
Pushing the Limits of Rule Reasoning in Transformers
through Natural Language Satisfiability

Kyle Richardson, Ashish Sabharwal
Allen Institute for AI, Seattle, WA, USA

{kyler,ashishs}@allenai.org

Abstract

Investigating the reasoning abilities of transformer models,
and discovering new challenging tasks for them, has been a
topic of much interest. Recent studies have found these models
to be surprisingly strong at performing deductive reasoning
over formal logical theories expressed in natural language.
A shortcoming of these studies, however, is that they do not
take into account that logical theories, when sampled uni-
formly at random, do not necessarily lead to hard instances.
We propose a new methodology for creating challenging al-
gorithmic reasoning datasets that focus on natural language
satisfiability (NLSat) problems. The key idea is to draw in-
sights from empirical sampling of hard propositional SAT
problems and from complexity-theoretic studies of language.
This methodology allows us to distinguish easy from hard
instances, and to systematically increase the complexity of
existing reasoning benchmarks such as RuleTaker. We find
that current transformers, given sufficient training data, are
surprisingly robust at solving the resulting NLSat problems of
substantially increased difficulty. They also exhibit some de-
gree of scale-invariance—the ability to generalize to problems
of larger size and scope. Our results, however, reveal important
limitations too: a careful sampling of training data is crucial
for building models that generalize to larger problems, and
transformer models’ limited scale-invariance suggests they are
far from learning robust deductive reasoning algorithms.

Introduction
Motivated by the impressive performance of recent pre-
trained transformers (Devlin et al. 2019; Raffel et al. 2020)
on a wide range of natural language understanding (NLU)
benchmarks (Wang et al. 2019b,a; Xu et al. 2020), there
has much been recent interest in investigating the linguis-
tic and reasoning abilities of state-of-the-art neural models
(Linzen, Dupoux, and Goldberg 2016; Talmor et al. 2020;
Kassner, Kroje, and Schütze 2020; Yanaka et al. 2020; Hup-
kes et al. 2020; Richardson et al. 2020, inter alia). One partic-
ular thread of work focuses on probing whether transformers
can perform logical reasoning over formal theories expressed
in natural language (Clark, Tafjord, and Richardson 2020).
Specifically, given a set of systematically constructed natural
language theories consisting of a set of explicitly stated rules
and facts (e.g., the NL Theory in the bottom part of Figure 1

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Hard Combinatorial Problem P
(e.g., SAT, 3-Coloring)

Natural Language Probing Task
T (e.g., deductive inference,

syntactic processing,...)

Find fragments of T grounded in P

Sample hard instances of P

NL Theory Γ ={ Bob is round. Alan is blue, rough and
young. If someone is round then they are big.
All rough people are green. Big people are
not green. }

Conjectures 1. Alan is green (entailment, Γ |= 1)
2. Bob is green (contradiction)

Satisfiability
Γ has an interpretation (sat)
Γ ∪ {¬1} (unsat), indirectly proves Γ |= 1
Γ ∪ {2} (unsat), indirectly proves Γ |= ¬2

Figure 1: TOP: An illustration of our general methodology
for constructing hard natural language reasoning problems
for a task T , by grounding them into a hard combinatorial
problem P and sampling hard instances of P . BOTTOM: An
example of a natural language (NL) theory (i.e., set of arbi-
trary facts and rules) Γ along with two example conjectures
(i.e., propositions to be proved) and the relationship between
entailment and satisfiability.

containing fictional rules about characters Bob and Alan), the
goal is to see whether a model can learn to perform deductive
reasoning over such theories by correctly answering queries
that require making novel inferences (e.g., predicating that
Alan is green is true based on knowing that Alan is rough
and applying the rule All rough people are green).

While much of this recent work on behavioral probing has
centered around small synthetic domains and datasets (see
also Weston et al. (2015); Lake and Baroni (2018); Sinha
et al. (2019)), the appeal of such testing is that it can allow us
to uncover the strengths and weaknesses of models in a cost-
effective and controlled manner, and ultimately determine
whether models are inherently capable of solving certain algo-
rithmic problems. Given that most behavioral probing studies
are performed in a black-box fashion (Ribeiro et al. 2020)

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

11209

and are thus limited to input-output-driven testing, however,
the quality and informativeness of a probing study relies on
having reliable data that faithfully captures the full target
problem space. In particular, to demonstrate that a model
can learn a certain algorithmic skill, it must be demonstrated
that the model can solve the hardest instances of the target
problem. Indeed, recent work (Shin et al. 2019; Wu et al.
2021; Tamari et al. 2021) has revealed various pitfalls asso-
ciated with synthetic data due to ad-hoc sampling strategies,
which can dramatically inflate model performance by under-
sampling difficult cases in a way that can also harm model
generalization.

In evaluating a particular diagnostic dataset for probing
logical reasoning, the following question arises: are the prob-
lems contained in the target dataset hard in some objective
computational sense? For example, while knowing that Bob
is green is false in Figure 1 requires making multiple inferen-
tial steps (i.e., combining the fact Bob is round with the two
rules If someone is round then they are big and Big people
are not green), the structure of the rules involved is such that
there are well-known highly efficient algorithms for comput-
ing this inference.1 A natural question, then, is: can models
perform inferences involving more complex reasoning with
rules? Answering the hardness question, therefore, involves
two additional questions: (Q1) is the formal language used to
express the target problem space capable of expressing hard
problems (e.g., ones that go beyond simple linear chaining)?
(Q2) is the sampling method used to generate target instances
able to effectively capture the full problem space?

In this paper, we fix the formal language to be expressive
enough such that it can, by design, represent computationally
hard problems (thereby addressing Q1). To address Q2, we
propose a general methodology, illustrated in the top part
of Figure 1. Given a target probing task T such as deductive
inference over statements expressed in natural language, the
key idea is to identify subsets of T that map to a known hard
combinatorial reasoning problem P such as Boolean satisfia-
bility (SAT), and devise methods to sample hard instances of
P in order to arrive at hard instances of T .

Specifically, we broaden the scope of Clark, Tafjord, and
Richardson (2020) to look at natural language satisfiabil-
ity (NLSat) problems, or types of natural language deduc-
tive reasoning problems that formally assume an underlying
SAT semantics. Using insights from empirical sampling of
hard SAT problems (Selman, Mitchell, and Levesque 1996)
we show how to systematically construct computationally
difficult reasoning problems by focusing on such hard rule
fragments and by sampling from the critical phase-change
regions of SAT. We show that such an approach has twofold
utility: 1) distinguishing easy from hard instances that are
consequential for training robust models and for reliable eval-
uation and; 2) for diagnosing and increasing the complexity
of existing reasoning benchmarks.

