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Abstract

Generative commonsense reasoning requires machines to
generate sentences describing an everyday scenario given
several concepts, which has attracted much attention recently.
However, existing models cannot perform as well as humans,
since sentences they produce are often implausible and gram-
matically incorrect. In this paper, inspired by the process of
humans creating sentences, we propose a novel Knowledge-
enhanced Commonsense Generation framework, termed
KGR4, consisting of four stages: Retrieval, Retrospect,
Refine, Rethink. Under this framework, we first perform re-
trieval to search for relevant sentences from external corpus
as the prototypes. Then, we train the generator that either ed-
its or copies these prototypes to generate candidate sentences,
of which potential errors will be fixed by an autoencoder-
based refiner. Finally, we select the output sentence from
candidate sentences produced by generators with different
hyper-parameters. Experimental results and in-depth analy-
sis on the CommonGen benchmark strongly demonstrate the
effectiveness of our framework. Particularly, KGR4 obtains
33.56 SPICE points in the official leaderboard, outperform-
ing the previously-reported best result by 2.49 SPICE points
and achieving state-of-the-art performance. We release the
code at https://github.com/DeepLearnXMU/KGR-4.

1 Introduction
Recently, integrating commonsense knowledge into artifi-
cial intelligence models has become increasingly attractive
to researchers. To assess the ability of these models in un-
derstanding the commonsense knowledge from our daily
life, various tasks (Zellers et al. 2018; Talmor et al. 2019a;
Zellers et al. 2019; Lin et al. 2020) for commonsense rea-
soning have been proposed. Typically, SWAG (Zellers et al.
2018), HellaSWAG (Zellers et al. 2019), and Common-
senseQA (Talmor et al. 2019a) are designed to infer an up-
coming event by selecting one of the listed choices. How-
ever, few of them focus on commonsense reasoning in a gen-
erative manner, which is considered as a basic ability of hu-
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Concepts: {hand, sink, wash, soap}
Outputs: The girl uses soap to wash her hands at the sink.
GPT-2: hands washing soap on the sink.
BERT-Gen: a woman washes her hands with a sink of soaps.
UniLM: hands washing soap in the sink
BART: a man is washing his hands in a sink a sink.
T5: hand washed with soap in a sink.
Ours: A man is washing his hands with soap in a sink.

Table 1: Sentences produced by commonly-used pretrained
models given some concepts. Those sentences generated by
existing pretrained models are either implausible (e.g. a sink
of soaps) or suffer from the repetition problem (e.g. in a sink
a sink), while ours generates a more natural sentence.

man beings (Moore 2013). To deal with this issue, Lin et al.
(2020) explore CommonGen, which requires the model to
produce the sentence describing the daily life scenario given
some concepts. As shown in the first two lines of Table 1,
given concepts {hand, sink, wash, soap}, this task aims to
generate a coherent sentence covering all of them, e.g. “The
girl uses soap to wash her hands at the sink”. Compared
with previous tasks, CommonGen is able to better evalu-
ate the generative commonsense reasoning ability of each
model, thus attracting much attention recently.

However, CommonGen remains a difficult task due to the
following challenges: 1) Generated sentences should be con-
sistent with commonsense knowledge; 2) The model is re-
quired to possess the compositional generalization ability, so
that it can deal with unseen combinations of concepts. From
Table 1, we can observe that the sentences generated by
commonly-used pretrained models are either not in line with
commonsense knowledge (i.e., “a sink of soaps” produced
by BERT-Gen (Bao et al. 2020)) or suffer from the repe-
tition problem (i.e., “in a sink a sink” generated by BART
(Lewis et al. 2020)).

