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Abstract
Knowledge-based visual question answering (VQA) is a
vision-language task that requires an agent to correctly an-
swer image-related questions using knowledge that is not pre-
sented in the given image. It is not only a more challenging
task than regular VQA but also a vital step towards building a
general VQA system. Most existing knowledge-based VQA
systems process knowledge and image information similarly
and ignore the fact that the knowledge base (KB) contains
complete information about a triplet, while the extracted im-
age information might be incomplete as the relations between
two objects are missing or wrongly detected. In this paper, we
propose a novel model named dynamic knowledge memory
enhanced multi-step graph reasoning (DMMGR), which per-
forms explicit and implicit reasoning over a key-value knowl-
edge memory module and a spatial-aware image graph, re-
spectively. Specifically, the memory module learns a dynamic
knowledge representation and generates a knowledge-aware
question representation at each reasoning step. Then, this rep-
resentation is used to guide a graph attention operator over
the spatial-aware image graph. Our model achieves new state-
of-the-art accuracy on the KRVQR and FVQA datasets. We
also conduct ablation experiments to prove the effectiveness
of each component of the proposed model.

Introduction
Over the past few years, the domain of visual question an-
swering (VQA) (Antol et al. 2015) has attracted great atten-
tion and witnessed significant progress (Antol et al. 2015;
Lu et al. 2016; Hudson and Manning 2019). However, most
VQA models cannot answer questions that require external
knowledge beyond what is provided in the image. Consid-
ering the top example in Figure 1, the question is ”What
is the relation between the object that belongs to the cat-
egory of eukaryotes and the fork in the image?”. To cor-
rectly answer this question, it is necessary to both under-
stand the visible content in the image and incorporate the
external knowledge that a cucumber belongs to the biolog-
ical category of eukaryotes. When facing such challenging
questions, we humans can easily combine the image content
with general knowledge that is required for answering this
question, while many current VQA models fail due to their
incapability to utilize external knowledge.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Two examples taken from the KRVQR dataset. To
correctly answer the question in the image, the model should
be able to utilize supporting facts which cannot be seen in
the image.

To bridge this gap between human behavior and current
VQA models, several knowledge-based VQA datasets have
been proposed. Wang et al. (2017) introduced the ”fact-
based VQA (FVQA)” task and developed the first KVQA
dataset containing images, questions with answers and a
knowledge base (KB) of fact triplets extracted from differ-
ent sources including ConceptNET (Speer, Chin, and Havasi
2017), WebChild (Tandon et al. 2014) and DBPedia (Auer
et al. 2007). Recently, Cao et al. (2021) introduced the
first large-scale knowledge-based VQA dataset: Knowledge-
routed VQA (KRVQR) that contains a KB for answering
the questions. In this work, we mainly focus on the KRVQR
dataset and also test our model on the FVQA dataset. Other
VQA datasets that require external knowledge exist (Marino
et al. 2019; Jain et al. 2021) but here the task is to search for
external knowledge, which is not the scope of this work.

Graph-based approaches (Narasimhan, Lazebnik, and
Schwing 2018; Zhu et al. 2020) have achieved successes
in the field of knowledge VQA. They use one or several
graphs to represent the information sources and conduct
cross-graph learning or different fusion methods to infer the
answer to the given question. However, they either suffer
from the drawbacks of ignoring the dynamics of multi-step
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reasoning, or from performing an identical reasoning pro-
cedure for both the knowledge facts and the image. Such
approaches neglect that the knowledge facts provide the ex-
plicit information of a triplet, while the image graph contains
only implicit information about the image.