Our results are partly positive: when provided with a suf-

1More technically, such a query can be answered via a linear-
time process called unit propagation (cf. Zhang and Stickel (1996)),
which is often treated as a pre-processing step in many modern
theorem provers and SAT solvers.

ficient amount of training instances (e.g., ¿100k examples),
recent pretrained transformers can indeed solve non-trivial
NLSat problems that far exceed the complexity of existing
reasoning benchmarks (e.g., achieving ¿90% accuracy on
quantified rule theories containing up to 70 ground variables).
They also exhibit some degree of generalization and scale-
invariance, or the ability to generalize to problems of larger
scope (e.g., generalizing from propositional theories with 12
variables to ones with 30, while maintaining performance far
above random chance).

At the same time, our results also reveal important caveats:
1) the ability of a model to solve hard reasoning problems
critically relies on how well its training data is sampled and;
2) the degree to which models are scale-invariant remains lim-
ited, suggesting that models trained in the standard paradigm
are still far from learning the underlying algorithms needed
for robust deductive reasoning.

Related Work
Our work follows the literature on behavioral testing of neu-
ral NLU models and builds on work by Clark, Tafjord, and
Richardson (2020) on probing deductive reasoning, which
has spawned a number of subsequent studies (Saha et al.
2020; Gontier et al. 2020; Betz, Voigt, and Richardson 2021;
Betz, Richardson, and Voigt 2021; Tafjord, Mishra, and Clark
2021; Saparov and Mitchell 2021; Liang, Bethard, and Sur-
deanu 2021). While these studies demonstrate that models
are able to solve some deductive reasoning problems, we
observe that existing datasets narrowly focus on the simplest
deductive reasoning problems when subjected to closer anal-
ysis. As we detail in Table 1, the standard RuleTaker dataset,
which is based on a fragment of English that is capable of
expressing intractably hard algorithmic problems, is limited
to the easiest types of deductive reasoning problems. As a
result, existing models lack robustness when evaluated on
harder parts of the problem distribution as we show in Table 4
on a RuleTaker-style dataset sampled using our new sampling
strategy.

To find hard reasoning fragments of natural language,
we take inspiration from the literature of complexity-
theoretic studies of various natural language fragments (Pratt-
Hartmann 2004; Pratt-Hartmann, Third et al. 2006; Pratt-
Hartmann and Moss 2009; Thorne and Calvanese 2010). Par-
ticularly, Pratt-Hartmann (2004) looks at the computational
properties such as the complexity of satisfiability for various
rule fragments of English, which is the motivation behind the
grounded relative-clause fragment we describe in the next
section. While this work focuses on a worst-case analysis of
different linguistic phenomena, we use the results as a guide
to find the hard cases for probing the limits of models.

To find hard natural language satisfiability instances, we
rely on techniques from the literature on empirical sam-
pling of combinatorial problems, where it has been observed
(Cheeseman et al. 1991) that hard instances of different prob-
lems lie at various critical thresholds that correlate with the
constrainedness of a given problem. We specifically use tech-
niques for generating hard 3SAT problems (Selman, Mitchell,
and Levesque 1996; Cook and Mitchell 1997) to sample hard
problems from the critical regions of SAT phase transitions

11210

Algorithm 1: Dataset construction via random SAT

Input: Variables set V = {v1, ...vn} of size n, natural language
templatesR and variables P , 2SAT to 3SAT interpolation pa-
rameter pint, negation parameter pneg, clause variable ratio α
range (αmin, αmax), STOP condition

Output: NLSat dataset
1: D← {} ▷ initialize dataset
2: repeat
3: P ← {} ▷ problem/clause set
4: m ∼ choose m, s.t. αmin ≤ m

n
≤ αmax

5: for i := 1 to m do ▷ generate m clauses
6: s ∼ choose clause size k ∈ (3,2) with prob. (pint, 1− pint)
7: V′ ∼ choose s unique variables from V
8: C← negate each v ∈ V ′ with pneg ▷ new clause
9: t ∼ choose NL template fromR of size s

10: d← instantiate t over C using variables from P
11: P← P ∪ {d}
12: D← D ∪ P
13: until dataset STOP condition is met

(see Figure 2). To our knowledge, we are first to investigate
this work and using SAT-based representations of linguistic
problems to empirically find hard natural language reasoning
problems (see Hahn, Jurafsky, and Futrell (2021)).

Our study also follows other work on training neural mod-
els to solve hard algorithmic problems (Vinyals, Fortunato,
and Jaitly 2015; Reed and De Freitas 2015; Cai, Shin, and
Song 2017), including SAT (Selsam et al. 2018) and propo-
sitional inference (Evans et al. 2018; Traylor, Feiman, and
Pavlick 2021); a key difference is our focus on algorithmic
problems in natural language and on probing current pre-
trained transformers (Devlin et al. 2019; Liu et al. 2019;
Raffel et al. 2020). Following studies such as Reed and
De Freitas (2015), we also look at the ability of models to be
scale-invariant, or scale to problems of larger size and scope.
Within this space, we follow Shin et al. (2019); Wu et al.
(2021) in developing novel sampling strategies for avoid-
ing the pitfalls of randomly sampled algorithmic datasets,
which can give rise to the kinds of biases observed in human-
annotated datasets (Gururangan et al. 2018) and limit model
generalization.

Dataset Construction and Methodology
Natural language satisfiability (NLSat) is a deductive reason-
ing task that involves determining whether a set of rules ex-
pressed in language (e.g., those shown in Figure 4) have a sat-
isfying assignment or possible interpretation (Pratt-Hartmann
2010).2 Following our general methodology shown in the top
part of Figure 1, in order to find hard deductive reasoning
problems of this kind, we sample hard instances from or-
dinary SAT problems in Boolean logic and translate them
into natural language using a pre-defined set of English rule
languages.

In this section, we first detail the semantics of SAT and how

2As we show in the lower part of Figure 1, logical entailment and
satisfiability (or its complement) end up being intereducible notions
for the logics under consideration. For basic results on the connec-
tion, see Davis, Sigal, and Weyuker (1994)[Theorem2.1,p252].

Figure 2: Illustration of phase-change and SAT probability
for random 2-SAT(pint = 0) and 3-SAT(pint = 1) problems
over a randomly sampled set of examples with varying α and
number of variables (5-15).

to identify hard SAT problems (Identifying Hard Problems
and Algorithm 1), and then describe the two different frag-
ments of English we use for our experiments (the Grounded
Rule Language and Grounded Relative Clause Fragment;
see details in Figure 3); both borrow certain grounded and
quantified rule constructs from the RuleTaker language and,
in the latter fragment, build on some constructions studied in
formal linguistics. Finally, we discuss ways of sampling SAT
instances of different hardness levels and sizes.