To strengthen the ability of generative commonsense
reasoning, many researchers resort to introducing external
knowledge to refine pretrained models. Typically, Liu et al.
(2021) exploit the knowledge graph ConceptNet (Liu and
Singh 2004) to refine the BART-based model. However,
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hand, sink, wash, soap

P1: A man is washing his hands in a bathroom sink.
P2: Someone thoroughly washing their hands with soap in a bathroom sink
P3: Two kids are standing in front of a sink washing their hands with kid soap,

Edited: A man is washing his hands with soap in a sink with soap.
Copied: A man is washing his hands in a bathroom sink.

Edited: A man is washing his hands with soap in a sink.
Copied: A man is washing his hands in a bathroom sink.

A man is washing his hands with soap in a sink.

…

Retrieval

Retrospect

Refine

Rethink

Figure 1: The process of our framework generating the sentence for input concepts hand, sink, wash, soap, which are marked
in blue. P1, P2, P3 denote the prototypes retrieved from external corpora. The sentences followed by Edited are the sentence
generated by editing prototypes, while those followed by Copied are copied from prototypes. The red chunk consists of repeated
words and will be deleted at the refine stage. Our framework selects the better sentence as the final output at the rethink stage.

knowledge graphs are usually human-annotated and might
fail to cover all commonsense in daily life. Therefore, the
performance of this line of work would be limited. More re-
cently, Fan et al. (2020) and Wang et al. (2021) introduce re-
trievers to search auxiliary information from external plain
sentences, which contains enormous daily scenarios. Intu-
itively, the implicit commonsense knowledge within plain
sentences is more abundant than that in human-annotated
knowledge bases. In this work, we extend this idea and de-
sign a novel generation framework.

Suppose a user is asked to write a sentence mentioning
the given concepts: they may attempt to search for an ideal
sentence that can be directly copied as the answer. But if
the searched sentence does not mention all concepts, they
may further edit it to meet the requirements, where the po-
tential errors should be corrected. Finally, they might con-
sider several candidate sentences through the above process
and pick the most satisfying one. Inspired by such process,
in this paper, we propose a Knowledge-enhanced Common-
sense Generation framework, termed KGR4. As illustrated
in Figure 1, our framework consists of four steps: 1) Re-
trieval: We first perform retrieval to obtain prototypes for
generation, where candidates are roughly retrieved by con-
cept mapping and then a trainable scorer is used to select sat-
isfactory candidates as prototypes. 2) Retrospect: A BART-
based seq2seq model is employed as the generator, which
exploits prototypes for better sentence generations. To en-
courage the generator to edit or copy prototypes as output,
we propose retrospective training and retrospective augmen-
tation to enhance the training of the generator. 3) Refine: At
this stage, we train a BART-based (Lewis et al. 2020) refiner
to fix errors within generated sentences. 4) Rethink: Finally,
we reuse the previously-trained scorer to select the best sen-
tence from those produced by various generators.

To investigate the effectiveness of our framework, we con-
duct extensive experiments on the CommonGen benchmark,
where experimental results and in-depth analysis demon-

strate the superiority of our framework. Specifically, KGR4

significantly surpasses the previous best result (Wang et al.
2021) on the CommonGen v1.0 test set (34.40 vs. 39.70
SPICE points (Anderson et al. 2016)). Besides, on the offi-
cial test set (v1.1) of the leaderboard, KGR4 achieves 33.56
SPICE, outperforming the previous best model by 2.48
SPICE points and setting a new state-of-the-art.

2 Related Work
Our related work mainly includes the studies in two aspects:
commonsense reasoning and utilizing commonsense knowl-
edge in natural language generation (NLG).

Commonsense Reasoning Recently, a series of works
have been proposed to investigate the machine common-
sense reasoning ability. Typically, SWAG (Zellers et al.
2018), CODAH (Chen et al. 2019), HellaSWAG (Zellers
et al. 2019), CommonsenseQA (Talmor et al. 2019b),
Atomic (Sap et al. 2019) are proposed to assess the com-
monsense reasoning ability of models for question answer-
ing. To enhance such ability, Rajani et al. (2019) collect hu-
man explanations in the form of natural language for bet-
ter commonsense reasoning. Lin et al. (2019) design an ex-
plainable inference framework to utilize external common-
sense graphs for commonsense question answering. Besides,
Shwartz et al. (2020) study pretrained language models as an
alternative of external knowledge provider to benefit com-
monsense question answering. Furthermore, since writing
sentence as natural as humans is a desired ability for ma-
chines, researchers also contributed to incorporating com-
monsense in NLG.

