
Weakly Supervised Neuro-Symbolic Module Networks
for Numerical Reasoning over Text

Amrita Saha,1 Shafiq Joty, 1,2 Steven C.H. Hoi 1

1 Salesforce Research Asia
2 Nanyang Technological University

amrita.saha, sjoty, shoi@salesforce.com

Abstract

Neural Module Networks (NMNs) have been quite success-
ful in incorporating explicit reasoning as learnable modules in
various question answering tasks, including the most generic
form of numerical reasoning over text in Machine Reading
Comprehension (MRC). However to achieve this, contempo-
rary Neural Module Networks models obtain strong supervi-
sion in form of specialized program annotation from the QA
pairs through various heuristic parsing and exhaustive com-
putation of all possible discrete operations on discrete argu-
ments. Consequently they fail to generalize to more open-
ended settings without such supervision. Hence, we pro-
pose Weakly-Supervised Neuro-Symbolic Module Network
(WNSMN) trained with answers as the sole supervision for
numerical reasoning based MRC. WNSMN learns to exe-
cute a noisy heuristic program obtained from the dependency
parse of the query, as discrete actions over both neural and
symbolic reasoning modules and trains it end-to-end in a re-
inforcement learning framework with discrete reward from
answer matching. On the subset of DROP having numeri-
cal answers, WNSMN outperforms NMN by 32% and the
reasoning-free generative language model GenBERT by 8%
in exact match accuracy under comparable weakly supervised
settings. This showcases the effectiveness of modular net-
works that can handle explicit discrete reasoning over noisy
programs in an end-to-end manner.

Introduction
End-to-end neural models have proven to be powerful tools
for an expansive set of language and vision problems by
effectively emulating the input-output behavior. However,
many real problems like Question Answering (QA) or Di-
alog need more interpretable models that can incorporate
explicit reasoning in the inference process. In this work,
we focus on the most generic form of numerical reason-
ing over text, encompassed by the reasoning-based MRC
framework. A particularly challenging setting for this task is
where the answers are numerical in nature as in the popular
MRC dataset, DROP (Dua et al. 2019). The example in Fig-
ure 1 shows the intricacies involved in the task which include
(i) passage and query language understanding, (ii) contex-
tual understanding of the passage entities (dates, numbers),
and (iii) application of quantitative reasoning (e.g., max,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

not) over those entities to reach the final numerical answer.
There have been three broad genres of models that have
proven successful on the DROP numerical reasoning task.

First, large-scale pretrained language models like Gen-
BERT (Geva, Gupta, and Berant 2020) use a monolithic
Transformer architecture and decodes numerical answers
digit-by-digit. Though they deliver mediocre performance
when trained only on the target data, their competency is de-
rived from pretraining on massive synthetic data augmented
with explicit supervision of the gold numerical reasoning.
These are specifically synthetic datasets of numerical ex-
pressions and numerical MRC carefully designed with over-
lapping vocabulary, question templates and similar numeri-
cal ranges as in the target data (DROP).

Second kind of models are the reasoning-free hybrid mod-
els like NumNet (Ran et al. 2019), NAQANet (Dua et al.
2019), NABERT+ (Kinley and Lin 2019) and MTMSN (Hu
et al. 2019), NeRd (Chen et al. 2020). They explicitly in-
corporate numerical computations in the standard extractive
QA pipeline by learning a multi-type answer predictor over
different reasoning types (e.g., max/min, diff/sum, count,
negate) and directly predicting the corresponding numerical
expression, instead of learning to reason. This is facilitated
by exhaustively precomputing all possible outcomes of dis-
crete operations and augmenting the training data with the
reasoning-type supervision and numerical expressions that
lead to the correct answer.

Lastly, the most relevant class of models for this work are
the modular networks for reasoning. Neural Module Net-
works (NMN) (Gupta et al. 2020) is the first explicit rea-
soning based QA model which parses the query into a spe-
cialized program and executes it step-wise over learnable
reasoning modules. However, to do so, apart from the ex-
haustive precomputation of all discrete operations, it also
needs more fine-grained supervision of the gold program
and the gold program execution, obtained heuristically, by
leveraging the abundance of templatized queries in DROP.
While being more pragmatic and richer at interpretability,
both modular and hybrid networks are also tightly coupled
with the additional supervision i.e., they cannot learn with-
out it. While NMN is the first to enable learning from QA
pair alone, it still needs more finer-grained supervision for at
least a part of the training data. With this, it manages to su-
persede NABERT and MTMSN on a carefully chosen sub-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

11238

Figure 1: Outline of our method on example (passage, query, answer) from DROP: Executing noisy program obtained from
dependency parsing of the query by learning attention maps over entities and executing discrete operations on entity arguments.

set of DROP using the supervision, but generalizes poorly to
more open-ended settings lacking such supervision.

Need for symbolic reasoning. One striking character-
istic of the modular methods is to avoid discrete reason-
ing by employing only learnable modules with an exhaus-
tively precomputed space of outputs. While they perform
well on DROP, their modeling complexity grows arbitrar-
ily with complex non-linear numerical operations (e.g., log,
cos). Contrarily, symbolic modular networks that execute
the discrete operations are possibly more robust or prag-
matic in this respect by remaining unaffected by the opera-
tion complexity. Such discrete reasoning has indeed been in-
corporated for simpler, well-structured tasks like math word
problems with a small context and few number entities like
(Koncel-Kedziorski et al. 2016; Roy and Roth 2015) or QA
over structured data (Knowledge Bases or Tables) (Zhong,
Xiong, and Socher 2017; Liang et al. 2018; Saha et al. 2019;
Neelakantan et al. 2017), with Deep Reinforcement Learn-
ing (RL) for end-to-end training. For these tasks the pro-
grams enjoy well-defined input arguments and output vari-
ables (with variable types as KB entity-type or relation) and
program execution is entirely symbolic with no learning re-
quired. However the fuzzy reasoning in MRC requires more
generic framework of learnable program execution over neu-
ral and symbolic modules with open-ended arguments and
attention-maps as outputs. This makes the RL framework
more challenging, owing to the action-space explosion and
sparse, confounding rewards. To our knowledge RL has not
been applied in this complex setting.