Identifying Hard Problems
The SAT problem is the classic NP-complete problem (Cook
1971). We focus on 3SAT problems where k = 3, i.e., each
formula is limited to clauses of size three. While 3SAT is
computationally hard under a worst-case analysis, this does
not mean that all, or even most, 3SAT instances are hard to
solve. Indeed, work on empirical sampling of classes of ran-
dom k-SAT problems has revealed that whether a problem is
difficult crucially relies on details about the target distribution
from which the problems are sampled (Selman, Mitchell, and
Levesque 1996; Mitchell and Levesque 1996) as well as the
particular parameters employed during sampling.

To obtain hard SAT instances, we rely on a variant of the
well-studied random k-SAT algorithm first introduced in Sel-
man, Mitchell, and Levesque (1996), which we illustrate in
Algorithm 1. In standard k-SAT, random formulae of size m
containing n variables and clauses of fixed length k are ob-
tained by selecting m clauses (starting line 5) uniformly from
the space of 2k

(
n
k

)
possible clauses (where each clause is con-

structed by sampling k unique variables (line 7) and negating
each with probability pneg (line 8)). While our primary focus
is on 3-SAT, for convenience we include the possibility of
sampling mixed 2-SAT/3-SAT problems by introducing an in-
terpolation parameter pint (shown on line 6, (Monasson et al.
1999)). Using a suitable fragment of natural language R (see
next section), our version additionally includes translating
each random clause to expressions in natural language (lines

11211

Grounded Rule Language (GRL) If (no) X and (no) Y then (not) Z.
Grounded Relative Clause Frag-
ment (RCL)

Every X who is (not) a/an Y is (not) a/an Z. No X who is (not) a/an Y
is a/an Z. Everyone who is (not) a/an X and (not) a/an Y is (not) a/an Z.
c is (not) a/an X or (not) a/an Y or (not) a/an Z.

Figure 3: A syntactic description of the two rule languages used for our experiments.

Language Example Expression Satisfying Assignment
Propositional Logic
(3SAT)

(¬v1 ∨ v15 ∨ v13) ∧ (¬v13 ∨ ¬v12 ∨ ¬v1) ∧ (v1 ∨
v15 ∨ ¬v13) ∧ ...

v1=false, v15=false, v13=false,
v12=true...

Natural Language Fragments
Grounded
Rule
Language (GRL)

If carrot and not steak then apples, If apples and grapes
then no carrots. If no carrots and no steak then not ap-
ples...

needed: carrots, apples,
grapes,...

Relative
Clause
Fragment (RCL)

Every doctor who is not a philosopher is a baker. No
baker who is a gardener is a philosopher. John is a
doctor or a philosopher or not a baker...

John can be a doctor, a baker,
not a philosopher and not a gar-
dener...

Figure 4: Example translations of a satisfiable 3SAT problem (truncated) in boolean logic and two fragments of English
(variables in the natural language are highlighted). The bottom shows example interpretations of each expression that demonstrate
satisfiability.

9-10).
A key parameter in random SAT is the clause to variable

ratio α = m
n (computed on line 4 and dictated, in part, by

the range αmin, αmax). This parameter gives rise to phase-
change behavior that has implications for problem hardness
(Hayes 2003). Such phase changes are illustrated in Figure 2,
where α (x-axis) can be used to determine the probability
of a random formula being satisfiable (y-axis). For our pur-
poses, such a curve suggests a principled way to identify
hard instances, namely, by selecting formulae from the criti-
cal region where problems have roughly 0.5 probability of
being satisfiable. The motivation behind sampling in this
manner follows much of the work in empirical SAT, where
is it found that such problems are constrained in a unique
way that makes it difficult to simply guess the correct answer
by looking at the superficial patterns, which in our context
makes it harder for model to exploit short-cuts (we later pro-
vide empirical evidence that narrowly focusing on training
instances close to the critical region leads to more robust
models that generalize to the overall distribution better than
models trained via ad-hoc sampling from the entire space).

Grounded Rule Language (GRL)
The Grounded Rule Language is a straightforward translation
of the clauses in a random Boolean formula into grounded
propositional (if-then) rules, similar to some of the rules used
by Clark, Tafjord, and Richardson (2020). For example, as
detailed in Figures 3 and 4, a clause with three literals:

±v1 ∨ ±v2 ∨ ±v3 (1)

can be translated as If (no) v1 and (no) v3 then (no) v3 (using
the standard rules of logical equivalence) where each variable
vj is subsequently replaced with an English count noun (i.e.,
any noun that can be made plural and made into a singular
form with the determiner a/an).

We choose a fixed set of around 50 nouns about food
for our main GRL set reported in Table 1 (see examples in
Figure 4). Each instance in our main set is characterized by a
varying number of SAT variables or nouns, ranging from 5
to 12, which we discuss and motivate below.

We note that while the propositions in these fragments (e.g.,
carrot, steak) deviate slightly from propositions encountered
in ordinary language, one interpretation of the resulting theo-
ries is that they are akin to cooking recipes: e.g., if (you have)
carrot and not steak then (you need to have) apples. Figuring
out whether the set of sentences is satisfiable is equivalent
to deciding whether there is a coherent recipe underlying the
rules. The decision to create data in a truncated form (i.e.,
without verbs) is due to the following considerations: some
of the transformer models we probe have strict token limits
which are easily exceeded when expressing the target hard
computational problems using longer phrases; and leaving
out this information does not affect the complexity of the re-
sulting reasoning problem that we are interested in probing.3
In the next section, we describe our second fragment that
aims to capture more conventional linguistic constructions.

Grounded Relative Clause Fragment (RCL)
The grounded relative clause fragment is characterized by the
relative clause rule construction Every X who is (not) a Y is
(not) a Z, which, via its translation from first-order logic:

∀x. X(x) ∧ ±Y(x) → ±Z(y), (2)

corresponds to boolean clauses of the form ¬v1∨±v2∨±v3

containing up to two positive literals (where each variable
corresponds to a count noun, or predicates X,Y,Z). To allow

3Similar arguments are used to justify compositional reasoning
probing benchmarks, such as SCAN (Lake and Baroni 2018), which
deviate even more sharply from ordinary natural language.

11212

for clauses with up to three positive literals, we add the rule
template Everything that is (not) an X and (not) a Y is (not)
a Z, where everything universally quantifiers over the entire
domain.