Utilizing Commonsense Knowledge in NLG To assess
the machine commonsense reasoning ability in a genera-
tive manner, Lin et al. (2020) propose CommonGen which
asks models to generate a reasonable and fluency sentence,
which mentions all the given concepts. To enhance gen-
erative commonsense reasoning, many researchers devote
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Figure 2: Four types of training instances at the retrospect stage. (a) A pretraining instance, of which target sentence ȳ is
extracted from external corpus De and input concepts x̄ are extracted from ȳ; (b) A retrospective augmented instance, where
both pseudo concept set x̄p and pseudo target sentence p3 are extracted from the prototype of external corpus De; (c) A
retrospective training instance encouraging the generator to edit prototypes; (d) A retrospective training instance encouraging
the generator to copy prototypes, where one of its prototypes (randomly chosen) is replaced with the target sentence.

to incorporating existing knowledge bases into pretrained
models. For instance, Liu et al. (2021) additionally intro-
duce an encoder and a decoder customized to exploit the
knowledge graph related to the given concepts. Zhou et al.
(2021) infuse concept-centric commonsense knowledge into
pretrained models via generative and contrastive objectives.
Nevertheless, the performance of these models is limited
due to the low coverage and quality of used knowledge
bases. Besides, many researchers focus on utilizing im-
plicit commonsense knowledge within plain sentences and
adopt the retrieval-and-generation paradigm. Typically, Fan
et al. (2020) equip the BART-based generation model with
an enhanced knowledge injection module, which exploits
the commonsense knowledge extracted from retrieved sen-
tences. Furthermore, Wang et al. (2021) propose a trainable
retriever to search auxiliary sentences for given concepts,
and concatenate them with concepts as input for T5 (Raffel
et al. 2020a).

Obviously, our framework is an extension of retrieval-
and-generation methods. We additionally propose three
novel stages. At the retrospect stage, the generator produces
sentences by copying or editing the retrieved prototypes.
Generated sentences will be refined by our refiner to fix the
errors at the refine stage, and the best sentence will be picked
among candidate sentences produced by generators with dif-
ferent hyper-parameters at the rethink stage.

3 Our Framework
In this section, by simulating the process of humans writing
sentences, we propose a novel knowledge-enhanced com-
monsense generation framework, which aims to generate a
high-quality target sentence y containing all the concepts in
set x = {x1, x2, ..., xN}, where xi denotes the i-th concept.
As illustrated in Figure 1, our framework mainly consists of

four stages: Retrieval, Retrospect, Refine and Rethink. In the
following subsections, we describe these stages in detail.

3.1 Retrieval
Intuitively, when asked to write a sentence with given con-
cepts, humans will always call to mind the scenarios asso-
ciated with these concepts, then conceive logical sentences.
Similarly, our framework retrieves prototypes related to the
given concepts from external corpora, which contain abun-
dant scenario knowledge, then uses these prototypes as aux-
iliary information for the commonsense generation.

We firstly use the concept mapping (Wang et al. 2021)
and roughly search candidate prototypes for the concept set
x from an external corpus De, which consists of caption
sentences describing the daily scenario. Then, we train a
RoBERTa-based binary classifier as a scorer to semantically
evaluate candidate prototypes. The scorer takes the concate-
nation of x and a candidate prototype p′ as input and out-
puts a score fs(x,p

′) indicating whether p′ is related to x.
To optimize the scorer, we construct a temporary training set
from De and the CommonGen training set D, which consists
of ⟨x,y⟩. More specifically, for each concept set x from D,
we take its corresponding sentence y to construct a positive
sample and randomly select sentences from De to produce
negative samples. Finally, we apply this scorer to seman-
tically evaluate candidate prototypes for each concept set.
As implemented in Wang et al. (2021), we select the top-3
scored candidate prototypes as the final prototype set.