In view of this, we propose a Weakly-Supervised Neuro-
Symbolic Module Network (WNSMN):

• Is a first attempt at numerical reasoning based MRC,
trained with answers as sole supervision;

• Is based on a generalized framework of dependency pars-
ing of queries into noisy programs (specifically the Stan-
ford Parser), which only captures the dependency struc-
ture of the query terms;

• Learns to execute the noisy programs through explicit rea-
soning by sampling discrete operators and arguments from
the passage context;

• Takes a pragmatic approach by using combination of neu-
ral and symbolic modules, in order to learn in the absence
of any heuristic supervision,

• Uses a deep Reinforcement Learning framework for train-
ing the neuro-symbolic reasoning modules end-to-end
with binary rewards from exact answer match.

In contrast, the earlier SoTA models NMN, MTMSN and
NeRd obtain strong supervision in terms of specialized pro-
gram annotation from the QA pairs through various heuris-
tic parsing of the templatized DROP queries and through
exhaustive computation of all possible discrete operations
on discrete arguments. Such supervision makes the learning
problem significantly simpler in the following ways:

• A simplistic (BERT-like) reader to read query information
from the passage, trained with direct supervision of the
query span arguments at each program step

• A programmer model that can be directly trained to de-
code the specialized programs

• Executing numerical functions (e.g., difference, count,
max, min) either by i) training purely neural modules in

11239

Figure 2: Examples of Programs for WNSMN obtained from the dependency parse of the query.

a strong supervised setting using the annotated programs
or by ii) performing the actual discrete operation as a post
processing step on the model’s predicted program. For
each of these previous works, it is possible to directly ap-
ply the learning objective on the space of decoded pro-
gram, without having to deal with the discrete answer or
any non-differentiability.

To concretely compare our proposed WNSMN with contem-
porary NMN, consider the example in Figure 1. In com-
parison to our generalized query-parsing, NMN parses the
query into a program form (MAX(FILTER(FIND(‘Carpenter’),
‘goal’)), which is step-wise executed by different learnable
modules with exhaustively precomputed output set. To train
the network, itneeds to augment the training data with anno-
tations of i) gold program, ii) gold query attention i.e., query
segment to attend as program argument in each step and
iii) gold program execution i.e., the exact discrete operation
and numerical expression (i.e., the numerical operation and
operands) that leads to the correct answer e.g., the supervi-
sion of the gold numerical expression in Figure 1 is MAX(23,
26, 42). These are obtained through manual inspection of the
data through regex based pattern matching and heuristics ap-
plied on the query language. Such dependency on strong su-
pervision restricts the applicability of NMN to a small sub-
set of DROP where the queries match the desired patterns.
However, because of the abundance of templatized queries
in DROP this pattern matching is quite effective, resulting
in the annotations acting as strong supervision. While NMN
can only handle the 6 reasoning categories that the super-
vision was tailored to, WNSMN focuses on the full DROP
with numerical answers (called DROP-num) that involves
more diverse reasoning on more open-ended questions. We
empirically compare WNSMN on DROP-num with NMN
and GenBERT that allow learning with partial or no strong
supervision. Our proposed WNSMN achieves 32% better
accuracy than NMN in absence of at least one or more types
of supervision and performs 8% better than GenBERT when
the latter is fine-tuned only on DROP-num in a compara-
ble setup, without additional synthetic data having explicit
supervision. We do not consider the SoTA Reasoning-free
hybrid models as our baselines, as unlike NMN and Gen-
BERT, they do not have any provision to learn in absence
of the additional supervision generated through exhaustive
enumeration and manual inspection.

Model
Our proposed WNSMN learns numerical-reasoning with
sole weak supervision of the answer, by generating noisy
heuristic program from the query parse structure and learn-
ing to execute it through explicit reasoning.

Parsing Query into Programs
To keep the framework generic, we use a simplified repre-
sentation of the dependency parse (Chen and Manning 2014)
of the query to get a generalized program, which is oblivious
to the reasoning type. As shown in Figure 2, we first con-
struct a node for the subtree rooted at each immediate child
of the root by merging its descendants in the original word
order. Next an edge is added from the left-most node (which
we call the root clause) to every other node. Then by travers-
ing left to right, each of these nodes are organized into pro-
gram steps having a linear flow. For instance, the program
obtained in Figure 1 is: X1 = (‘which is the longest’); X2 =
(‘goal by Carpenter’, X1); Answer = Discrete-Reasoning(‘which
is the longest’, X2).

Each program step consists of two types of arguments:
(i) Query Span Argument obtained from the corresponding
node indicating the query segment referred to in that step
(e.g., ‘goal by Carpenter’ in Step 2), and (ii) Reference Argu-
ment(s) obtained from the incoming edges to that node from
past steps, referring to the previous steps of the program that
the current step depends on (e.g., X1 in Step 2). Next, a fi-
nal step of the program is added, which has the reference
argument as the leaf node(s) obtained in the above manner
and the query span argument as the root-clause. This step
is specifically responsible for handling the discrete opera-
tion, enabled by the root-clause which is often indicative of
the kind of discrete reasoning involved (e.g., max). How-
ever, this being a noisy heuristic, the QA model needs to be
robust to such noise and additionally rely on the full query
representation in order to predict the discrete operation type.
For simplicity, we limit the reference arguments to 2.