We obtain a mapping to propositional logic by assuming
finite domains following some theoretical studies on quan-
tifiers (Westerståhl et al. 1984; Szymanik et al. 2016) and
work on utilizing propositional logic for various reasoning
problems in classical AI (Kautz, Selman et al. 1992; Kautz,
McAllester, and Selman 1996). More specifically, grounding
formulas such as Equation 2 relies on having clause transla-
tions c is (not) a/an X or (not) a/an Y or (not) a/an Z that
allow for introducing disjunctive facts that involve constants
or proper nouns (denoted as c); given a set of universally
quantified rules and such disjunctive facts, all universals rules
are expanded to group propositions over all constants out to
arrive at a final grounded formula.

Count and proper nouns are selected from a small inven-
tory of noun types (as above, around 50) about people and
their occupations (see again Figure 3). A particular feature
of this fragment is that through such universally quantified
rules and their expansion to propositional logic, we can ar-
rive at more complex reasoning problems that significantly
increasing the number of ground variables and size of the
target problems without dramatically increasing the size of
the natural language input. The rules in our data are sam-
pled from random 3SAT formulae over a fixed set of (5-8)
variables and are coupled with an additional set of random
clauses for disjunctive rule instances. While these resulting
boolean formulas deviate from strict random 3SAT, the ex-
pansion of universal rules over a set of constants preserves
the ratio of variables and clauses, which give rise to the same
phase-change phenomena illustrated in Figure 2, allowing us
to find the hard cases in the critical region.

Sampling Strategies and Proposed Datasets
A summary of our datasets is shown in Table 1, along with a
comparison to the standard RuleTaker dataset converted to
SAT.4 As described above, the NLSat instances that consti-
tute the grounded rule language (GCL5,12) and the grounded
relative clause fragment (RCL16,70) are characterized by the
number of variables contained in their underlying Boolean
formulae (with d#vars denoting the overall range), which
are uniformly represented in each dataset to allow for later
inspection of model performance. For each variable amount,
the majority of Boolean formulae are sampled from the criti-
cal 0.5 (±0.1) probability region by heuristically controlling
the (αmin, αmax) clause variable ratio range in Algorithm 1
(henceforth, hard sampling5), which we later show leads to
advantages over to both naive sampling (i.e., choosing in-
stances randomly within a large range) and biased sampling
(i.e., sampling easy instances from the extreme ends of the
phase change) strategies (see Figure 5). Formulae and their
translations are then randomly split into train and evaluation

4More details about this conversion and technical details about
the RuleTaker language can be found in the appendix.

5We also added a small number of problems around the critical
region in training to encourage diversity.

sets using a 80% (train) / 20% (dev,test) ratio.

Language complexity and SAT metrics
Dataset
(d#vars)

Size Complexity
(NP-complete?)

Conflicts
(avg/med.)

Decisions
(avg/med.)

RuleTaker130k yes 0.0,/0.0 6.6/0.0
GRL5,12 187k yes 3.4/4.0 5.4/4.0
RCL16,70 219k yes 7.6/6.0 29.7/6.0
GRL-
eval20,50

17k yes 22.0/13.0 29.3/13.0

Table 1: The RuleTaker dataset, while similar in terms of
dataset size and formal language complexity as our rule lan-
guage datasets (GRL and RCL), is substantially simpler in
terms of two standard SAT-based empirical complexity met-
rics: number of conflicts and decisions.

A particular advantage of having boolean formulae associ-
ated with our target data is that we can use automatic reason-
ing tools to obtain empirical measurements of problem hard-
ness. Using the off-the-shell theorem prover Z3 (De Moura
and Bjørner 2008), we report the average/median (avg/med.)
number of decisions (e.g., number of variable assignments
after pre-processing) and conflicts (amount of backtracking
performed for obtaining more complex proofs) needed by its
solve method on each datasets. While such statistics are often
tied to the internals of a solver (especially #decisions), there
still are some notable observations.

We see from Table 1 that RuleTaker, in spite of its lan-
guage’s high theoretical complexity, is limited to the simplest
forms of deductive inference as evidenced by having very
few problems involving any conflicts and decisions at all (the
median number for both is 0). In sharp contrast, our new
datasets, via our hard sampling strategy, offer a much wider
range of problem difficulty. By retrofitting our randomly sam-
pled 3SAT formula to include theories with 2SAT and single
propositions similar to RuleTaker theories, we are also able
to construct a substantially harder RuleTaker dataset (model
performance to be discussed in Table 4).6

An important caveat is that while our new problems are
of a higher degree of difficulty compared with problems in
datasets like RuleTaker, they are still of vastly low complexity
(both in terms of number of variables and the statistics shown
in Table 1) compared to the much harder SAT instances en-
countered in the mainstream SAT literature (Järvisalo et al.
2012). The decision to limit problems to the number of
variables we did (e.g., to a maximum of 12 variables for
GRL5,12), is partly practical, and due to considerations such
as token limits in the models we describe next and overall
training efficiency. As we will see, these problems, while sim-
ple for mainstream SAT solvers, are still quite challenging
for state-of-the-art transformer models and thus valuable for
advancing research on the latter. Following Reed and De Fre-
itas (2015), the decision also reflects the idea that we should

6Such retrofitting involves modifying Algorithm 1 to allow for
sampling of clause variables with replacement (in line 7) which
yields clauses with repeated variables that we convert into 2SAT
and units. More details are included in the appendix.

11213

aim to train models that can perform scale-invariant reason-
ing by generalizing from small problems. For this purpose,
we create an additional held-out set of considerably larger
grounded rule reasoning problems GRL-eval20,50 to measure
scale-invariance.

Experimental Setup
Task Definition. Formally, a NLSat dataset D =

{(p(d), l(d))}|D|
d consists of NLSat problems p (i.e., a set

of rules expressed in natural language) paired with a label
l ∈ {sat,unsat}. The goal is to correctly predict the label
(indicating satisfiability or not), thereby reducing to binary
classification as in Clark, Tafjord, and Richardson (2020).

Models. Following recent studies on rule reasoning
(Tafjord, Mishra, and Clark 2021), our investigation cen-
ters around the pre-trained text-to-text transformer T5-large
model (with around 770M parameters)7 (Raffel et al. 2020).
We also compare against RoBERTa (with around 355M
parameters) (Liu et al. 2019). In each case we use the imple-
mentation from Wolf et al. (2019). Standardly, models are
fine-tuned to generate the target labels by optimizing for the
cross-entropy loss over the target sat and unsat tokens or
labels. Also standardly, model selection is by performed by
doing a random search (in the style of Devlin et al. (2019))
over target hyper-parameters (focusing especially on learning
rate, random seed, and # training iterations) and selecting
models with the highest dev. score. As mentioned above, we
also found intermediate pre-training on 60k simpler 2SAT in-
stances (i.e., instances sampled with pint = 0 in Algorithm 1
with simpler natural language rule templates containing only
2 propositions) to be indispensable for stabilizing and im-
proving model training efficiency on our main tasks.