3.2 Retrospect
We then construct a generator to exploit prototypes for sen-
tence generations. Note that given the prototypes, humans
might glance at these prototypes before sentence writing. If
one of these prototypes is good enough, they could directly
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copy it as output. Otherwise, they might write the sentence
by editing prototypes. Thus, we believe both editing and
copying prototypes are crucial for generating high-quality
sentences. For that purpose, we propose two novel strategies
to enhance the training of the generator.

Generator Following previous studies (Liu et al. 2021;
Fan et al. 2020), we adopt BART-large (Lewis et al. 2020)
to establish our generator, which takes the concept set and
retrieved prototypes as input and generates a target sentence
mentioning all concepts. To make the model fully absorb the
commonsense knowledge from the external corpus De, we
pretrain the generator using a large-scale pretraining dataset
Dpt constructed from De. In specific, the construction steps
of D are as follows: taking the sentence ȳ in De as the tar-
get sentence, we use spaCy * to perform POS tagging on
ȳ, and sample several lemmatized Verbs, Nouns, and Proper
Nouns as the pseudo concepts x̄. We pair x̄ with ȳ to form a
pretraining instance (Figure 2(a)). Considering the training
efficiency of the generator, we only roughly retrieve the pro-
totypes via concept matching during pretraining. Formally,
we use Dpt to pretrain our generator in the following way:

Lpt
G = −

|ȳ|∑
t=1

log p(ȳt|x̄, {p̄1, p̄2, p̄3}, ȳ<t), (1)

where p̄∗ is the roughly retrieved prototypes, and ȳt denotes
the t-th token of ȳ.

Afterwards, we propose two novel strategies to finetune
the generator so as to enhance the training of the generator.
Since the retrieved prototypes related to the given concepts
are usually human-created, they are natural and coherent.
We argue that letting the generator learn more about how
to generate such prototypes will help the generator better
capture the meaning of these concepts, and further benefits
the subsequent commonsense generation. Thus, we propose
retrospective augmentation strategy to expand D into a
new training set Dft. As shown in Figure 2(b), following
the concepts extracting process mentioned before, we ex-
tract pseudo concepts x̄p from the prototype p3, and pair x̄p

with p3 to form a retrospective augmented instance, which
will be added into Dft.

Most importantly, we propose retrospective training
strategy to enhance the editing and copying ability of our
generator. Unlike the previous pretraining only based on the
MLE training objective, our training objective involves two
loss items. Formally, given a training instance ⟨x,y⟩ from
Dft and its retrieved prototypes {p1,p2,p3}, we define the
joint training objective as follows:

Lft
G = (1− λ)Ledit + λLcopy, (2)

Ledit = −
|y|∑
t=1

log p(yt|x, {p1,p2,p3},y<t), (3)

Lcopy = −
|y|∑
t=1

log p(yt|x, {p1,p2,y},y<t), (4)

*https://spacy.io/

where λ is the hyper-parameter to balance Ledit and Lcopy .
Ledit denotes the editing training objective. As illustrated in
Figure 2(c), the generator generates the target sentence y by
editing the retrieved prototypes {p1,p2,p3}. Lcopy is the
copying training objective. We randomly replace one of the
prototypes in {p1,p2,p3} with the target sentence y, which
is illustrated in Figure 2(d). By using Lcopy , we expect that
the generator is able to detect the high-quality prototype and
copy it as output.