Program Execution
To execute the program over the passage WNSMN first
does Entity Extraction i.e. identifying the relevant entities
from the passage and query, and maintaining them as sep-
arate canonicalized entity-lists along with their mention lo-
cations. For DROP, the only relevant entity types which in-

11240

Figure 3: Modeling the interactions between the passage and program (left), and between the passage and its entities (right)
(e.g. in this figure we take number and date as entities which are prevalent in DROP dataset). For a program step, they yield the
Stacked Span Prediction Logits and Attention over the entities, which on linear combination give expected entity distribution.

volve numerical reasoning are numbers and dates. However,
our model can also support other entity types that can be
symbolically defined and whose mentions can be parsed and
extracted from the context in a similar preprocessing step.
Next, WNSMN learns an Entity-Specific Cross-Attention
to model the passage information relevant to each step of the
decomposed query and learn an attention distribution over
the passage entities w.r.t. their query-relevance. Finally, it
models Explicit Discrete Reasoning over the entities, by
employing neural modules that learn to sample the opera-
tion and the relevant entity arguments and symbolic modules
to execute the actual operation. It is then trained end-to-end
in a Reinforcement Learning (RL) Framework with the
answer as the sole supervision.

Entity-Specific Cross Attention Starting with the noisy
program form of the query, a key requirement is to learn
the attention map over the entities of each type extracted
from the passage, for each program step. This is achieved
by a BERT based model, we describe below, which learns
the attention between each program step and the passage and
the attention between the passage text and passage entities.
The other SoTA models like NMN, NeRd also have a BERT-
like reader model to read query related information from the
passage and a programmer model to decode the specialized
programs. But their training is greatly simplified due of the
availability of heuristic or handcrafted supervision.

Program-Passage Interaction This module (Figure 3,
left) learns to associate query span arguments of the pro-
gram with the passage. For this, similar to NMN, we use a
BERT-base-uncased pretrained encoder (Devlin et al. 2018)
to get contextualized token embeddings of the passage and
query span argument of each program step, respectively de-
noted by Pk and Qk for the k’th program step. Based on
it, we learn a similarity matrix S ∈ Rl×n×m between the
program and passage, where l, n, and m respectively are the
program length, query span length and passage length (in
tokens). Each Sk ∈ Rn×m represents the affinity over the
passage tokens for the k’th program argument and is defined

as Sk(i, j) = wT [Qki;Pkj ;Qki⊙Pkj], where w is a learn-
able parameter vector and ⊙ denotes element-wise multipli-
cation. From this, an attention map Ak is computed over the
passage tokens for the k’th program argument as Ak(i, j) =

softmaxj(Sk(i, j)) =
exp(Sk(i,j))∑
j exp(Sk(i,j))

. Similarly, for the i’th
token of the k’th program argument the cumulative atten-
tion aki w.r.t. the passage is aki = softmaxi(

∑
j Sk(i, j)).

A linear combination of the attention map Ak(i, ·) weighted
by aki gives the expected passage attention for the k’th pro-
gram step, ᾱk =

∑
i akiAk(i, ·) ∈ Rm.

Further, to facilitate information spotting and extraction over
contiguous spans of text, we regularize the passage attention
through heuristic span-level smoothing technique (Huang
et al. 2020), by averaging the token-level attention over dif-
ferent sliding windows of lengths ω = {1, 2, . . . , 10}, to
spread the attention at different levels of granularity. We
use the same scale-parameters as used in the primary base-
line work NMN. This results in 10 different attention maps
over the passage for the k’th step of the program: {ᾱω

k |ω ∈
{1, 2,. . . , 10}}. Next, a multi-scaled version of ᾱω

k is ob-
tained by multiplied with scaling factors s = {1, 2, 5, 10}
to yield a |s|-dimensional representation for each passage
token. It is then passed through a L-layered stacked self-
attention transformer block (Input dim: 4, Hidden dim: 40,
Layers: 3, Heads: 4) (Vaswani et al. 2017) followed by a
linear layer to obtain the span prediction logits αω

k , for
each window length ω. Further, the span prediction log-
its at each program step (say k) is additively combined
with those from the previous steps referenced in the current
one, through the reference argument (ref(k)) at step k, i.e.,
αω

k = αω
k +

∑
k′∈ref(k) α

ω
k′ .

Passage-Entity Interaction This module (Figure 3, right)
facilitates an entity-based information spotting capability,
that is, given a passage mention of an entity (number/date
type) relevant to the query, the model should be able to at-
tend to the neighborhood around it. To do this, for each
entity type t, we first compute passage to entity tokens at-

11241

tention maps At ∈ Rl×m×N with N being the number of
unique entities of type t. Note that these attention maps are
different for each program step k as the contextual BERT
encoding of the passage tokens (Pk) is coupled with the pro-
gram’s span argument of that step. Specifically, at the k-th
step, At

k(i, ·) denotes the probability distribution over the N
unique entity tokens of type t w.r.t. the i-th passage token.
The attention maps are obtained by a softmax normalization
of each row of the corresponding passage to entity tokens
similarity matrix, St

k ∈ Rm×N for k = {1, . . . , l}, where
the elements of St

k are computed as St
k(i, j) = P T

kiWtPknj

with Wt ∈ Rd×d being a learnable projection matrix for
type t and nj being the passage location of the j-th entity
token. The similarity scores are additively aggregated over
all passage mentions of the same entity.