In this work, we propose the DMMGR or Dynamic
knowledge Memory enhanced Multi-step Graph Reasoning
model, which performs explicit and implicit reasoning over
a KB and a spatial-aware image graph, respectively. Specif-
ically, we see the reasoning over the knowledge base as a
problem of performing key addressing and value reading
over a key-value memory and propose a novel dynamic key-
value knowledge memory module to learn a question-aware
knowledge representation at each reasoning step. This is dif-
ferent from previous key-value memory networks (Miller
et al. 2016; Xu et al. 2019) whose key is the subject and rela-
tion of a triplet and value is the object.Our proposed module
dynamically learns a question representation that can reason
about the subject, relation and object of a knowledge triplet.
We depict the image as a spatial-aware image graph where
the nodes are the embeddings of the objects detected using
Faster-RCNN (Ren et al. 2015) and the edges are embed-
dings of their relative positions. Inspired by (Gu et al. 2019;
Zareian, Karaman, and Chang 2020) who leveraged com-
mon sense knowledge for scene graph generation, we use a
knowledge-aware question representation, which is learned
by applying explicit reasoning over the knowledge mem-
ory. This question representation performs implicit reason-
ing over the spatial-aware image graph. DMMGR thus im-
plements multi-step reasoning by iteratively performing ex-
plicit reasoning over the dynamic knowledge memory and
implicit reasoning over the spatial-aware image graph.

In summary, the main contributions of this paper are as
follows, (1) We propose a novel dynamic knowledge mem-
ory module that learns a representation of knowledge triplets
and generates a knowledge-aware question representation.
(2) We introduce a question and knowledge guided graph
reasoning module, where we use the representation of re-
lated knowledge triplets to guide the reasoning over a sparse
spatial-aware image graph. (3) We perform an ablation study
to verify the contribution of each model component, and at-
tention visualization shows that our model has good inter-
pretability.

Related Work
Visual Question Answering
The VQA task, where a VQA agent is expected to correctly
answer a question related to an image, was proposed by An-
tol et al. (2015). Most of the early VQA models (Antol et al.
2015; Andreas et al. 2016; Ben-younes et al. 2017; Fukui
et al. 2016; Lu et al. 2016; Ma, Lu, and Li 2016) integrate a
CNN-RNN based architecture that fuses the RNN encoding
of the question and the CNN encoding of the image to pre-
dict the answer, possibly improved by attention mechanisms
to highlight the visual objects that are related to the question
(Yang et al. 2016; Anderson et al. 2018; Lu et al. 2016). Re-
cently, graph neural networks that represent the image as a
scene graph, where nodes are objects and edges are relations

between two connected objects, has attracted attention in
many vision-language tasks including VQA. Teney, Liu, and
van den Hengel (2017) represented both a language ques-
tion and an image as two graphs and applied graph attention
and an aggregation operator to infer the corresponding an-
swer. Hu et al. (2019) and Wang et al. (2019) used question
guided image graph attention to generate a question-aware
image graph representation. Different from the aforemen-
tioned graph models, Norcliffe-Brown, Vafeias, and Parisot
(2018) proposed a graph learner, where a fully connected
image graph whose nodes are region features, and edges
represent position information was constructed based on the
given question, and this model performs graph convolution
and max pooling to predict the answer.

Knowledge-Based VQA

Knowledge-based VQA (KVQA) requires the model to use
knowledge outside the image to answer questions correctly.
Compared to the original VQA task, KVQA is relatively
less explored (e.g. Wang et al. (2017); Marino et al. (2019))
Narasimhan, Lazebnik, and Schwing (2018) have first intro-
duced a graph based approach to KVQA and apply a graph
convolution to the fact graph to infer the answer, while Zi-
aeefard and Lécué (2020) use graph attention and multi-
modal fusion to reason over both the image graph and fact
graph. Another work (Zhu et al. 2020) depicts an image as
three graphs: a semantic graph built on the results of dense
captioning of image regions, a fact graph representing rele-
vant knowledge triplets, and a fully connected image graph
where nodes represent region features, and iteratively per-
form question guided inter- and intra-graph attention to an-
swer the question. In contrast, we use a dynamic key-value
memory to represent the triplets and use a sparse spatial-
aware image graph whose nodes are the object category em-
beddings, and edges are the relative position embeddings
of two objects. As an extension of our proposed model, we
have evaluated the integration of a semantic graph based on
dense captioning of the image regions.