3.3 Refine
Similar to previous works (Lewis et al. 2020; Fan et al. 2020)
focusing on CommonGen, we find that our generator suffers
from the degeneration problem (Welleck et al. 2020). To en-
sure these sentences are grammatically correct, we propose
a refiner to fix potential errors within generated sentences.

Refiner To better model our refiner, we first analyze the
errors within the generated sentences, which can be classi-
fied into the following two types: 1) Repetition error. The
generator sometimes pays too much attention to what it has
recently produced (Fan, Lewis, and Dauphin 2018), and thus
it tends to generate similar text multiple times. For example,
“in a sink a sink” shown in Table 1; 2) Misspelling. Since
the BART-based generator tokenizes the sentences using the
same byte-pair encoding as GPT-2 (Radford et al. 2019),
some characters and spaces in sentence should be predicted,
while the generator occasionally misses them, leading to
misspelling words (i.e., “wash hands” is incorrectly output
as “wsh hands” and “washhands”).

To deal with the errors mentioned above, we construct
a BART-based refiner, which takes the the candidate target
sentence generated by our generator as input and outputs the
corrected target sentence. To this end, we construct train-
ing instances based on De. Given the sentence ȳ from De,
we generate a perturbed sentence ŷ by incorporating above-
mentioned errors into ȳ: either randomly repeat a word se-
quence of ȳ to simulate repetition errors, or randomly re-
move characters or spaces in ȳ to introduce the misspelling
words. Then, we require the refiner to recover ȳ from ŷ via
the following auto-encoding training objective:

LR = − log p(ȳ|ŷ) = −
|ȳ|∑
t=1

log p(ȳt|ŷ, ȳ<t). (5)

In this way, our refiner is trained to correct potential errors
within candidate sentences, especially repetition and mis-
spelling errors.

3.4 Rethink
The above processes describe in detail how to generate a
target sentence for a given concept set. However, this pro-
cess is not entirely consistent with how humans write sen-
tences: humans usually produce multiple sentences in dif-
ferent ways (copying or writing) and then select the best one
from them. To further improve quality of the generated sen-
tences, we propose to employ the generator with different λs
to generate multiple target sentences, all of which are then
refined by our proposed refiner. Afterwards, we reuse the
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Statistics Train Validation Test
#Concept Sets 32,651 993 1,497

-Size = 3 25,020 493 -
-Size = 4 4,240 250 747
-Size = 5 3,391 250 750

#Sentences 67,389 4,018 7,644
Unseen Concepts - 6.53% 8.97%
Unseen Concept-Pairs - 96.31% 100.00%
Unseen Concept-Triples - 99.60% 100.00%

Table 2: The basic statistics of the CommonGen dataset.
#Concept is the number of concepts each concept set con-
tains. Unseen concept compositions (i.e., concept, concept-
pair, concept-triple) denote the ratio of unseen compositions
in the training set, which propose challenges on the general-
ization of models.

previously-trained scorer (See Section 3.1) to semantically
evaluate these target sentences. During this process, we feed
the concatenation of the given concept set and the refined
sentence to the scorer, and select the final outputted sentence
with the highest score.

4 Experiments
4.1 Settings
Dataset and Metrics Following previous studies, we use
the CommonGen dataset constructed by Lin et al. (2020).
We show the basic statistics of this dataset in Table 2. Note
that all concept-pairs and concept-triples of test set are un-
seen in the training set, which requires models to generalize
well on the unseen combinations of concepts.

As described above, our framework involves an exter-
nal corpus, which serves three purposes: 1) Being the re-
trieval pool where the prototypes come (See Section 3.1); 2)
Constructing pseudo instances for retrospective augmenta-
tion and pretraining (See Section 3.2); 3) Establishing train-
ing and validation sets to train the refiner (See Section 3.3).
We construct this corpus by combining 3M image and video
captions of several datasets: Activity (Krishna et al. 2017),
MultiNLI (Williams, Nangia, and Bowman 2018), SNLI
(Bowman et al. 2015), Vatex (Wang et al. 2019), MSCOCO
(Lin et al. 2014) and (Young et al. 2014).