Evaluation. We train models separately on our two lan-
guages (GRL and RCL) and their respective datasets (see
again Table 1) in the manner described above. We report
accuracy across sub-samples of evaluation data character-
ized by varying numbers of variables (i.e., the Xvar column
in Tables 2-3). To better understand model generalization,
we also experiment with training on small samples of data
with a different number of variables for GRL as well as
evaluation on a larger held-out GRL-eval set and easy and
hard instances, as shown in Table 2. To better understand
how different sampling strategies affect model performance,
we perform experiments that measure the effect of different
sampling strategies as shown in Figure 5.

Lastly, to verify the difficulty of our tasks, we also ex-
perimented a non-pretrained biLSTM encoder model imple-
mented using AllenNLP (Gardner et al. 2018). While not
shown in the tables, we found, consistent with the results
of Clark, Tafjord, and Richardson (2020), that such models
perform near random chance.8

7At an earlier iteration we also performed experiments T5-11b
and found comparable performance. We note that a particular appeal
of T5 is its use of relative positional embeddings which allows us
to evaluate on larger problems such as those in our GRL-eval set
that exceed the 512 token limit from pre-training.

8As a check, we also verified that the same models obtained

Accuracy%
Model (sampling) easy5,10 hard5,10

GRL10 (T5) (biased) 88.4 77.1
GRL10 (T5) (naive) 89.7 78.7
GRL10 (T5) (hard) 92.4 86.4

Figure 5: Training on hard problems (our proposal) is much
more effective than training on problems sampled in a naive
or biased manner. TOP: Comparison of 10 variable model
trained using different sampling strategies and tested across
the full distribution of hard (problems in critical region) and
easy (problems at extreme of distribution) 5 to 10 variable
problems (dev). BOTTOM: performance of the same 10 vari-
able models on these different categories of problems.

Results and Findings
Given our new set of hard algorithmic datasets, we aim to
answer the following general question: How well can our
main transformer models solve these types of hard deductive
reasoning problems? As we describe in this section, while
transformers perform well on some portion of our tasks and
exhibit some degree of generalization, they still seem far from
implementing the underlying algorithms needed for robust
deductive reasoning. We also emphasize the following subtle
point: knowing whether a model effectively solves a particu-
lar algorithmic problem or probing task such as SAT critically
relies on understanding and specifying the target problem
distribution that is being used for model development.9

Effective sampling strategies are important for training
robustness and reliable evaluation. To assess the effec-
tiveness of our hard sampling strategy based on random
3SAT, we performed a smaller-scale experiment that involves
training 10var problems in the GRL language, as summa-
rized in Figure 5. Here we see that selecting training instances

comparable results to the biLSTM baselines reported by Clark,
Tafjord, and Richardson (2020) on the original RuleTaker dataset.

9Such is also a lesson from the literature on hard SAT. Quoting
Mitchell and Levesque (1996): Random formulas have been used by
many researchers to empirically evaluate the performance of SAT
testing programs. The value of such studies depends upon careful
selection of formula distribution... When using random formulas, an
extensive enough study of the distribution’s parameter space must
be carried out ... if the results are to be meaningful.

11214

Dev Accuracy % for easy / hard (i.i.d and o.o.d) instances
main GRL splits (5 to 12 variables problems) GRL-eval (20-50 variables)

Modelnum var 5var 8var 10var 12var 20var 30var 40var 50var
T55 var 97.5 / 95.9 89.0 / 83.8 83.3 / 75.4 61.5 / 67.4 65.6 / 60.3 59.7 / 53.5 50.8 / 50.2 50.0 / 50.0
T58 var 96.2 / 94.0 92.4 / 87.9 87.7 / 81.6 73.6 / 74.8 74.4 / 67.5 67.1 / 58.3 53.5 / 51.2 50.1 / 50.0
T510 var 93.9 / 89.7 92.7 / 86.3 89.7 / 82.5 79.0 / 76.7 78.6 / 70.0 71.2 / 60.1 54.7 / 51.4 50.1 / 50.0
T512 var 94.5 / 91.1 91.5 / 84.9 87.7 / 80.7 77.3 / 81.0 77.8 / 70.1 70.7 / 60.3 53.3 / 51.4 50.0 / 50.0
T55,12 98.6 / 98.1 96.0 / 93.6 92.6 / 89.6 85.0 / 88.5 86.5 / 80.7 84.9 / 72.7 69.8 / 61.4 59.1 / 51.8

Table 2: Models exhibit limited generalization. Performance (dev) of models trained on GRL problems containing differing
numbers of a certain size and evaluated on easy and hard cases also of varying size. LEFT: Generalization across different
combinations of problem sizes for training and evaluation. RIGHT: Generalization to larger instances never seen during training.

Grounded Rule Language GRL, Accuracy%
Model 5var 7var 8var 10var 12var Avg.
Random 50.0 50.0 50.0 50.0 50.0 50.0
T55,12 98.0 95.4 94.3 90.7 88.3 93.4
RoBERTa5,12 96.4 92.0 90.2 85.4 83.4 89.5

Grounded Relative Clause Language RCL, Accuracy%
Model 16,21v 25,32v 35,48v 60,70v Avg.
Random 50.0 50.0 50.0 51.2 50.3
T516,70 95.9 95.3 94.7 92.9 94.7
RoBERTa16,70 96.0 95.9 94.9 94.0 95.2

Table 3: Models trained on hard sets are surprisingly good
at some hard tasks in the i.i.d. setting. Performance (test)
of models on the GRL and RCL fragments, split into perfor-
mance on problems with differing number of variables.

from the critical regions in 3SAT phase-changes (i.e., our de-
fault hard sampling strategy) allows models to generalize
to the overall problem distribution and across other variable
sizes (top figure). In contrast, naively selecting from random
parts of the distribution is not much better than selecting
only from extreme (easy) ends of the distribution (biased
sampling), and both lead to models not performing as well (8
points lower) on the hard subset of the evaluation set. Notably,
the closeness of results between naive and biased sampling
suggests that selecting deductive reasoning data in an ad
hoc fashion might often give rise to certain biases that harm
robustness in a way similar to entirely biased sampling.

Model accuracy (%)
evaluation Majority RT-T5 RT-RoBERTa

RuleTaker (RT) 43.0 97.5 98.7(standard i.i.d.)
Hard RT 50.0 57.7 59.6(our methodology)

Table 4: While RT models excel on standard RuleTaker eval-
uation, they perform close to random on a Hard RT challenge
set constructed using our methodology.