Program-Entity Interaction The relation between pro-
gram and entities is then modeled by combining the passage
to entity attention map At and the per-step passage span log-
its αω

k to get τω
k = softmax(

∑
i α

ω
kiA

t
k(i, ·)) ∈ RN . This

gives the expected distribution over the N entity tokens of
type t for the k-th program step and using ω as the smooth-
ing window size. The final stacked attention maps obtained
for the different windows are T t

k = {τω
k |ω ∈ {1, 2, . . . 10}}.

A critical requirement for a meaningful attention over en-
tities of type t, is to incorporate information extraction capa-
bility in the attention maps At, by enabling the model to at-
tend over the neighborhood of the relevant entity mentions.
This is achieved by minimizing the unsupervised auxiliary
loss Lt

aux in the training objective, which impose an induc-
tive bias over the number and date entities, similar to (Gupta
et al. 2020). Its purpose is to ensure that the passage attention
is densely distributed inside the neighborhood of ± Ω (e.g.,
10) of the passage location of the entity mention, without
imposing any bias on the attention distribution outside the
neighborhood as the model is oblivious to the relevance of
the remaining portion of the passage. Consequently, it max-
imises the log-form of cumulative likelihood of the attention
distribution inside the window and the entropy of the atten-
tion distribution outside it.

Lt
aux = −1

l

l∑
k=1

[m∑
i=1

[log(
N∑
j=1

1nj∈[i± Ω]A
t
k(i, j))

−
N∑
j=1

1nj ̸∈[i± Ω]A
t
k(i, j) log(A

t
k(i, j))]

]

Modeling Discrete Reasoning The model next learns to
execute a single step1 of discrete reasoning based on the fi-
nal program step which contains the (i) root-clause of the
query which often indicates the discrete operation type (e.g.,
‘how many goals’ indicates count), and (ii) reference ar-
gument indicating the previous program steps the final step
depends on. For entity type t (date/number), each previous

1A reasonable assumption for DROP with a recall of 90% on
the training set. However, it does not limit the generalizability of
WNSMN, as with the standard beam search it is possible to scale
to an l-step Markov Decision Process (MDP).

step (say k) is represented as stacked attention maps T t
k . T t

from the previous program steps is one of the main inputs to
the Argument Sampling transformer network in the Discrete
Reasoning module. The Discrete Reasoning takes the last
step of the program e.g. (for DiscreteReasoning(’Which is
the longest’, X2), the second input to the network would be
T t
2). Without learning the interaction between the Program,

Passage and Entities, this input to the Argument Sampler
will not be meaningful. With this input, this module learns
to select the correct discrete operation (here max to find the
longest) on the attention-map T t

2 learnt over the entities of
type t in the previous step.

Operator Sampling Network The operator network takes
as input, (i) BERT’s [CLS] representation for the passage-
query pair and LSTM encoding (randomly initialized) of
the BERT contextual representation (w.r.t. the passage) of
(ii) root-clause from the final program step and (iii) full
query. The BERT contextualized representation allows the
model to use the key passage information during operator
sampling and having access to the full query allows it to
learn even when the parsing is noisy. With this input, it pre-
dicts the following two entity and operator:

• Entity-Type Predictor Network, an Exponential Linear
Unit (Elu) activated fully-connected layer followed by a
softmax that outputs the probabilities of sampling either
date or number types.

• Operator Predictor Network, an Elu-activated fully con-
nected layer followed by a softmax to learn probability
distribution over a fixed catalog of 6 numerical and logical
operations (count, max, min, sum, diff, negate),
each represented with learnable embeddings.

Apart from diff which acts only on two arguments, all
other operations can take arbitrarily many arguments.

Argument Sampling Network This network learns to
sample entities of type t (e.g., date/numbers) as arguments
for the sampled discrete operation given the entity-specific
stacked attentions T t

k for each previous step k that appears
as the reference argument in the final program step. To allow
sampling of fixed or arbitrary number of arguments, the ar-
gument sampler learns four types of networks, each modeled
with an L-layered self attention based transformer block (In-
put dim: 10, Hidden dim: 100, Layers: 3, Heads: 10) with an
output dimension of d followed by different non-linear lay-
ers embodying their functionality and a softmax normaliza-
tion to get the sampling probability.

• Sample n ∈ {1, 2} Argument Module: Outputs a dis-
tribution over the single entities (n = 1) or a joint
distribution over the entity-pairs (n = 2); defined as
softmax(Elu(Lineard×n(Transformer(T)))).

• Counter Module: Predicts a distribution over num-
ber (≤10) of entity arguments to sample through
softmax(Elu(Lineard×10(CNN (Transformer(T))))).

• Entity-Ranker Module: Learns to rerank the enti-
ties and outputs a distribution over all the en-
tities given the stacked attention maps as input.
softmax(PRelu(Lineard×1(Transformer(T))))

11242

Figure 4: Operator and Argument Sampling Networks and RL framework over sampled discrete actions.

• Sample Arbitrary Argument: Learns to sample n (n being
prediction of Counter Module) entities from a multinomial
over the entity distribution predicted by the Entity Ranker.