Following Lin et al. (2020), we use BLEU-4 (Papineni
et al. 2002), CIDEr (Vedantam, Zitnick, and Parikh 2015),
SPICE (Anderson et al. 2016) as our evaluation metrics.
Since Lin et al. (2020) claim that SPICE is most relevant
to human evaluation, we use it as our prior metric.

Baselines We compare KGR4 with several competitive
generation models:

• EKI-BART (Fan et al. 2020). It is a knowledge-
enhanced model based on vanilla BART, which retrieves
a prototype for better sentence generation;

• KG-BART (Liu et al. 2021). It pretrains BART via a
masked concept prediction task, and further leverages the
knowledge graph to enhance the encoder and decoder;

• CLAM (Zhou et al. 2021). It introduces generative
and contrastive objectives into pretrained text generation

models, so as to better learn concept-centric common-
sense knowledge;

• RE-T5 (Wang et al. 2021). It is a T5-based model
equipped with a trainable retriever to retrieve prototypes
as the auxiliary input.

Moreover, we report the performance of several
commonly-used pretrained generation models,including:
GPT-2 (Radford et al. 2019), BERT-Gen (Bao et al. 2020),
UniLM (Dong et al. 2019), BART (Lewis et al. 2020),
T5-base (Raffel et al. 2020b), and T5-large (Raffel et al.
2020b). Except T5-base and T5-large that add a prompt into
the beginning of input sequence, all other models take the
combination of concepts as input and output the description
sentence.

Implementation Details At the retrieval stage, we select 3
negative samples for each positive sample. We optimize the
RoBERTa-based scorer using the Adam optimizer (Kingma
and Ba 2015) with a learning rate of 2e-5 for 3 epochs, and
set the batch-size to 32. At the retrospect stage, we pretrain
the generator for 80,000 steps using the pseudo instances
constructed from the external corpus and then finetune the
model parameters for 2,000 steps, where the learning rate
of the Adam optimizer is set as 2e-5, and the batch size is
16. In both pretraining and retrospective augmentation, we
sample 5 concepts from each sentence. At the refine stage,
we construct the training and validation set for refiner from
the external corpus. In both training and validation sets, 5%
of instances are sampled to produce the perturbed sentences,
50% of the perturbed sentences contain misspelling errors,
while the others contain repetition errors. During this pro-
cess, we remove 1% characters and 10% spaces from the
instances containing misspelling errors, and repeat sentence
segments to construct instances with repetition errors. We
update the parameters of refiner for 2,000 steps and keep the
rest hyper-parameters same as the generator. Particularly, we
employ early-stopping when training scorer, generator, and
refiner.

4.2 Overall Results
Table 3 lists the overall results of various models. We can
observe that KGR4 performs best among all models. Com-
pared with the previous best model RE-T5, KGR4 surpasses
it by 1.955 BLEU-4 and 0.760 CIDEr points. Meanwhile,
KGR4 achieves the highest SPICE point 33.564, setting a
new SOTA on the official leaderboard†. Please note that both
architectures of EKI-BART and KG-BART are modified to
exploit external knowledge, while our framework is com-
pletely data-driven, independent on specific model architec-
ture. Thus, our framework can be directly applied to any
task-oriented models, such as EKI-BART and KG-BART,
to gain further improvements.

