adaptive selection gate (the numbers in bracket are the se-
lection gate weight, i.e., [weight for the generator, weight
for the utterance extractor, weight for the visual concept ex-
tractor]). The bottom figure shows an incorrect example in
which the model cannot catch ‘watch’ from the image.

performance of the search and color change commands gets
improved from this application, meaning that the visual con-
cept extractor can match the visual features and the concept
features, and align them with requests. But, when comparing
rows 1 and 2, adding the visual concept extractor to the base
model does not seem to help. Although it shows a similar im-
provement pattern for the other commands, the performance
for the search command is not improved. That implies that
the visual concept extractor is effective together with the ut-
terance extractor (see the example at the top of Figure 4).6

Human Expert Performance. As shown in row 4 and 5
of Table 5, the human-machine performance gaps are large
for most of the command types, implying that there is large
room for future work to develop novel improvements on this
new multimodal dialogue task, and our baseline described
above is meant to serve as a strong starting point.
Modality Ablation. Table 6 shows the ablation results from
different combinations of the model (Base+UE+VE) com-

6While we evaluate the performance via the average score over
each search/editing instance like in (Das et al. 2017), one other
possible evaluation option for practical applications is to consider
the average success rate of the whole search/editing dialogue (5.4%
from our full (Base+UE+VE) model).

ponents. We take the last two utterances from the dialogue as
‘request’ since there is no explicit division between request
and context in our CAISE dataset. As shown in row 2 and 4,
the model could not perform well without the ‘request’. That
is obvious since, without this information, the model cannot
figure out what and how to search and edit. The request-only
(row 1) records a high score possibly because many of the
requests contain direct clues like “Can you rotate the image
counterclockwise by 30 degrees”. Adding dialogue history
(row 1 and 3, row 5, and 6) helps, meaning the request needs
dialogue context for better performance. Also, adding visual
context (images) improves the model’s performance (row 1
and 5, 3 and 6) because there are requests (such as for the
search and color change commands) that need to refer to ob-
jects/colors in the visual context to be performed correctly.7

Output Examples. Figure 4 shows examples of the model
output. In the top figure, our model gives the correct com-
mand ([search red scooter]) according to the request. Specif-
ically, the model generates the command name, ‘search’,
using the generator (with the selection gate weight of 1.0),
extracts the color, ‘red’, using the visual concept extractor
(with the weight of 0.65), and also extracts the item name
to search for, ‘scooter’ using the utterance extractor (with
the weight of 0.95). The second figure shows the example
of the color change command. The model also generates the
correct command name, ‘adjust color’ using the generator
(with the weight of 1.0). The model then extracts the color,
‘blue’, from the visual concept feature using the visual con-
cept extractor (with the weight of 0.52). In the bottom fig-
ure, the model cannot catch ‘watch’ in the image and gener-
ated the wrong searching query, ‘laptop’ using the generator
(with the weight of 0.98). This negative result from our base-
line model implies that there is room for improvement via
more advanced modeling approaches in future work from
the community on our CAISE task.

Conclusion
We introduced a novel conversational image search and edit-
ing task/dataset, called CAISE, in which an agent should
conduct image search and editing according to users’ re-
quests. To implement and train the automated system, we
collected a dialogue dataset in which a user and an assistant
hold a conversation on image search/editing. We presented
the generator-extractor model as a strong starting point base-
line and the large human-machine performance gap showed
there is room for improvement on this task.

Acknowledgments
We thank the reviewers for their helpful comments. This
work was partially done while HK was interning at Adobe
Research and later extended at UNC, where it was supported

7We randomly sample 75 instances (except the first-turn
search command) and conduct human evaluation on which in-
puts are required to perform the requests. Request-only: 43%;
need-DialogHistory+Vision: 57% (need-DialogHistory 13%, need-
Vision 47%, need-both 3%). This means that to solve our command
generation task, models need to understand the context (we observe
the same trend when we also include the first search command).

10909



by NSF Award 1840131, ARO-YIP Award W911NF-18-1-
0336, DARPA KAIROS Grant FA8750-19-2-1004, and a
Google Focused Award. The views contained in this article
are those of the authors and not of the funding agency. This
work was done while DK was at Adobe Research.

References
Alamri, H.; Cartillier, V.; Das, A.; Wang, J.; Cherian, A.;
Essa, I.; Batra, D.; Marks, T. K.; Hori, C.; Anderson, P.;
et al. 2019. Audio visual scene-aware dialog. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 7558–7567.
Chen, H.; Suhr, A.; Misra, D.; Snavely, N.; and Artzi, Y.
2019. Touchdown: Natural Language Navigation and Spa-
tial Reasoning in Visual Street Environments. In Conference
on Computer Vision and Pattern Recognition.
Chen, J.; Shen, Y.; Gao, J.; Liu, J.; and Liu, X. 2018.
Language-based image editing with recurrent attentive mod-
els. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 8721–8729.
Cheng, Y.; Gan, Z.; Li, Y.; Liu, J.; and Gao, J. 2020. Se-
quential attention GAN for interactive image editing. In
Proceedings of the 28th ACM International Conference on
Multimedia, 4383–4391.
Das, A.; Kottur, S.; Gupta, K.; Singh, A.; Yadav, D.; Moura,
J. M.; Parikh, D.; and Batra, D. 2017. Visual Dialog. In
CVPR.
De Vries, H.; Strub, F.; Chandar, S.; Pietquin, O.;
Larochelle, H.; and Courville, A. 2017. Guesswhat?! vi-
sual object discovery through multi-modal dialogue. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 5503–5512.
El-Nouby, A.; Sharma, S.; Schulz, H.; Hjelm, D.; Asri, L. E.;
Kahou, S. E.; Bengio, Y.; and Taylor, G. W. 2019. Tell, draw,
and repeat: Generating and modifying images based on con-
tinual linguistic instruction. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, 10304–10312.
Fu, T.-J.; Wang, X. E.; Grafton, S.; Eckstein, M.; and Wang,
W. Y. 2020. SSCR: Iterative Language-Based Image Editing
via Self-Supervised Counterfactual Reasoning. In Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP).
Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; and Dauphin,
Y. N. 2017. Convolutional sequence to sequence learning. In
ICML, 1243–1252.
Girshick, R. 2015. Fast r-cnn. In Proceedings of the IEEE
international conference on computer vision, 1440–1448.
Gu, J.; Lu, Z.; Li, H.; and Li, V. O. 2016. Incorporating
Copying Mechanism in Sequence-to-Sequence Learning. In
Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers),
1631–1640.
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