Depending on the number of arguments needed by the dis-
crete operation and the number of reference arguments in
the final program step, the model invokes one of Sample
{1, 2, Arbitrary} Argument. For instance, if the sampled
operator is diff which needs 2 arguments, and the final
step has 1 or 2 reference arguments, then the model respec-
tively invokes either Sample 2 argument or Sample 1 argu-
ment on the stacked attention T corresponding to each refer-
ence argument. For the Arbitrary Argument case, the model
first predicts the number of entities (c) to sample using the
Counter Network, and then samples from the multinomial
distribution over the joint of c-combinations of entities con-
structed from the output distribution of the Entity Ranker.
RL Training with Weak Supervision We use an RL
framework to train the model with only discrete binary
feedback from the exact match of the gold and predicted
numerical answer. In particular, we use the REINFORCE
(Williams 1992) policy gradient method where a stochas-
tic policy comprising a sequence of actions is learned with
the goal of maximizing the expected reward. In our case,
the discrete operation along with argument sampling con-
stitute the action. However, because of our assumption that
a single step of discrete reasoning suffices for most ques-
tions in DROP, we further simplify the RL framework to a
contextual multi-arm bandit (MAB) problem with a 1-step
MDP, i.e., the agent performs only one step action. De-
spite the simplifying assumption of 1-step MDP, the follow-
ing characteristics of the problem render it highly challeng-
ing: (i) the action space A is exponential in the order of
number of operations and argument entities in the passage
(averaging to 12K actions for DROP-num); (ii) the extreme
reward sparsity owing to the binary feedback is further ex-
acerbated by the presence of spurious rewards, as the same
answer can be generated by multiple diverse actions. Previ-
ous approaches like NMN can avoid such spurious supervi-
sion because of the heuristically obtained additional anno-
tation of the question category, the gold program or its exe-
cution atleast for some training instances. In our contextual
MAB framework, for an input x = (passage(p), query(q)),
the context or environment state sϕ(x) is modeled by the

entity specific cross attention, parameterized by ϕ) between
the (i) passage (ii) program-form of the query and (iii) ex-
tracted passage date/number entities. Given the state sϕ(x),
the layout policy (parameterized by θ) then learns the query-
specific inference layout, i.e., the discrete action sampling
policy Pθ(a|sϕ(x)) for action a ∈ A. The action sampling
probability is a product of the probability of sampling en-
tities from the appropriate entity type (P type

θ), the opera-
tor (P op

θ), and the entity argument(s) (P arg
θ), normalized by

number of arguments to sample. Therefore, with the learn-
able context representation sϕ(x) of input x, the end-to-end
objective is to jointly learn {θ, ϕ} that maximises the ex-
pected reward R(x, a) ∈ {−1,+1} over the sampled ac-
tions (a), based on the answer match. To mitigate the learn-
ing instability in such sparse confounding reward settings,
we intialize with a simpler iterative hard-Expectation Max-
imization (EM) learning objective, called Iterative Maximal
Likelihood (IML) (Liang et al. 2017). With the assumption
that the sampled actions are extensive enough to contain the
gold answer, IML greedily searches for the good actions by
fixing the policy parameters, and then maximises the like-
lihood of the best action that led to the highest reward. We
define good actions (Agood) as those that result in the gold
answer itself and take a conservative approach of defining
best among them as simply the most likely one according to
the current policy.

JIML(θ, ϕ) =
∑
x

max
a∈Agood

logPθ,ϕ(a|x)

After the IML initialization, we switch to REINFORCE as
the learning objective where the goal is to maximise the ex-
pected reward (JRL(θ, ϕ) =

∑
x EPθ,ϕ(a|x)R(x, a)) as

∇(θ,ϕ)J
RL =

∑
x

∑
a∈A

Pθ,ϕ(a|x)(R(x, a)

−B(x))∇θ,ϕ(logPθ,ϕ(a|x))
B(x) being average (baseline) reward for instance x. Fur-
ther, in order to mitigate overfitting, in addition to L2-
regularization and dropout, we also add entropy based reg-
ularization over the argument sampling distribution, in each
of the sampling networks. Other than the iterative ML ini-
tialization, the program entity interaction also provides an
self-supervised auxiliary loss (Lt

aux for entity type t). This
inductive bias significantly helps in stabilizing the training.

11243

Figure 5: t-SNE of DROP-num-Test questions.

Experiments
We now empirically compare the exact-match performance
of WNSMN with SoTA baselines on versions of DROP
dataset and also examine how it fares in comparison to
strong supervised skylines. The Primary Baselines for
WNSMN are the explicit reasoning based NMN (Gupta
et al. 2020) which uses additional strong supervision and
the BERT based language model GenBERT (Geva, Gupta,
and Berant 2020) that does not embody any reasoning and
autoregressively generates numeric answer tokens. As the
Primary Dataset we use DROP-num, the subset of DROP
with numerical answers. This subset contains 45K and 5.8K
instances respectively from the standard DROP train and de-
velopment sets. Originally, NMN was showcased on a very
specific subset of DROP, restricted to the 6 reasoning-types
it could handle, out of which three (count, date-difference,
extract-number) have numeric answers. This subset com-
prises 20K training and 1.8K development instances, out of
which only 10K and 800 instances respectively have numer-
ical answers. We further evaluate on this numerical subset,
referred to as DROP-Pruned-num. In both cases, training
data was randomly split into 70%:30% for train and valida-
tion and the standard DROP development set was treated as
Test. The hyperparameter settings are as follows: Optimizer:
Adam (Learning Rate 1e-4), Num Arguments, Actions Sam-
pled: 50 & 250, Total epochs: 35, Iterative ML for First 15
epochs, Batch size: 2 (Grad. Accumulation 50).

Further, to analyze the nature of questions in DROP-
num and DROP-Pruned-num, in Figure 5 we show the t-
SNE plot of the pretrained Sentence-BERT (Reimers and
Gurevych 2019) encoding of all questions in DROP-num-
Test and also the DROP-Pruned-num-Test subset with differ-
ent colors (red, green, yellow) representing different types.
Not only are the DROP-num questions more diverse than
the carefully chosen DROP-Pruned-num subset, the latter
also forms well-separated clusters corresponding to the three
reasoning types. Additionally, the average perplexity of the
DROP-Pruned-num and DROP-num questions was found to
be 3.9 and 10.65 respectively, further indicating the com-
paratively open-ended nature of the former. For the primary
baselines NMN and GenBERT, we report the performance
on in-house trained models on the respective datasets, us-
ing the code open-sourced by the authors. The remaining
results, taken from (Geva, Gupta, and Berant 2020), (Kin-
ley and Lin 2019), and (Ran et al. 2019); refer to models

Supervision Type Acc. (%)
Prog. Exec. QAtt.