Performance on Instances with Various Difficulties
Following Lin et al. (2020), we extract 5-size concept-
sets (each concept-set consists of five concepts) from the
test set, and classify them into 3 categories: easy, normal,

†https://inklab.usc.edu/CommonGen/leaderboard.html
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Model BLEU-4(lb) CIDEr(lb) SPICE(lb) SPICE(v1.0)
GPT-2 (Radford et al. 2019) 26.833 12.187 23.567 25.90
BERT-Gen (Bao et al. 2020) 23.468 12.606 24.822 27.30
UniLM (Dong et al. 2019) 30.616 14.889 27.429 30.20
BART (Lewis et al. 2020) 31.827 13.976 27.995 30.60
T5-base (Raffel et al. 2020b) 18.546 9.399 19.871 22.00
T5-large (Raffel et al. 2020b) 31.962 15.128 28.855 31.60
EKI-BART (Fan et al. 2020) 35.945 16.999 29.583 32.40
KG-BART (Liu et al. 2021) 33.867 16.927 29.634 32.70
CALM(T5-base) (Zhou et al. 2021) - - - 33.00
RE-T5 (Wang et al. 2021) 40.863 17.663 31.079 34.30
KGR4 42.818 18.423 33.564 39.70

Table 3: Experimental results on the CommonGen benchmark. *(lb) means the results are shown on the official leaderboard.
*(v1.0) indicates the evaluation using the old evaluation protocol. Please note that SPICE is our most important metric.
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Figure 3: SPICE points on test sets with various difficulties.

hard, representing difficulties of generating sentences about
them. Here we estimate the difficulty of each concept-set
based on the following fact: if there are more concepts di-
rectly connected on ConceptNet, then it is easier to write
sentences about them. For each 5-size concept-set, there
are 10 concept pairs (pick two among five concepts). We
count the one-hop connections of concept pairs that are di-
rectly connected on ConceptNet, and then empirically divide
concept-sets into hard|normal|easy categories if they con-
tain [0,2]|[3,5]|[6,10] one-hop connections.

We illustrate the performance of BART, BART pretrained
using the external corpus (Pretrained-BART), and KGR4 on
the test sets with various difficulties in Figure 3. We can
find that our framework gains the best results on all test sets,
strongly demonstrating its superiority. Besides, it is interest-
ing to observe that our framework reaches the lowest perfor-
mance decline when switching the test set from the easy to
the hard one. This indicates our framework can better deal
with all the given concepts regardless of their difficulties.

4.3 Analysis
We further conduct in-depth analyses to investigate the fol-
lowing problems: Q1: Do all strategies and stages of KGR4

take effects? Q2: How the hyper-parameter λ affects the
generator? Q3: Can the refine stage alleviate repetition and
misspelling errors?

Ablation Study To explore the effectiveness of different
stages and strategies, we report the performance of different

model SPICE(v1.0)
BART 30.60
+pretraining 33.10
+retrieval 36.60
+retrospective training 38.30
+retrospective augmentation 39.20
+refine 39.40
+rethink 39.70

Table 4: Ablation study of KGR4.

variants of our framework.

• BART. It is a BART-large model directly supervised by
the CommonGen training set.

• +pretraining. It is the variant firstly pretrained using the
pretraining instances constructed from the external cor-
pus, and then finetuned using the CommonGen training
set.

• +retrieval. To construct this variant, we further apply re-
trieval during both pretraining and finetuning for the gen-
erator (See Section 3.1).

• +retrospective training. In this variant, the pretrained
generator is finetuned via our proposed retrospective
training strategy using the CommonGen training set (See
Section 3.2).

• +retrospective augmentation. The generator of this
variant is further enhanced with retrospective augmen-
tation strategy.

• +refine. It means the generated sentences are further re-
fined through the refine stage.

• +rethink. indicates the output sentences are selected
among predicted sentences of models using various λs.

From Table 4, we can observe that all our stages and
strategies take effects in our framework. Particularly, when
sequentially applying our retrospective training and retro-
spective augmentation strategies, our framework achieves
1.70 and 0.90 SPICE point improvements over its previous
version, respectively. These results strongly demonstrate the
effectiveness of these two strategies.
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Figure 5: REP-2gram, and UNK-words without (w/o) and
with (w) our refiner. Our refiner significantly reduces the
numbers of sentences containing two types of errors. w/o re-
finer is the variant +retrospective augmentation mentioned
in ablation study.