The importance of sampling for having reliable evalua-
tions is further revealed in our experiments on sampling
hard RuleTaker evaluation data from hard SAT, as shown
in Table 4. While it is unclear what the exact distribution

of problems defined in the RuleTaker domain is, the results
in this table clearly demonstrate the efficacy of our general
sampling framework in identifying hard datasets. They also
show that even small changes in problem difficulty (namely,
the relatively modest increase in standard empirical hardness
measures, #conflicts and #decisions, as seen earlier in Ta-
ble 1) can lead to dramatic differences in performance on
existing benchmarks (e.g., a 39 point drop in performance for
RoBERTa). This is reinforced by the differences in results be-
tween the easy/hard problems shown in Table 2 (e.g., 80% vs.
71% (avg) performance difference between easy/hard 20-40
variable problems for the full T55,12 model). Thus, without
a proper understanding of the full distribution of target prob-
lems, it is often easy to draw inaccurate general conclusions
about model capability by inadvertently focusing on easy
instances.

Models trained on hard sets can solve some hard tasks.
When looking at results on the hard instances (Table 3) we
see that models trained on large collections of various types
(i.e., on 150k-160k instances, see again Table 1) far outpace
our baselines and achieve high performance on problems
with not too many variables (e.g., 5-7 variables problems for
GRL and 16-48 variables problems for RCL). A particularly
intriguing result is the higher performance of models on the
RCL language (with around 93-94% accuracy on problems
with 60-70 ground variables) which was designed to be more
complex by having quantified rules and constants that ex-
pand out to a much larger set of boolean variables. Given that
the underlying rules were constructed from random 3SAT
formula with a relatively smaller set of variables (5-8), this
suggests that the model is able to learn some form of sym-
metry between the underlying rules and the instantiated rule
propositions related to constants.

Models exhibit limited generalization. Less impressive
results are shown in the Table 2, where we see that models
trained on small variable problems and fewer data fail to
generalize to larger problems (e.g., generalizing from 5 vari-
ables to 10 or 12 variables). More strikingly, we see that even
our best models fail to solve the GPL-eval evaluation task;
while this is not altogether surprising, it suggests that state-
of-the-art transformer models are still far from learning the
underlying algorithms associated with deductive inference.

11215

Closing Remarks
With the advent of increasingly larger pre-trained models,
including those that now allow for processing of tens of thou-
sands of tokens (Beltagy, Peters, and Cohan 2020), under-
standing the limits of how much aggregation of information
over text models are capable of is an important area of study.
Given that the type of algorithmic tasks we study in this paper
are concerned with the most complex forms of information
aggregation, we believe that our results can bear on these
bigger issues about model design. When optimized for prob-
lem hardness, we see that models on our datasets still exhibit
little ability to generalize in a scale-invariant fashion that is
required for effectively generalizing their reasoning abilities
to larger problems. Moving forward, we believe that new
modeling approaches and architectures (e.g., ones that focus
on problem decomposition (Andreas et al. 2016; Khot et al.
2021)) might be a fruitful avenue, which we believe our new
algorithmic tasks and sampling strategies for finding hard
datasets can assist in exploring.

Appendix
RuleTaker Details
Complexity of RuleTaker Language The rules in the orig-
inal RuleTaker language (Clark, Tafjord, and Richardson
2020) take two general forms: grounded rules and quan-
tified rules, a subset of which is shown in Figure 7. To
demonstrate the NP-completeness of the RuleTaker language,
it suffices to show that an arbitrary 3SAT formula F can be
expressed in this rule language such that F is satisfiable if
and only if the resulting RuleTaker theory is satisfiable (under
propositional semantics). To this end, we observe that there
are 4 distinct atomic forms of a 3SAT clause corresponding
to 0, 1, 2, or 3 positive literals (after accounting for logical
equivalences obtained via the commutativity of disjunction).
All of these atomic forms, denoted ±X ∨ ±Y ∨ ±Z (where
± indicates the literal may be positive or negated), can be
represented by one of the aforementioned grounded rules,
with appropriately placed not modifiers:

The original RuleTaker dataset includes instantiations
of the above single rule that cover the 4 distinct atomic
forms.10 A similar argument can be made for proving the
NP-completeness of our other languages (for background on
NL complexity, see Pratt-Hartmann (2004, 2010)).

Retrofitting random 3SAT to RuleTaker Theories An
example of how we retrofit random 3SAT to create hard Rule-
Taker instances is shown in Figure 6. Given that RuleTaker
theories (see again the example in Figure 1) includes both
2SAT clauses (i.e., rules corresponding to clauses with two
propositions, e.g., If the lion is red then it is rough, in clausal
form: ¬A∨B) and units (i.e., clauses with single propositions,
e.g., The lion is red or A), a particular difficulty is converting

10Some corresponding rules from the original dataset: If the tiger
is not big and the tiger is not blue then the tiger is cold, If the mouse
is kind and the mouse is green then the mouse is blue, If the tiger is
young and the tiger is big then the tiger is not blue, If the tiger is
not blue and the tiger is not young then the tiger is not green.

random 3SAT formula (where each clause contains exactly 3
propositions, e.g., A ∨B ∨ C) to such forms.

Our idea is to modify Algorithm 1 to allow for repeated
clause variables that we can subsequently convert to 2SAT
and units; technically this amounts to altering line 7 to allow
for sampling with replacement such that we can produce
clauses of the following form: A∨A∨A that we can convert
to facts (e.g., The lion is red). As in the ordinary application of
Algorithm 1, such a procedure can be performed to produce
boolean formulae containing a differing number of variables.
To keep the problems of comparable size to the original
RuleTaker, we created problems using a mixture of 5,6,7
boolean variables. As a consequence, these problems are
still of relatively low complexity comparing to the types of
reasoning problems we pursue in our new datasets.

RuleTaker version We use the open world assumption
(OWA) version of RuleTaker from Tafjord, Mishra, and Clark
(2021)11. In contrast to the initial version of the dataset
from Clark, Tafjord, and Richardson (2020), which makes
a closed-world assumption (CWA) and is limited to two-
way entailment classification, the OWA include three classes:
Yes (entailment), No (contradiction), Unknown.

To verify the correctness of the semantics, we compared
against a manual SAT-based and SMT-based implementa-
tion of the RuleTaker language, which is available at https:
//github.com/allenai/language fragments. We found around
1% mismatched labels between the official dataset due to ap-
parent errors in the translation from the CWA dataset and per-
formed experiments on the corrected version of the dataset.

Acknowledgments
We thank the members of the Aristo team at AI2 for their
feedback at various stages of this work, in particular Peter
Clark and Oyvind Tafjord, as well as the Beaker team (https://
beaker.org/) for support with experiments. Special thanks also
to Gregor Betz and Christian Voigt for helpful discussions.