Key-Value Memory Networks

A key-value memory network (Miller et al. 2016) is seen as
an extension of a memory network, (Weston, Chopra, and
Bordes 2014; Sukhbaatar et al. 2015). However, different
from memory networks, key-value memory networks save
context as key-value pairs and split the reasoning process
into key addressing and value reading. Key-value memory
networks have been widely used in knowledge triplet-based
question answering (Miller et al. 2016; Xu et al. 2019). For
a knowledge triplet < subject, relation, object >, a key-
value memory network saves the subject and relation as a
key and the object as a value, which restricts its usage. In
this paper, we introduce a dynamic key-value memory mod-
ule whose key is composed of all the information of a triplet
and whose value is a question-aware triplet representation.
Such a memory structure is flexible enough so that it can
reason about not only the object but also the subject and re-
lation of a knowledge triplet.
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Figure 2: The architecture of our proposed DMMGR model. The module specialized in iterative reasoning consists of two
components: Dynamic memory reading aimed at reading question related knowledge from the retrieved knowledge facts and
resulting in a knowledge-aware question representation, and the spatial-aware image graph reasoning which performs a question
and knowledge guided graph attention operation to infer the image information that is required to answer the question.

Methodology
Given a question Q, an image I and a KB K that consists
of a set of facts f1, f2, ..., fn, a KVQA model aims to pre-
dict the answer A to Q by reasoning over the image and
the KB. Each fact is represented as a resource description
framework (RDF) triplet of the form fi = (e1, r, e2), where
e1, e2 are entities and r is the relation between e1 and e2. In
our model, we first conduct explicit reasoning over the dy-
namic key-value memory module to extract question related
knowledge information. Then we use both extracted knowl-
edge information and the question representation to perform
implicit reasoning over the spatial-aware image graph. The
complete model is constructed by stacking both the explicit
key-value memory reading module and the implicit spatial-
aware image graph reasoning module. Figure 2 shows the
details of our proposed model.

Key-Value Memory Construction
Fact Retrieval. To retrieve the relevant facts frel from the
KB, we detect the nouns mentioned in the question and the
objects in the image using the Stanza natural language pro-
cessing (NLP) tool (Qi et al. 2020) and the pretrained Faster-
RCNN with RestNet-101 backbone (Ren et al. 2015), re-
spectively. We then use a pretrained GloVe word embedding
(Pennington, Socher, and Manning 2014) to represent each
entity and relation in the knowledge triplet, the nouns in the
question and the detected image objects, and sort the triplets
based on the average cosine similarity between every word
in a triplet and the nouns in the question and detected image
objects ignoring pairs with zero average similarity. Finally,

the top k = 5 facts with the highest average cosine similarity
values are retained for predicting the answer to the question.
Memory Construction. A factual triplet consists of < sub-
ject, relation, object >, such as < mouse, related to, key-
board >. We store the extracted triplets in a key-value mem-
ory structure. This is different from previous works (Miller
et al. 2016; Xu et al. 2019) that take the subject and rela-
tion as a key and the object as a value, which strongly limits
their usage in reasoning. We use the average embedding of
subject, relation and object as key, and the value contains
each element of a triplet: {Ff : [Fs, Fr, Fo]}, where Ff is
the mean GloVe embedding of the words that form an ele-
ment of the triplet, and Fs, Fr, Fo are the embeddings of
the subject, relation and object, respectively. Our proposed
key-value structure is capable of providing all information
including subject, relation and object of a triplet.

Visual Spatial-aware Graph Construction
Given an image I , we detect objects in the image and keep
the top r = 36 detected objects O = {oi}ri=1. Each object is
associated with a label representation vi ∈ Rdv (dv = 300)
which is the average GloVe embedding (Pennington, Socher,
and Manning 2014) of the predicted object category, and a
spatial vector bi ∈ Rdb(db = 4) consisting of the coordi-
nates of the top-left and bottom-right corners of the bound-
ing box. The previous work (Zhu et al. 2020; Hu et al. 2019)
use a fully connected spatial-aware image graph, which not
only increases the computational cost but also introduces
noisy relations between objects, we construct a sparse and
spatial − aware image graph GV = {V V , EV } over
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the objects O by connecting only one object with its top-
5 nearest neighbors. The distance between two objects is the
squared distance between the centers of their two bounding
boxes. Figure 3 shows an example of how we create this
spatial-aware image graph. Each node in the node set V V =
{vVi }Mi=1 corresponds to a detected object oi represented by
its label representation, and the edges eVij ∈ EV denote the
relations between pairs of objects. We use a 5-dimensional
relative spatial vector rVij = [

xc
i−x

c
j√

wihi
,
yc
i−y

c
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wihi
,
wj

wi
,
hj

hi
,
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where xci , y
c
i are the center coordinates and wi, hi are the

width and height of the bounding box of object i, respec-
tively, to encode edge features in the graph.