NMN-num variants
✗ ✓ ✓ 11.77
✓ ✗ ✓ 17.52
✓ ✓ ✗ 18.27
✓ ✗ ✗ 18.54
✗ ✓ ✗ 12.27
✗ ✗ ✓ 11.80
✗ ✗ ✗ 11.70

GenBERT
✗ ✗ ✗ 42.30

GenBERT-num
✗ ✗ ✗ 38.41

WNSMN
✗ ✗ ✗ 50.97

Table 1: Performance on DROP-num-Test.

trained on the full DROP dataset. All models use the same
pretrained BERT-base. Also note that a primary requirement
of all models other than GenBERT and WNSMN i.e., for
NMN, MTMSN, NABERT, NAQANET, NumNet, is the ex-
haustive enumeration of the output space of all possible dis-
crete operations. This simplifies the QA task to a classifica-
tion setting, thus alleviating the need for discrete reasoning
in the inference processs.

Table 1 presents our primary results on DROP-num, com-
paring the performance of WNSMN (accuracy of the top-1
action sampled by the RL agent) with various ablations of
NMN (provided in the authors’ implementation) by remov-
ing atleast one of Program, Execution, and Query Attention
supervision and GenBERT models with pretrained BERT
that are finetuned on DROP or DROP-num (denoted as Gen-
BERT and GenBERT-num). Similarly, since this version of
NMN trained on the numerical subset of DROP, we denote
it as NMN-num. For a fair comparison with our weakly su-
pervised model, we do not treat NMN with all forms of su-
pervision or GenBERT pretrained with additional synthetic
numerical and textual data as comparable baselines. These
GenBERT variants indeed enjoy strong reasoning supervi-
sion in terms of gold arithmetic expressions in these auxil-
iary datasets. Also, the synthetic pretraining dataset are not
generic enough and are quite tailored to the target dataset,
enjoying strikingly similarity to DROP. This is reflected in
the domains (nfl and history), passage vocabulary and dis-
tribution of the range of numerical entities and the language
and nature of questions.However, NMN’s performance, in
this setting, is abysmally poor, indeed a drastic degradation
in comparison to its performance on the pruned DROP sub-
set reported by (Gupta et al. 2020) and in our subsequent
experiments in Table 2. This can be attributed to their limita-
tion in handling more diverse classes of reasoning and open-
ended queries in DROP-num, further exacerbated by the lack
of one or more types of strong supervision.2 Our earlier anal-

2Both the results and limitations of NMN in Table1 and 2 were
confirmed by the authors of NMN as well.

11244

Supervision-Type Acc. Count Extract-
num

Date-
differProg. Exec. QAtt.

NMN-num models
✓ ✓ ✓ 68.6 50.0 88.4 72.5
✗ ✓ ✓ 42.4 24.1 73.9 36.4
✓ ✗ ✓ 54.3 47.9 80.7 40.9
✓ ✓ ✗ 63.3 45.5 81.1 68.7
✗ ✗ ✓ 48.2 38.1 72.4 41.9
✓ ✗ ✗ 61.0 44.7 81.1 63.2
✗ ✓ ✗ 62.3 43.7 84.1 67.7
✗ ✗ ✗ 62.1 46.8 83.6 66.1

WNSMN
✗ ✗ ✗ 66.5 58.8 66.8 75.2

Table 2: Performance on DROP-Pruned-num-Test
.

ysis on the complexity of the questions in the subset and full
DROP-num further quantify the relative difficulty level of
the latter. On the other hand, GenBERT delivers a mediocre
performance, while GenBERT-num degrades additionally by
4%, as learning from numerical answers alone further curbs
the language modeling ability. Our model performs signif-
icantly better than both these baselines, surpassing Gen-
BERT by 8% and the NMN baseline by around 32%. This
showcases the significance of incorporating explicit reason-
ing in neural models in comparison to the vanila large scale
LMs like GenBERT. It also establishes the generalizability
of such reasoning based models to more open-ended forms
of QA, in comparison to contemporary modular networks
like NMN, owing to its ability to handle both learnable and
discrete modules in an end-to-end manner.

Strong Supervised Models Acc. (%)
NMN-num (all supervision) 58.10

GenBERT+ND 69.20
GenBERT+TD 70.50
GenBERT+ND+TD 75.20

GenBERT-num+ND 69.44
GenBERT-num+TD 66.96
GenBERT-num+ND+TD 74.24

NAQANet 44.97
NABERT 54.27
NABERT+ 66.60
NumNet 69.74

MTMSN 75.00
Recall@top-k actions of WNSMN(%)

k = 2 k = 3 k = 4 k = 5 k = 10 k = 20
58.6 63.0 65.4 67.4 72.3 74.2

Table 3: Skylines & top-k performance of WNSMN on
DROP-num-Test

Next, in Table 2, we compare the performance of the pro-
posed WNSMN with the same NMN variants (as in Table 1)
on DROP-Pruned-num. Some of the salient observations
are: (i) WNSMN in fact reaches a performance quite close
to the strongly supervised NMN variant (first row), and is

able to attain at least an improvement margin of 4% over all
other variants obtained by removing one or more types of su-
pervision. This is despite all variants of NMN additionally
enjoying the exhaustive precompution of the output space
of possible numerical answers; (ii) WNSMN suffers only in
the case of extract-number type operations (e.g., max,min)
that involve a more complex process of sampling arbitrary
number of arguments (iii) Performance drop of NMN is not
very large when all or none of the strong supervision is
present, possibly because of the limited diversity over rea-
soning types and query language; and (iv) Query-Attention
supervision infact adversely affects NMN’s performance, in
absence of the program and execution supervision or both,
possibly owing to an undesirable biasing effect. However
when both supervisions are available, query-attention is able
to improve the model performance by 5%. Further, we be-
lieve the test set of 800 instances is too small to get an unbi-
ased reflection of the model’s performances.