References
Andreas, J.; Rohrbach, M.; Darrell, T.; and Klein, D. 2016.
Learning to compose neural networks for question answering.
In NAACL.
Beltagy, I.; Peters, M. E.; and Cohan, A. 2020. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150.
Betz, G.; Richardson, K.; and Voigt, C. 2021. Think-
ing Aloud: Dynamic Context Generation Improves Zero-
Shot Reasoning Performance of GPT-2. arXiv preprint
arXiv:2103.13033.
Betz, G.; Voigt, C.; and Richardson, K. 2021. Critical Think-
ing for Language Models. Proceedings of IWCS.
Cai, J.; Shin, R.; and Song, D. 2017. Making neural program-
ming architectures generalize via recursion. In ICLR.

11Publicly available at: https://allenai.org/data/proofwriter. We
trained models on the depth-3ext, which was empirically shown to
have high generalization across the different depth reasoning tasks
in Clark, Tafjord, and Richardson (2020).

11216

Step 1: Find random 3SAT instances
with modification to Algorithm 1 that
allows for clauses with repeated vari-
ables (i.e., removing the uniqueness
constraint on line 7 to sample with re-
placement)

(v1∨¬v2∨¬v5)∧(¬v2∨¬v3∨¬v4)∧(¬v5 ∨ ¬v5 ∨ ¬v5)︸ ︷︷ ︸
repeat (unit)

∧ (v1 ∨ v1 ∨ v1)︸ ︷︷ ︸
repeat (unit)

∧(v3∨

v4 ∨ ¬v2) ∧ (¬v2 ∨ ¬v3 ∨ ¬v1) ∧ ... ∧ (¬v1 ∨ ¬v1 ∨ v3)︸ ︷︷ ︸
repeat (2SAT)

Step 2 Remove repeats, split formula
into rules (i.e., 2/3 SAT clauses) and
facts (i.e., units); find problems whose
rules are satisfiable.

(v1 ∨ ¬v2 ∨ ¬v5) ∧ (¬v2 ∨ ¬v3 ∨ ¬v4) ∧ (v3 ∨ v4 ∨ ¬v2)...︸ ︷︷ ︸
rules(sat.)

∧ ¬v5 ∧ v1︸ ︷︷ ︸
facts

Step 3 Translate rules and facts to En-
glish using the RuleTaker templates
from Figure 7. Treat some facts as con-
jectures, or the queries to be proven
given the Rules and Facts.

Rules: If the lion is not red︸ ︷︷ ︸
¬v1

and the lion is round︸ ︷︷ ︸
v2

then the lion is not green︸ ︷︷ ︸
¬v5

. If the

lion is round︸ ︷︷ ︸
v2

and the lion is young︸ ︷︷ ︸
v3

then the lion is not rough︸ ︷︷ ︸
¬v4

...

Facts: The lion is not green︸ ︷︷ ︸
¬v5

... Conjecture: The lion is red︸ ︷︷ ︸
v1

.

Figure 6: An illustration of the retrofitting algorithm used to find hard RuleTaker theories (rules and facts) from random 3SAT
using a contrived example with grounded rules over 5 variables.

Ground Rules If the c is (not) X then the c is (not) Y.
If the c is (not) X and the c is (not) Y
then the c is (not) Z.

Quantified Rules If something is X and (not) Y then it is
(not) Z. If something is (not) X then it
is (not) Y. All X, Y things are (not) Z

Figure 7: A subset of the rule templates encountered in
the original RuleTaker language from Clark, Tafjord, and
Richardson (2020).

clausal form rule translation
±X ∨ ±Y ∨ ±Z If the c is (not) X and the c is (not)

Y then the c is (not) Z.

Cheeseman, P. C.; Kanefsky, B.; Taylor, W. M.; et al. 1991.
Where the really hard problems are. In IJCAI, volume 91,
331–337.

Clark, P.; Tafjord, O.; and Richardson, K. 2020. Transformers
as soft reasoners over language. In IJCAI.

Cook, S. A. 1971. The complexity of theorem-proving pro-
cedures. In Proceedings of the third annual ACM symposium
on Theory of computing, 151–158.

Cook, S. A.; and Mitchell, D. G. 1997. Finding hard instances
of the satisfiability problem: A survey. Satisfiability Problem:
Theory and Applications, 35: 1–17.

Davis, M.; Sigal, R.; and Weyuker, E. J. 1994. Computabil-
ity, complexity, and languages: fundamentals of theoretical
computer science. Elsevier.

De Moura, L.; and Bjørner, N. 2008. Z3: An efficient
SMT solver. In International conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, 337–340.
Springer.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. In NAACL.

Evans, R.; Saxton, D.; Amos, D.; Kohli, P.; and Grefenstette,
E. 2018. Can Neural Networks Understand Logical Entail-
ment? Proceedings of ICLR.

Gardner, M.; Grus, J.; Neumann, M.; Tafjord, O.; Dasigi, P.;
Liu, N.; Peters, M.; Schmitz, M.; and Zettlemoyer, L. 2018.
AllenNLP: A deep semantic natural language processing
platform. arXiv preprint arXiv:1803.07640.

Gontier, N.; Sinha, K.; Reddy, S.; and Pal, C. 2020. Measur-
ing systematic generalization in neural proof generation with
transformers. In NeurIPS.

Gururangan, S.; Swayamdipta, S.; Levy, O.; Schwartz, R.;
Bowman, S. R.; and Smith, N. A. 2018. Annotation artifacts
in natural language inference data. In NAACL.

Hahn, M.; Jurafsky, D.; and Futrell, R. 2021. Sensitivity
as a Complexity Measure for Sequence Classification Tasks.
TACL.

Hayes, B. 2003. Computing Science: On the Threshold.
American Scientist, 91(1): 12–17.

Hupkes, D.; Dankers, V.; Mul, M.; and Bruni, E. 2020. Com-
positionality decomposed: how do neural networks gener-
alise? JAIR, 67: 757–795.

Järvisalo, M.; Le Berre, D.; Roussel, O.; and Simon, L. 2012.
The international SAT solver competitions. AI Magazine,
33(1): 89–92.

Kassner, N.; Kroje, B.; and Schütze, H. 2020. Are Pre-trained
Language Models as Symbolic Reasoners over Knowledge?
In CoNLL.

Kautz, H.; McAllester, D.; and Selman, B. 1996. Encoding
plans in propositional logic. KR, 96: 374–384.

Kautz, H. A.; Selman, B.; et al. 1992. Planning as Satisfiabil-
ity. In ECAI, volume 92, 359–363.