Figure 3: An example of a spatial-aware image graph. We
only show the connections between person and its neigh-
bours. There is no connection between person and car as the
car is far from the person.

Iterative Reasoning Module
Algorithm 1 illustrates the flow of our proposed iterative rea-
soning module. The ; in algorithm 1 denotes the concatena-
tion operation, and T is the total number of reasoning steps.
The details of each module are introduced below.
Question Processing. To enhance the model’s ability to per-
form multi-step reasoning, we generate a question vector for
each reasoning step t (where t = 1, · · · , T ). Specifically, the
given question Q of length S is converted into a sequence of
GloVe word embeddings that are further processed by a 2-
layer bi-directional long short-term memory (LSTM) mod-
ule to generate a sequence of contextually aware word rep-
resentations:

[h1, h2, · · · , hS ] = BiLSTM(Q) (1)

where hs = [
−→
hs;
←−
hs] is the concatenation of the forward and

backward hidden state of words at position s from the last
layer of the bi-directional LSTM output. At each reasoning
step t, context vector ct attends over the sequence of ques-
tion words, and the question representation qt is obtained as
follows:

αt
s = softmax(W1(hs � (W t

2ReLU(W3c
t))) (2)

qt =
S∑

s=1

αt
shs (3)

whereW1,W t
2 (as well asW3,· · · , ωt

v , ωt
e mentioned below)

are learned parameters, and � denotes element-wise mul-
tiplication. Parameters with t superscript are learned sepa-
rately for each iteration, while those without t superscript
are shared across iterations. The qt can be seen as the rea-
soning step-aware question representation at step t. In the
first step, the reasoning step-aware vector: c1 = [

−→
h S ;
←−
h 1],

which is the concatenation of the final hidden states obtained
from the forward and backward LSTM passes. From the sec-
ond step to the T th step, ct is evaluated as:

ct =W t
4(ReLU(W5[R

t−1; It−1])) (4)

where Rt−1, It−1 are the knowledge-aware question repre-
sentation and visual representation at step t−1, respectively,
which are explained in details below.
Key Addressing and Value Reading. Key addressing is a
process that involves finding the most relevant knowledge
triplet for a given question. Following previous work (Xu
et al. 2019), we compute the relevance probability pi be-
tween the question representation q and each key represen-
tation k as:

q̂ = ReLU(W6(ReLU(W7q) (5)

k̂i = ReLU(W8(ReLU(W9ki) (6)

pi = softmax(q̂ · k̂Ti ) (7)

As each value of our key-value memory module contains
all three elements (subject, relation and object) of a triplet,
we further apply an attention mechanism to compute the
question-guided value embedding t̂i for each value:

t̂ij = ReLU(W10(ReLU(W11tij)) (8)

sij = (1− softmax(q̂ · t̂Tij))/2.0 (9)

t̂i =
J∑

j=1

sij t̂ij (10)

where J = 3 is the number of elements of a triplet; sij is
the attention probability of each component in a knowledge
triplet, and the divisor 2.0 is a normalization factor (normal-
ize the sum of sij to one) The value of memory mt is then
computed by taking the weighted sum over the question-
guided value embeddings using the relevance probabilities;
this value is further used to reason over the spatial-aware
image graph.

mt =
K∑
i=1

pit̂i (11)

where K is the number of knowledge triplets stored in the
key-value memory module.
Question and Knowledge Guided Node Attention. We
first merge the question information and the output of the
key-value memory module to generate a knowledge-aware
question representation.

Rt =W t
11(ELU(W12[q

t;mt])) (12)

where qt and mt are the question and memory embeddings
generated during the t− th reasoning iteration, respectively,
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and ELU is the exponential linear unit activation function
used here to avoid the dead neuron problem. We then use
an attention mechanism to compute the relevance of each
node of the spatial-aware image graph corresponding to
the knowledge-aware question representation. The relevance
scores are evaluated as:

αi = softmax(ωvtanh(W13vi +W14R
t)) (13)

where vi is the node representation of the spatial-aware im-
age graph.
Question and Knowledge Guided Edge Attention We ap-
ply the same attention mechanism to compute the impor-
tance between edge eij and the knowledge-aware question
representation Rt, which is evaluated as:

βij = softmax(ωetanh(W15eij +W16R
t) (14)

Multi-head Spatial-aware Image Graph Attention. Based
on the node and edge attention weights computed in Eq.
13 and Eq. 14, respectively, the node representations of
the spatial-aware image graph are updated with multi-head
graph attention (Veličković et al. 2017).

mk
i =

∑
j∈Ni

([αjW17vj ;βijW18eij ]) (15)

hki = αiReLU(W19[m
h
i ;W20vi]) (16)

v̂i = LayerNorm(ELU(W21[h
1
i ;h

2
i ; · · · ;hHi ])) (17)

where Ni is the neighborhood set of node vi and H is the
number of heads. Once all nodes are updated, the max pool-
ing operation is conducted over all nodes to obtain the visual
representation at reasoning step t:

It =MaxPooling({vi}Mi=1) (18)

Final Prediction. We iteratively perform knowledge key ad-
dressing, value reading and spatial-aware image graph atten-
tion reasoning for T steps. At step T the given knowledge-
aware question representation RT and visual representation
IT are concatenated and processed by a 2-layer linear trans-
formation to predict the answer to the question. During train-
ing, we simply use the cross-entropy loss function (see equa-
tion below), to optimize the differences between the pre-
dicted answer and ground truth answer.

L = − 1

N

N∑
i=1

L∑
c=1

yclog(ŷc) (19)

where N and L are the number of training samples and can-
didate answers, respectively. yc is the ground truth answer,
and ŷc is the predicted answer.

Experiments
Datasets. In this paper we mainly focus on the KRVQR
(Cao et al. 2021) dataset and also test our model on the
FVQA (Wang et al. 2017) dataset, as these are the only two
knowledge VQA datasets that provide the knowledge base
for answering the questions. The KRVQR dataset consists
of 32910 images and 157201 question answer pairs, divided
into training, validation and test sets with proportions of

60%, 20% and 20%, respectively. The FVQA dataset con-
tains 2190 images and 5826 questions, which are further
split into training (2927) and test (2899) sets. The KRVQR
dataset contains 43.5% one-step reasoning and 56.5% two-
step reasoning questions, and the FVQA dataset contains
only one-step reasoning questions (Wang et al. 2017). Two-
step reasoning questions need to reason over two relations
to infer the answer, while one-step reasoning questions need
only one relation, where relations can be found in the KB
and/or image. An example of a two-step and an example of
a one-step reasoning question are presented on the top and
bottom of Figure 1, respectively.

Evaluation Metrics. Following the literature (Cao et al.
2021; Wang et al. 2017), we evaluate our model using top-1
accuracy (KRVQR and FVQA datasets) and top-3 accuracy
(FVQA dataset).

Implementation Details. We implement our model using
the PyTorch framework (Paszke et al. 2019). The hidden size
of the LSTM encoder is set to 512, and the dropout rate is
0.1. We set the sizes of the dynamic key-value memory em-
beddings and graph node and edge embeddings to 300 and
1024, respectively. The number of reasoning steps is set to 2
as the questions in the dataset require maximum 2 reasoning
steps. All these parameters are selected based on the valida-
tion results. The model is trained using the Adam algorithm
(Kingma and Ba 2014) with a base learning rate of 1e−4. We
gradually increase the learning rate over the first two epochs
and start decaying the learning rate at epoch 20. The best
model is trained for approximately 40 epochs with a batch
size of 128.

Results
Table 1 illustrates the accuracy comparison between our
DMMGR model with other models including the state-of-
the-art VQA and knowledge based VQA models. The Q-
type (Cao et al. 2021), LSTM (Cao et al. 2021), FiLM (Perez
et al. 2018), MFH (Yu et al. 2018), UpDown (Anderson
et al. 2018), and state-of-the-art VQA model MCAN (Yu
et al. 2019) were reimplemented and tested on the KRVQR
dataset in the work of Cao et al. (2021), and we copy the
obtained results here. As running software is not publicly
available, we reimplement the Mucko model and test it on
the KRVQR dataset. All our results are average over 5 runs.
As presented in Table 1, our DMMGR model significantly
outperforms all the other models and surpasses the current
state-of-the-art model (KM-net) by approxiFmately 6% in
terms of accuracy. We also present the results of DMMGR
extended with a semantic graph based on dense captioning
of image regions that aims at including attributes of the im-
age regions (DMMGR + Dense Captioning) following the
method described in Yu et al. (2020). We see a slight ac-
curacy improvement when including the dense captioning
information in the DMMGR model, however, statistical sig-
nificance testing (t-test p = 0.051) shows that no signifi-
cant differences can be observed. We report the results on
the FVQA dataset in Table 2. GRUC (Yu et al. 2020) is the
current state-of-the-art model for the FVQA dataset. The
complete GRUC model also integrates information from a
pretrained image dense caption generation model. The table
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Algorithm 1: Iterative Reasoning Module