In Table 3, we additionally inspect recall over the top-
k actions sampled by WNSMN to estimate how it fares in
comparison to the strongly supervised skylines: (i) NMN
with all forms of strong supervision; (ii) GenBERT variants
+ND, +TD and +ND+TD further pretrained on synthetic
Numerical and Textual Data and both; (iii) reasoning-free
hybrid models like MTMSN (Hu et al. 2019) and NumNet
(Ran et al. 2019), NAQANet (Dua et al. 2019) and NABERT,
NABERT+ (Kinley and Lin 2019). Note that both Num-
Net and NAQANet do not use pretrained BERT. Out of the
strong supervised models, MTMSN achieves SoTA perfor-
mance through a supervised framework of training special-
ized predictors for each reasoning type to predict the nu-
merical expression directly instead of learning to reason.
While top-1 performance of WNSMN (in Table 1) is 4%
worser than NABERT, Recall@top-2 is equivalent to the
strongly supervised NMN, top-5 and top-10 is comparable
to NABERT+, NumNet and GenBERT models +ND, +TD
and top-20 nearly achieves SoTA. This promising recall sug-
gests that more sophisticated RL algorithms with better ex-
ploration strategies can bridge the performance gap.

Analysis
In this section, we perform more analysis of the proposed
model and motivate some future directions.
Performance Analysis Despite the notorious instabilities
of RL due to high variance, the training trend, as shown
in Figure 6 (a) is not afflicted by catastrophic forgetting.
The sudden performance jump between epochs 10-15 is
because of switching from iterative ML initialization to
REINFORCE objective. Figure 6 (b) shows the individ-
ual module-wise performance evaluated using the noisy
pseudo-rewards, that indicate whether the action sampled
by this module led to the correct answer or not. Accord-
ingly, we define pseudo-reward for sampling an operator
as the maximum of the reward obtained from all the ac-
tions involving that operator. Next in Figure 6 (c), we bucket
the performance of the baselines and WNSMN by the to-
tal number of passage entities. From there we observe that
WNSMN remains unaffected by the increasing number of

11245

Module Performance

Sample 1 Argument 54% (Accuracy)
Sample 2 Argument 52% —"—
Counter 50% —"—
Entity Ranker 53% —"—
Operator Predictor 78% —"—
Entity Type Predictor 83% —"—

Overall Action Sampler 84% (Recall@All)

Figure 6: (a) Training trend showing the Recall@top-k actions and accuracy of Operator and Entity-type Predictor, estimated
based on noisy psuedo rewards, (b) Module-wise performance (using pseudo-reward) on DROP-num-Test, (c) Bucketing per-
formance by total number of passage (date and number) entities for WNSMN, and the best performing baseline NMN and
GenBERT model taken from Table 1.

Figure 7: Performance of WNSMN vs. Question Length

Good Action: i.e. Resulting in True Answer
Correct Action: i.e. Manually Annotated Correct
A:- Instances with atleast 1 good action 4868
B:- Instances with multiple good actions 2533
C:- Instances with top-1 action good 2956
D:- Intersection of set B and C 620
E:- Instances manually annotated from D 340
F:- Instances from E with Correct top-1 312
Number of good actions per instance in A 1.5
Number of good actions per instance in B 2.25

Table 4: Manual Analysis of WNSMN predictions on 5.8K
DROP-num Test Instances.

entities, despite the action space explosion. On the other
hand, GenBERT’s performance drops linearly beyond 25
entities and NMN-num degrades exponentially from begin-
ning, owing to its dependency on the exponentially grow-
ing exhaustively precomputed output space. Further in Fig 7,
we bucket the performance of WNSMN by the query-length
and observe that our performance degrades only slightly for
DROP-num-Test and DROP-Pruned-num-Test with increas-
ing query length.
Manual Analysis Since WNSMN learns to reason in an
entirely weak supervised framework, in Table 4 we manu-
ally inspected 340 instances from DROP-num Test where
the gold answer is reachable through different operations, to
understand in how many cases the top-1 action predicted by
model is indeed correct or when it is spurious. The notable

conclusion from this is that only in 28 out of the manually
annotated 340 instances, the the model’s reasoning is spuri-
ously correct. However, out of the cases where atleast one
of the top-50 actions is a good we observe that the model is
able to learn when the answer is directly present as an entity
or can be obtained by operating other entities and when it
needs to count over multiple entity mentions.
More Stable RL Framework The training trend in Fig-
ure 6(a) shows early saturation and the module-wise per-
formance indicates overfitting despite some regularization
tricks. While more stable RL algorithms like Actor-Critic,
Trust Region Policy Optimization (Schulman et al. 2015)
or Memory Augmented Policy Optimization (Liang et al.
2018) can mitigate these issues, we leave them for future
exploration. Also, though this work’s objective was to train
module networks with weak supervision, the sparse con-
founding rewards in the exponential action space indeed ren-
der the RL training quite challenging. One practical future
direction to bridge the performance gap would be to pre-
train with strong supervision on at least a subset of reasoning
categories or on more constrained forms of synthetic ques-
tions, similar to GenBERT. This would require inspection
and evaluation of generalizability of the RL model to un-
known reasoning types or more open-ended questions.