Effect of Hyper-parameter λ As described in Section
3.2, our generator introduces an important hyper-parameter
λ to control the joint training objective listed ( See Sec-
tion 2), which has a crucial effect on the performance of
our framework. Thus, we vary λ from 0 to 1 with an incre-
ment of 0.1 at each step, and inspect the performance of our
framework using different λs. In addition to our prior metric
SPICE, we introduce another metric Coverage that is de-
fined as the average percentage of input concepts occurring
within output target sentences.

As shown in Figure 4, our framework always achieves sat-
isfactory performance with any λ in terms of SPICE and
Coverage. Note that when λ is set to 0, our framework
obtains 38.4 SPICE points, which is significantly inferior
to those of other settings, indicating that editing retrieved
prototypes regardless of copying may fail to produce high-
quality sentences. Meanwhile, we find that the Coverage
value of our framework drops sharply when λ increases
from 0.9 to 1. The underlying reason is that the genera-
tor with λ = 1 tends to copy rather than edit prototypes,
while the copied one may not mention all the given con-
cepts, leading to the lower coverage. Particularly, when
setting λ to 0.1, our framework reaches the highest SPICE
and Coverage values, demonstrating the effectiveness of
our retrospect stage.

w/o refiner:
A dog splashes through a puddle of water in a puddle in the rain .
w refiner:
A dog splashes through a puddle of water in the rain .
w/o refiner:
Bearded manin white shirt demonstrates steps to tying necktie.
w refiner:
Bearded man in white shirt demonstrates steps to tying necktie.

Table 5: Two examples of sentences produced by our frame-
work without and with the refine stage. Concepts appealing
in sentences are marked in italics. Erroneous words are un-
derlined.

Impact of the Refine Stage To quantify impact of our re-
finer, we conduct statistics on the two kinds of errors oc-
curring within the sentences generated by our refiner. Con-
cretely, we count the number of sentences containing re-
peated n-grams to measure repetition errors (REP-ngram).
Besides, we roughly consider the output words, which are
unseen in both the CommonGen dataset and the external cor-
pus, as misspelling ones. We count the number of sentences
containing those words (UNK-words). The results of two
metrics without and with our refine stage are shown in Fig-
ure 5. Obviously, through refine stage, both types of errors
are significantly reduce.Specifically, 40% of the repetition
and 50% of the misspelling errors are corrected at this stage,
strongly demonstrating the effectiveness of our refiner.

Table 5 lists two examples of the sentences without and
with our refiner. In the first example, we can find that the
phrase “a puddle” is repeated before the refine stage. By
contrast, our refiner detects this error and removes the re-
peated phrase as well as the word “in”, generating a more
plausible sentence. In the second example, the space be-
tween “man” and “in” is missed, while our refiner not only
adds it but also keeps the rest of the sentence unchanged.

5 Conclusion

In this paper, we have proposed KGR4, a commonsense gen-
eration framework. Our framework mainly separates four
key stages, i.e., retrieval, retrospect, refine, and rethink, to
imitate corresponding human behaviors in writing. On the
commonly-used dataset, KGR4 outperforms several com-
petitive baselines, setting a new state of the art on the of-
ficial board. Besides, our study suggests following points:
1) Each component in our framework has its unique func-
tion in commonsense generation, and worth to be further ex-
plored; 2) The retrieval and retrospect stages play more cru-
cial roles on improving the commonsense reasoning ability;
and 3) The refine and rethink stages enable our framework
to proofread the generated candidates. In the future, we plan
to explore variational models (Zhang et al. 2016a,b; Su et al.
2018a,b) and bidirectional decoding (Zhang et al. 2018; Su
et al. 2019) to refine our framework. Besides, we will gener-
alize KGR4 to other conditional text generation tasks.
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