Input:
QuestionQ, key-value memoryM , spatial-aware image
graph G

Output:
Answer prediction P

1: Process Q based on Equation 1
2: Initialize c1 = [

−→
hS ;
←−
h 1]

3: for t = 1 to T do
4: Obtain qt based on Equations 2 and 3
5: Perform key addressing and value reading to obtain

the representation of the knowledge triplets mt based
on Equations 5∼11

6: Obtain the knowledge-aware question representation
Rt based on Equation 12

7: Compute the question knowledge-guided visual node
and edge attention based on Equations 13 and 14

8: Update the visual node representation vi based on
Equations 15∼17

9: Obtain the spatial-aware image graph output It based
on Equation 18

10: if t < T − 1 then
11: Update context representation ct based on Equa-

tion 4
12: end if
13: end for
14: P = Linear(Linear([RT ; IT ]))
15: return P

shows that both the DMMGR and DMMGR + Dense Cap-
tioning models outperform GRUC, thus obtaining new state-
of-the-art performance for the FVQA dataset. Integrating the
dense captioning information in the DMMGR model could
significantly improve its accuracy on the FVQA dataset by
around 2.6% (t-test p = 0.02), which is different from what
we observe in the KRVQR dataset. This difference might
come from the difference of data distribution and types of
questions in the two datasets.

Model Accuracy
Q-type (Cao et al. 2021) 8.12
LSTM (Cao et al. 2021) 8.81
FiLM (Perez et al. 2018) 16.89
MFH (Yu et al. 2018) 19.55
UpDown (Anderson et al. 2018) 21.85
MCAN (Yu et al. 2019) 22.23
Mucko (Zhu et al. 2020) 24.00
KM-net (Cao et al. 2019) 25.19
DMMGR (2-steps) 31.4
DMMGR+Dense Captioning (2-steps) 31.8

Table 1: Top-1 accuracy comparisons among different mod-
els on the KRVQR dataset.

Model Accuracy
top-1 top-3

FVQA (Ensemble) (Wang et al. 2017) 58.76
STTF 1 62.20 75.60
OB2 69.35 80.25
Mucko (Zhu et al. 2020) 73.06 85.94
GRUC (Yu et al. 2020) 79.63 91.20
GRUC (without Semantic graph) 78.05 87.70
DMMGR (1-step) 78.6 90.6
DMMGR+Dense Captioning (1-step) 81.20 95.38

Table 2: Top-1 and top-3 accuracy of the different models
obtained on the FVQA dataset.(1:Narasimhan and Schwing
(2018),2:Narasimhan, Lazebnik, and Schwing (2018))

Ablation Study
To verify the effectiveness of each component of our model,
we conduct an extensive ablation study of the results ob-
tained on the KRVQR dataset, which is the most challeng-
ing dataset (Table 3, 4 and 5). They reveal the impact of the
iterative reasoning module, the dynamic key-value memory
module and the knowledge-guided graph reasoning.

Does the Number of Reasoning Steps Matter?
We first verify the contribution of the iterative reason-
ing module by performing experiments using the DMMGR
model with different numbers of reasoning steps. From Ta-
ble 3, we can observe that the DMMGR model with two
reasoning steps has the best performance, which is slightly
higher than that of the DMMGR model with only one
reasoning step. However, having more than two reasoning
steps, such as three and four, dramatically decreases the
accuracy by more than 4%. This is not surprising, as the
KRVQR dataset only contains one-step reasoning (43.5%)
and two-step (56.5%) reasoning questions.