Khot, T.; Khashabi, D.; Richardson, K.; Clark, P.; and Sab-
harwal, A. 2021. Text modular networks: Learning to decom-
pose tasks in the language of existing models. Proceedings
of NAACL.

11217

Lake, B.; and Baroni, M. 2018. Generalization without
systematicity: On the compositional skills of sequence-to-
sequence recurrent networks. In ICML, 2873–2882. PMLR.
Liang, Z.; Bethard, S.; and Surdeanu, M. 2021. Explainable
Multi-hop Verbal Reasoning Through Internal Monologue.
In NAACL, 1225–1250.
Linzen, T.; Dupoux, E.; and Goldberg, Y. 2016. Assessing
the ability of LSTMs to learn syntax-sensitive dependencies.
TACL, 4: 521–535.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019.
RoBERTa: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692.
Mitchell, D. G.; and Levesque, H. J. 1996. Some pitfalls
for experimenters with random SAT. Artificial Intelligence,
81(1-2): 111–125.
Monasson, R.; Zecchina, R.; Kirkpatrick, S.; Selman, B.; and
Troyansky, L. 1999. Determining computational complexity
from characteristic ‘phase transitions’. Nature, 400(6740):
133–137.
Pratt-Hartmann, I. 2004. Fragments of language. Journal of
Logic, Language and Information, 13(2): 207–223.
Pratt-Hartmann, I. 2010. Computational complexity in natu-
ral language. The handbook of computational linguistics and
natural language processing, 57.
Pratt-Hartmann, I.; and Moss, L. S. 2009. Logics for the
relational syllogistic. The Review of Symbolic Logic, 2(4):
647–683.
Pratt-Hartmann, I.; Third, A.; et al. 2006. More fragments
of language. Notre Dame Journal of Formal Logic, 47(2):
151–177.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Explor-
ing the limits of transfer learning with a unified text-to-text
transformer. JMLR.
Reed, S.; and De Freitas, N. 2015. Neural programmer-
interpreters. arXiv preprint arXiv:1511.06279.
Ribeiro, M. T.; Wu, T.; Guestrin, C.; and Singh, S. 2020.
Beyond accuracy: Behavioral testing of NLP models with
CheckList. In ACL.
Richardson, K.; Hu, H.; Moss, L.; and Sabharwal, A. 2020.
Probing natural language inference models through semantic
fragments. In AAAI-2020, 8713–8721.
Saha, S.; Ghosh, S.; Srivastava, S.; and Bansal, M. 2020.
PRover: Proof generation for interpretable reasoning over
rules. In EMNLP.
Saparov, A.; and Mitchell, T. M. 2021. A Generative Sym-
bolic Model for More General Natural Language Understand-
ing and Reasoning. arXiv preprint arXiv:2105.02486.
Selman, B.; Mitchell, D. G.; and Levesque, H. J. 1996. Gen-
erating hard satisfiability problems. Artificial intelligence,
81(1-2): 17–29.
Selsam, D.; Lamm, M.; Bünz, B.; Liang, P.; de Moura, L.;
and Dill, D. L. 2018. Learning a SAT solver from single-bit
supervision. In ICLR.

Shin, R.; Kant, N.; Gupta, K.; Bender, C.; Trabucco, B.;
Singh, R.; and Song, D. 2019. Synthetic datasets for neural
program synthesis. Proceedings of ICLR.
Sinha, K.; Sodhani, S.; Dong, J.; Pineau, J.; and Hamilton,
W. L. 2019. CLUTRR: A diagnostic benchmark for inductive
reasoning from text. In EMNLP.
Szymanik, J.; et al. 2016. Quantifiers and cognition: Logical
and computational perspectives, volume 96. Springer.
Tafjord, O.; Mishra, B. D.; and Clark, P. 2021. Proofwriter:
Generating implications, proofs, and abductive statements
over natural language. ACL Findings.
Talmor, A.; Elazar, Y.; Goldberg, Y.; and Berant, J. 2020.
oLMpics–On what Language Model Pre-training Captures.
TACL.
Tamari, R.; Richardson, K.; Sar-Shalom, A.; Kahlon, N.; Liu,
N.; Tsarfaty, R.; and Shahaf, D. 2021. Dyna-bAbI: unlock-
ing bAbI’s potential with dynamic synthetic benchmarking.
arXiv preprint arXiv:2112.00086.
Thorne, C.; and Calvanese, D. 2010. The data complexity of
the syllogistic fragments of English. In Logic, Language and
Meaning, 114–123. Springer.
Traylor, A.; Feiman, R.; and Pavlick, E. 2021. AND does
not mean OR: Using Formal Languages to Study Language
Models’ Representations. In Proceedings of ACL.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer
networks. In NeurIPS.
Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.; Michael,
J.; Hill, F.; Levy, O.; and Bowman, S. R. 2019a. SuperGLUE:
A stickier benchmark for general-purpose language under-
standing systems. In NeurIPS.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2019b. GLUE: A multi-task benchmark and
analysis platform for natural language understanding. In
ICLR.
Westerståhl, D.; et al. 1984. Some results on quantifiers.
Notre Dame Journal of Formal Logic, 25(2): 152–170.
Weston, J.; Bordes, A.; Chopra, S.; Rush, A. M.; van
Merriënboer, B.; Joulin, A.; and Mikolov, T. 2015. Towards
AI-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al.
2019. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771.
Wu, Z.; Kreiss, E.; Ong, D. C.; and Potts, C. 2021. ReaS-
CAN: Compositional Reasoning in Language Grounding. In
NeurIPS 2021 Datasets and Benchmarks Track.
Xu, L.; Hu, H.; Zhang, X.; Li, L.; Cao, C.; Li, Y.; Xu, Y.;
Sun, K.; Yu, D.; Yu, C.; Tian, Y.; Dong, Q.; Liu, W.; Shi, B.;
Cui, Y.; Li, J.; Zeng, J.; Wang, R.; Xie, W.; Li, Y.; Patterson,
Y.; Tian, Z.; Zhang, Y.; Zhou, H.; Liu, S.; Zhao, Z.; Zhao, Q.;
Yue, C.; Zhang, X.; Yang, Z.; Richardson, K.; and Lan, Z.
2020. CLUE: A Chinese Language Understanding Evaluation
Benchmark. In COLING.

11218

Yanaka, H.; Mineshima, K.; Bekki, D.; and Inui, K. 2020.
Do Neural Models Learn Systematicity of Monotonicity In-
ference in Natural Language? In ACL.
Zhang, H.; and Stickel, M. E. 1996. An Efficient Algorithm
for Unit Propagation. Proc. of AI-MATH, 96.

11219