Conclusion
We presented Weakly Supervised Neuro-Symbolic Module
Network for numerical reasoning based MRC based on a
generalized framework of query parsing to noisy heuristic
programs. It trains both neural and discrete reasoning mod-
ules end-to-end in a Deep RL framework with only discrete
reward based on exact answer match. Our empirical anal-
ysis on the numerical-answer only subset of DROP show-
cases significant performance improvement of the proposed
model over SoTA Neural Module Network and Transformer
based language model GenBERT, when trained in compa-
rable weakly supervised settings. While, to our knowledge,
this is the first effort towards training modular networks
for fuzzy reasoning over RC in a weakly-supervised set-
ting, there is significant scope of improvement, by employ-
ing more sophisticated reinforcement learning framework or
by leveraging pretraining of explicit reasoning.

11246

References
Chen, D.; and Manning, C. 2014. A Fast and Accurate De-
pendency Parser using Neural Networks. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 740–750. Doha, Qatar: Asso-
ciation for Computational Linguistics.
Chen, X.; Liang, C.; Yu, A. W.; Zhou, D.; Song, D.; and Le,
Q. V. 2020. Neural Symbolic Reader: Scalable Integration
of Distributed and Symbolic Representations for Reading
Comprehension. In 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. Cite arxiv:1810.04805Comment:
13 pages.
Dua, D.; Wang, Y.; Dasigi, P.; Stanovsky, G.; Singh, S.;
and Gardner, M. 2019. DROP: A Reading Comprehension
Benchmark Requiring Discrete Reasoning Over Paragraphs.
In Proc. of NAACL.
Geva, M.; Gupta, A.; and Berant, J. 2020. Injecting Numer-
ical Reasoning Skills into Language Models. In ACL.
Gupta, N.; Lin, K.; Roth, D.; Singh, S.; and Gardner, M.
2020. Neural Module Networks for Reasoning over Text. In
International Conference on Learning Representations.
Hu, M.; Peng, Y.; Huang, Z.; and Li, D. 2019. A Multi-
Type Multi-Span Network for Reading Comprehension that
Requires Discrete Reasoning. In Proceedings of EMNLP.
Huang, T.; Deng, Z.; Shen, G.; and Chen, X. 2020. A
Window-Based Self-Attention approach for sentence encod-
ing. Neurocomputing, 375: 25–31.
Kinley, J.; and Lin, R. 2019. NABERT+: Improving Nu-
merical Reasoning in Reading Comprehension. https://
github.com/raylin1000/drop-bert. Accessed: 2019-
07-01.
Koncel-Kedziorski, R.; Roy, S.; Amini, A.; Kushman, N.;
and Hajishirzi, H. 2016. MAWPS: A Math Word Problem
Repository. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, 1152–
1157. San Diego, California: Association for Computational
Linguistics.
Liang, C.; Berant, J.; Le, Q.; Forbus, K. D.; and Lao,
N. 2017. Neural Symbolic Machines: Learning Semantic
Parsers on Freebase with Weak Supervision. In Proceed-
ings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), volume 1,
23–33.
Liang, C.; Norouzi, M.; Berant, J.; Le, Q. V.; and Lao, N.
2018. Memory Augmented Policy Optimization for Pro-
gram Synthesis and Semantic Parsing. In Bengio, S.; Wal-
lach, H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.;
and Garnett, R., eds., Advances in Neural Information Pro-
cessing Systems 31, 10015–10027. Curran Associates, Inc.
Neelakantan, A.; Le, Q. V.; Abadi, M.; McCallum, A.; and
Amodei, D. 2017. Learning a Natural Language Interface

with Neural Programmer. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net.
Ran, Q.; Lin, Y.; Li, P.; Zhou, J.; and Liu, Z. 2019. NumNet:
Machine Reading Comprehension with Numerical Reason-
ing. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 2474–2484. Hong Kong, China: Asso-
ciation for Computational Linguistics.
Reimers, N.; and Gurevych, I. 2019. Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks. In Pro-
ceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing. Association for Computa-
tional Linguistics.
Roy, S.; and Roth, D. 2015. Solving General Arithmetic
Word Problems. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, 1743–
1752. Lisbon, Portugal: Association for Computational Lin-
guistics.
Saha, A.; Ansari, G. A.; Laddha, A.; Sankaranarayanan, K.;
and Chakrabarti, S. 2019. Complex Program Induction for
Querying Knowledge Bases in the Absence of Gold Pro-
grams. Transactions of the Association for Computational
Linguistics, 7: 185–200.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust Region Policy Optimization. volume 37
of Proceedings of Machine Learning Research, 1889–1897.
Lille, France: PMLR.
Subramanian, S.; Bogin, B.; Gupta, N.; Wolfson, T.; Singh,
S.; Berant, J.; and Gardner, M. 2020. Obtaining Faithful In-
terpretations from Compositional Neural Networks. In As-
sociation for Computational Linguistics (ACL).
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017.
Attention is All you Need. In Guyon, I.; Luxburg, U. V.;
Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and
Garnett, R., eds., Advances in Neural Information Process-
ing Systems 30, 5998–6008. Curran Associates, Inc.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning, 8: 229–256.
Zhong, V.; Xiong, C.; and Socher, R. 2017. Seq2SQL: Gen-
erating Structured Queries from Natural Language using Re-
inforcement Learning. arXiv:1709.00103.

11247