Model (DMMGR) Accuracy
1 step 30.5
2 steps 31.4
3 steps 27.1
4 steps 26.2

Table 3: Results in terms of top-1 accuracy of the DMMGR
model obtained on the KRVQR dataset considering different
numbers of reasoning steps.

Does the Proposed Key-Value Memory Really
Help?
We next study the advantage of using a dynamic key-value
memory module (Table 4). The experiments are conducted
by replacing the memory module of the DMMGR model
with different types of memory modules and testing the new
models on the KRVQR dataset. The first model in Table
4 integrates a simple memory module where each slot is
the average embedding of a knowledge triplet. The second
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Figure 4: Attention visualization of the DMMGR model. The top and bottom maps are the attention weights of randomly
selected samples from the test set that are correctly and incorrectly answered by the model, respectively. Different colors are
used to represent the attention weights in the spatial-aware image graph and knowledge memory module, where deeper colors
denote higher attention weights.” Answer” represents the true answer and ”Prediction” stands for the output of the model.(More
examples can be found in Figure 5)

model in Table 4 has the regular key-value memory mod-
ule whose keys are the representation of subject and rela-
tion, and values are the object representation of a knowledge
triplet (Miller et al. 2016). The third model is the dynamic
key-value memory module proposed in this paper. The re-
sults show that the accuracy of our proposed memory model
surpasses the other two models by approximately 5%, which
indicates that the dynamic key-value memory module has a
beneficial effect on knowledge triplet reasoning. It is also ra-
tional to observe that a simple memory module slightly per-
forms better than the common key-value memory module
(Miller et al. 2016), since the latter can only infer the object
of a triplet while questions in the KRVQR dataset could be
related to the subject or relation of a triplet.

Memory model Top-1 accuracy
Average embedding memory module 27.3

Key-value memory module 26.5
Proposed memory model 31.4

Table 4: Results in terms of top-1 accuracy of the DMMGR
model obtained on the KRVQR dataset considering different
types of memory modules.

Can External Knowledge Help the Model to
Understand the Image Better?
Finally, we explore whether the retrieved knowledge triplets
can help the model to better understand the image. In Ta-

ble 5, we compare the performance of the models with and
without the use of the knowledge triplets in the reasoning
module operating on the spatial-aware image graph. One can
observe that the accuracy decreases by approximately 2%
when the reasoning module has no access to the knowledge
triplets, which supports our proposed knowledge-guided im-
age graph reasoning module.

Model (DMMGR) Accuracy
w/o knowledge-guided reasoning 29.9

full model 31.4

Table 5: The accuracy values obtained with and without the
us of the knowledge triplets in the image graph reasoning
module obtained on the KRVQR dataset.

Qualitative Analysis
To further study the working mechanism of the DMMGR
model, we randomly select two samples from the test set that
are correctly answered by our model, and present the corre-
sponding attention weights on top of Figure 4 (more exam-
ples are found in Figure 5). Note, that to obtain a clear vi-
sualization map, we plot only the attention weights of some
highly relevant knowledge triplets and objects in the image.
The attention weights show that DMMGR not only correctly
selects the most relevant knowledge triplets and addresses
the correct elements, but also focuses on the related objects
in the image. The bottom attention weight maps of Figure 4
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Figure 5: Attention visualization of the DMMGR model. All the samples are randomly selected from the test set of the KRVQR
dataset. Different colors are used to represent the attention weights in the spatial-aware image graph and knowledge memory
module, where deeper colors denotes higher attention weights.” Answer” represents the true answer and ”Prediction” stands for
the output of the model.

are examples where the DMMGR model fails. We observe
that DMMGR here fails when there is ambiguity present in
the image. For example, there are more than two persons
in the scene, although the model could find the most rele-
vant information from the knowledge base, it focuses on the
wrong person, which leads to an incorrect answer. Improv-
ing the model’s ability of handling such confusion could be
an interesting future work.

Conclusion
We have proposed a multi-step graph reasoning model
that is enhanced by a novel dynamic memory, which it-
eratively performs explicit and implicit reasoning over a
key-value triplet memory and a spatial-aware image graph,
respectively, to infer the answer in a KVQA task. Our
model achieves new state-of-the-art performance on both the
KRVQR and FVQA datasets.
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